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CD4+ and CD8+ αβ T cell antigen recognition is determined by the interaction between

the TCR Complementarity Determining Region (CDR) loops and the peptide-presenting

MHC complex. These T cells are known for their ability to recognize multiple pMHC

complexes, and for a necessary promiscuity that is required for their selection and

function in the periphery. Crystallographic studies have previously elucidated the role

of structural interactions in TCR engagement, but our understanding of the dynamic

process that occurs during TCR binding is limited. To better understand the dynamic

states that exist for TCR CDR loops in solution, and how this relates to their states when

in complex with pMHC, we simulated the 2C T cell receptor in solution using all-atom

molecular dynamics in explicit water and constructed a Markov State Model for each of

the CDR3α and CDR3β loops. These models reveal multiple metastable states for the

CDR3 loops in solution. Simulation data and metastable states reproduce known CDR3β

crystal conformations, and reveal several novel conformations suggesting that CDR3β

bound states are the result of search processes from nearby pre-existing equilibrium

conformational states. Similar simulations of the invariant, Type I Natural Killer T cell

receptor NKT15, which engages the monomorphic, MHC-like CD1d ligand, demonstrate

that iNKT TCRs also have distinct states, but comparatively restricted degrees of motion.

Keywords: molecular dynamics (MD), markov state models, T cell receptor dynamics, adaptive immunity, innate

immunity, independent component (IC) analysis

INTRODUCTION

T cells are key components of the adaptive immune system that recognize processed antigens
presented on cell surfaces by major histocompatibility complex (MHC) and MHC-like proteins via
T cell receptors (TCRs). CD4+ and CD8+ αβ TCRs recognize antigenic peptides bound to MHC
proteins (pMHC), provoking an adaptive immune response to infection, cancer and dysregulated
tissue. CD4+/CD8+ αβ TCRs show both specific and degenerate recognition characteristics.
Thymic-selection and homeostatic maintenance in the periphery require that TCRs recognize
MHC. However, to provide effective coverage of possible antigens TCRs must be cross-reactive,
which has been experimentally demonstrated (Mason, 1998; Wilson et al., 2004; Sewell, 2012).
Additionally, to avoid autoimmunity TCRs must distinguish self-peptides from non-self antigenic
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peptides in the context of MHC presentation, requiring that the
TCRs strike a balance between sufficient self-recognition to scan
MHCs while avoiding autoimmunity. The key to this balance is
the amino acid sequence of the complementarity determining
region (CDR) loops of the TCR. These CDR loops are the
structural elements that recognize the peptide-MHC surface.

Over two decades of crystallographic work have generated a
large database of TCR structures, both free and bound to various
foreign and self-reactive peptide-MHC complexes demonstrating
significant variation in bound structure that show CDR loop
flexibility as vital to TCR cross-reactivity (Armstrong et al., 2008).
Reviews of the structural data over the years have concluded,
with increasing conviction, that the CDR loops are flexible but
in a structured manner distinctly different from the intrinsically
disordered regions seen in other proteins (Garcia and Adams,
2005; Rudolph et al., 2006; Armstrong et al., 2008; Baker
et al., 2012). Furthermore, general flexibility is restricted to the
CDR3 loops, even under extreme changes to CDR3 loop length
(Reiser et al., 2002). The issue of flexibility becomes a matter
of when this flexibility exists, expressed in the tension between
the induced fit and pre-existing equilibrium hypotheses. The
induced fit model argues for initial weak binding between the
TCR and MHC, which allows for a conformational change to
make stronger contacts resulting in a higher affinity interaction
with recognized peptides (Boniface et al., 1999; Wu et al., 2002).
Biophysical measurements including mutational studies, ITC,
and kinetic measurements have supported this view (Wu et al.,
2002; Gakamsky et al., 2007). Of more direct interest for the
present article, structural studies have suggested a strong role
for the CDR1β and CDR2β germline-encoded loops, which
have shown the least rearrangement upon binding, in MHC
recognition (Feng et al., 2007; Ishizuka et al., 2008). This would
provide the necessary initial bias toward MHCs required for the
induced-fit model.

An alternative “conformer” model suggests that cross-
reactivity could instead be driven by the existence of multiple
CDR loop conformational states of the free TCR, which could
recognize different peptide-MHC ligands so that specificity
is controlled by a combination of specific contacts and the
relative equilibrium populations of different conformational
states (Holler and Kranz, 2004). These two models are difficult
to distinguish biophysically as loop dynamics are difficult
to capture even with techniques capable of resolving time-
dependent dynamics as in Scott et al., though the measurements
did substantiate the use of computational methods (Scott et al.,
2012). Computational analysis of the free A6 TCR provides
strong support for the existence of distinct states in solution,
where clustering the CDR3α and CDR3β loops using RMSD as
a dissimilarity metric showed multiple distinct conformations
of the loops (Scott et al., 2011, 2012). Notably, CDR3α showed
slow motions between two clusters of conformations, one cluster
resembling a bound state of A6, and the other cluster distinct
from the bound state, while CDR3β appeared to sample multiple
dissimilar conformational clusters. These clusters, along with
recent NMR experiments showing that the CDR3β loop of
2C is still mobile in the 2C-QL9-Ld complex, have motivated
a “conformational melding” hypothesis combining aspects of

induced-fit and conformer models (Hawse et al., 2014). CDR3
loop flexibility has also been computationally observed in the
TCR-pMHC bound state over a vast array of peptides (Knapp
et al., 2014). Determining which of these models best describes
TCR dynamics is critical to our understanding of TCR-pMHC
recognition, particularly the mechanisms behind cross-reactivity
and specificity. Understanding how individual amino acids can
affect these TCR-specific properties may help with a more
rational design of personalizeable immunotherapies.

A key requirement of the conformer models and
conformational melding hypotheses is the existence of distinct
crystal-like states in the unbound TCR’s dynamics. In order to
probe these dynamics at time- and length-scales inaccessible by
experimental methods, we utilized molecular dynamics (MD)
simulations and analyzed the subsequent trajectories using a
Markov State Model (MSM) framework. Molecular dynamics is
becoming ever more prominent in molecular biology, and the
formalism and usage of MSMs has moved quickly from a humble
beginning focused on alanine dipeptide to a promising potential
in drug discovery (Pan and Roux, 2008; Bowman et al., 2015;
Meng et al., 2016; Gu et al., 2017).

We have run extensive simulations of the free 2C TCR, as
well as simulations of the free Natural Killer T cell receptor
NKT15 to directly address flexibility. 2C is a well-studied TCR
known to display significant cross-reactivity and with extensive
crystallographic data available (Figure 1A) (Garcia et al., 1996,
1998; Degano et al., 2000; Colf et al., 2007). We have generated
a total of 3µs of data across 10 trajectories of 2C, providing a
significantly larger data set than has been previously available to
study the solution state dynamics of a TCR. Further, we have used
the Markov State Model formalism to cluster the loop dynamics
in a kinetic fashion, providing crystal-like states that distinguish
stable conformations from transitions and directly identifying
transitions between conformational states. In accordance with
previous work on A6, we observe significant flexibility in both
CDR3α and CDR3β, with CDR3α showing a broad energetic
well representative of a non-binding state and CDR3β showing
multiple meta-stable states with local equilibria.

In contrast to CD4+ and CD8+ αβT cells, type I Natural Killer
T cells (NKT) recognize lipids presented by the monomorphic
MHC-like molecule CD1d. Type I NKT TCRs are considered
to be “semi-invariant,” as they are generated through VDJ
recombination as per standard αβ TCRs but use a heavily
restricted Vα and Vβ chain repertoire. This restriction, along
with orders of magnitude faster binding kinetics, higher affinities,
and rigid binding conformations in crystal structures have led
them to being considered “innate-like” (Figure 1B) (Rossjohn
et al., 2012). Importantly, mutational studies implicate the
CDR2β and CDR3α loops in driving the NKT interaction with
CD1d and the canonical antigen, αGalCer (Wun et al., 2012). The
conserved binding footprint, innate-like kinetics, and stronger
reliance on germline encoded interactions implies that type I
NKT TCRs should demonstrate reduced flexibility and simpler
dynamic behavior, particularly in the CDR3 αβ loop, compared
to classical CD4+/CD8+ TCRs. The restricted binding footprint
in the NKT-Ag-CD1d system suggests that the NKT TCRs should
serve as “innate-like” counterpoints to CD4+/CD8+ αβ TCRs,
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FIGURE 1 | Crystal structures of the 2C and NKT15 TCRs highlight their hypothesized dynamics and the starting points used for simulations. (A) Variable domains

(gray) of 2C shown from the perspective of the pMHC surface. CDR3 loops shown for the unbound structure (cyan, PDB: 1TCR), bound to H-2Kb/SIYR (red, PDB:

1G6R), H-2Kb/QL9 (green, PDB:2CKB), and H-2Ld/QL9 (blue, PDB:2OI9). (B) Similar view of NKT15 variable domains (gray) with CDR loops shown for the unbound

structure (cyan, PDB:2EYS), and bound to CD1d presenting αGalCer (orange, PDB: 3HUJ) or C20:2 (pink, PDB: 3VWJ).

despite using the same fundamental protein architecture. To test
this model, we have simulated 1µs of free NKT15 dynamics
across 10 trajectories. Surprisingly, we observe flexibility and
meta-stable states in both the CDR3α and CDR3β loops of
NKT15. However, in contrast to 2C, the dynamic behavior of
NKT15’s loops is simpler in that for each loop, the major motions
can be well-captured by a single degree of freedom.

MATERIALS AND METHODS

MD Simulations
All simulations were carried out using the Amber14 package.
Input coordinates were prepared from PDB files 1TCR (2C) and
2EYS (NKT15), truncated to the variable domains and prepared
using pdb4amber preprocessing scripts. These structures were
solvated with TIP3P waters in an octahedral unit cell at 12
angstroms, neutralized with NaCl at 150mM concentrations,
and parameterized using the AMBER99SB force field and
Joung/Cheatham ion parameters using xleap (Ponder and Case,
2003). Two rounds of 2000 steps of minimization were carried
out, first with restraints on the protein, and then secondly
without restraints. These minimized states were the initial seeds
for each of the 10 trajectories run out for each of 2C and
NKT15. Each trajectory was set to 300K through initial velocity
randomization, and allowed to equilibrate in NPT for 10 ns using
a Langevin thermostat and the Amber Monte Carlo barostat at 1
atm, allowing the trajectories to diverge independently (Hoover,
1985). All data presented in the analysis was collected following
the 10 ns equilibration stage, with each trajectory run for an
additional 300 ns (2C) or 100 ns (NKT15) using SHAKE to
allow 2 fs time steps (Ryckaert et al., 1977). Calculations were
performed using the CUDA-enhanced pmemd Amber module
(Götz et al., 2012; Salomon-Ferrer et al., 2013).

Data Analysis
Raw simulation data was processed using cpptraj to re-image
the system and extract protein data (Roe and Cheatham, 2013).

Structure alignments and RMSD calculations were carried out
using VMD (Humphrey et al., 1996). Hydrogen bonds were
determined using a 3.2 Å distance cutoff and 20◦ angle cutoff in
VMD. Solvent accessible surface area (SASA) was calculated in
VMD with a probe radius of 1.4 Å, with only the CDR3 loops,
residues 92–97 and 205–210, included in the calculation. Further
data processing used custom Python scripts with trajectory
featurization and data handling provided by the MDTraj library
(McGibbon et al., 2015). We used the MSMBuilder3 library to
perform time-lagged independent component analysis (tICA),
clustering, and Markov State Model generation as described in
their sections (Beauchamp et al., 2011). Kernel density estimates
were calculated using the gaussiankde module from the Scipy
library; kernel bandwidth was selected using Scott’s Rule (Scott,
2015).

In our analysis, we perform all tICA decompositions using
a fixed choice of time-lag at 5 ns to make the analysis more
comparable across decompositions. We then calculate distances
in this tICA space while clustering using the standard Euclidean
metric after projecting the data frames onto the first 16 tICA
degrees of freedom. We chose 16 degrees of freedom as they
account for >90% of the energy of the eigenvalues of the tICA
decomposition. All clustering was done using the K-medoids
algorithm. We clustered the CDR3α data into 16 clusters, and
CDR3β data into 32 clusters.We chose 16 and 32 clusters because
the cluster medoids gave reasonable coverage of the state space
shown by the first two degrees of freedom, permitted more
clusters for coverage of any significant unobserved parts of state
space present in higher degrees of freedom, and were low enough
numbers to achieve reasonable convergence of the microstate
Markov model in the case of CDR3β. The CDR3α model did not
converge, as described in the results.

After clustering, a “microstate” Markov model is constructed
by estimation of a state transition matrix through maximum
likelihood estimation (MLE). MLE finds the transition matrix
that has the greatest likelihood of generating the observed state
transitions. The estimation works from the raw data by counting
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FIGURE 2 | The first 8 tICs of the tICA-decomposed dihedral angles show relatively simple motions of the CDR3α loop, and more complex behavior for the CDR3β

loop for the 2C TCR. (A,B) 2-D Kernel Density Estimate of the simulation data projected onto the first two degrees of freedom discovered by tICA for the CDR3α and

CDR3β loops, respectively, using a 2-D Gaussian kernel. The KDEs estimate the probability density function for finding a randomly selected frame in a region of

conformational space described by the tICA degrees of freedom. (C,D) 1-D probability density graphs of the first eight tICA degrees of freedom for CDR3α and

CDR3β, respectively, using a Gaussian kernel.
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transitions between clustered states over a chosen time-lag. That
is, if we are estimating a Markov model with time-lag τ and the
data is in state 1 at time t and in state 2 at time t + τ , then we
count that as a transition from state 1 to state 2. To determine
the best choice of time-lag, we constructed Markov models for
multiple time-lags, making a final choice of model using time-
lags where the slowest few degrees of freedom converge to stable
values (Figure S1).

The final “macrostate” Markov model, which our analysis
focuses on, is determined from the microstate model by Perron
Cluster Clustering Analysis (PCCA), which clusters together
the microstates in the microstate model. The microstates are
joined to formmacrostates, where the clustering is determined by
maximizing the stability of the new macrostate, i.e., maximizing
the probability of self-transitions. Macrostate assignment was
performed using the PCCA+ algorithm, which improves on
the results of PCCA. The CDR3β microstate model was built
with a time-lag of 8 ns, and clustered into four macrostates
as evidenced by both the relaxation timescales (Figure S1) and
the four identifiable local maxima of the first two tICA degrees
of freedom (Figure 2B). Further detail regarding tICA and
Markov State Modeling can be found in the accompanying
Supplemental Methods section.

RESULTS

tICA Analysis Shows Stable Conformations
and Low Dimensional Motion
To understand the dynamical motions of the 2C TCR, we ran
10 molecular dynamics simulations for 300 ns (totaling 3µs of
simulation time) of the 2C α and β variable domains using the
coordinates of the 1TCR PDB as initial coordinates. We studied
the conformational changes of the CDR3α and CDR3β loops
individually by analyzing their backbone dihedral angles under
the tICA decomposition. The tICA decomposition is similar to
Principal Component Analysis (PCA), in that it looks for linear
combinations of degrees of freedom (here, the dihedral angles)
that better describe the data while holding each combination
in the set to be independent of the others. PCA finds new
combinations of variables that capture a maximal amount of
variance in the data. Unlike PCA, the tICA algorithm attempts
to find combinations of variables that describe slow variations
in the data over a given timescale chosen by the data analyst. A
formal description can be found in the Supplemental Methods

section, but intuitively, the tICA algorithm takes a dataset and
a chosen timescale as inputs and returns a set of combinations
of the dihedral angles that are independent of one another and
display long-lived behaviors. The tICA decomposition has been
previously shown to effectively find slow degrees of freedom for
domain motions by itself (Naritomi and Fuchigami, 2011), and
the slow degrees of freedom found by tICA act as an effective pre-
processor for MD data in protein folding studies (Schwantes and
Pande, 2013).

We applied the tICA decomposition to the phi and psi angles
of CDR3α and CDR3β independently, each with a time-lag of 5
ns. Considering only the first two degrees of freedom resulting

from this analysis, we see a local maximum of the probability
distribution for the CDR3α loop (Figure 2A), while there are
four regions with local maxima for the CDR3β loop (Figure 2B).
These islands of locally high probability are long-lived regions
of conformational space that are frequently visited by the
simulation, suggesting that these conformations are relatively
stable, indicating the existence of stable conformational states.

An outstanding question drawn from crystallographic studies
asks how free are the motions of the CDR3 loops (Garcia
and Adams, 2005; Armstrong et al., 2008)? Are they weakly
structured with a large number of degrees of freedom to
move in, or are they tightly choreographed, moving in distinct
conformational states? To address these questions, and confirm
the value of our two-dimensional distributions, we consider
the probability distributions of the first eight tICA degrees of
freedom. Eigenvalues of the tICA decomposition show that
the first eight degrees of freedom capture the vast majority
of information in the decomposition, and the first 16 degrees
of freedom capture substantially all of the information (data
not shown). CDR3α shows an asymmetric distribution in the
first and third tICA degrees of freedom, and a highly peaked
distribution in the second tICA degree of freedom centered
away from zero (Figure 2C). The remaining tICA degrees of
freedom are more Gaussian with means near zero, suggesting
that CDR3α has some mild internal structure to its motions, with
at most only the first three tICA degrees of freedom capturing
interesting behavior. CDR3β shows significantly more interesting
behavior in its first two tICA degrees of freedom, both of which
show multiple peaks, while the remaining degrees of freedom
show much more Gaussian-like appearances (Figure 2D). This
strongly suggests CDR3β’s motions are primarily captured by
the first few, particularly the first two, tICA degrees of freedom,
indicating highly structured motions.

Markov State Model of CDR3β Shows
Discrete Metastable States
Next, we clustered the frames via k-mediods into a microstate
model and estimated microstate models for CDR3α and CDR3β.
The CDR3α microstate models do not converge over the
timescales analyzed (Figure S1A), and the trajectories are of
insufficient length to extend to larger timescales. This implied
that CDR3α has a very slow degree of freedom that is not
sufficiently explored in the simulation. We address this later in
the section on reverse simulations.

The three slowest implied timescales of the CDR3β models
separate out from the faster timescales when the implied
timescales converge (Figure S1B). This supports a four-state
model of the CDR3β system and agrees with the four high-
probability islands observed in the 2D projection of the data
using tICA, leading us to build a four-state model for the
macrostate MSM. Centroids, the orientations that are in the
centers of the clusters, are shown for each state in Figure 3A. All
four states are well-populated at equilibrium (Figure 3B), with
the fourth state showing the largest equilibrium population. State
4 is particularly notable, as it appears to be involved in a hydrogen
bonding interaction with the CDR3α chain, described further in
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FIGURE 3 | The states identified by the k-mediods clustering of the tICA decomposition provide insight in to the complex motions that the 2C CDR3β loop displays.

(A) Ball and stick model of the CDR3β loop showing the centroids of the four macrostate clusters determined by the MSM. Centroids were determined by finding the

orientation that minimizes the distance to all other members of the cluster under the tICA projection distance. (B) Equilibrium populations of the four clusters,

determined by eigenvalue analysis of the macrostate MSM. (C) Projection of the centroids onto the first two tICA dimensions overlaid on the kernel density estimates

of the projected data. (D) φ/ψ backbone angles of eight residues along the CDR3β loop. Colors are consistent throughout for state 1 (green), 2 (light blue), 3 (purple),

and 4 (dark blue).

a later section. All four states show distinct structural differences
and are clustered near the centers of the wells in tICA space
(Figure 3C), with large shifts in most dihedral angles of the loop
observable between the different centroids.

The backbone φ/ψ angles of the eight central residues of
the CDR3β loop are shown in Figure 3D. G205 and L210
show minimal variation between the centroids, suggesting
that flexibility at these positions is not required to generate
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the observed collection of metastable states. Diversity is
seen in both of the angles of G207, while S204 separates
out the state 1 and 2 centroids from the others along
the ψ and φ angles respectively. G206, G208, and Y211
primarily separate a single centroid orientation from the other
three along a single φ or ψ angle, while showing minimal
variation in the non-separating angle. T209 appears to separate
centroids along the φ angle, however variation is seen under
re-clustering of the original microstate clusters, while the
behavior of the other angles is stable, implying that T209 is
flexible but does not meaningfully describe the different states
(data not shown).

The macrostate Markov model of CDR3β shows distinct
pathways between the different metastable clusters and differing
levels of metastability in the states, with states 3 and 4 showing
strong metastable behavior, while states 1 and 2 are only weakly
stable (Figure 4). Despite the relative instability of state 2, it acts
in a hub-like fashion, with the largest rates into states 1, 3, and 4
all coming from state 2. Rates into state 2 are also highly relative
to all other state transitions, with the exception of the state 1 to
state 3 transition, which shows similar magnitude to the state
1 to state 2 transition. The other transitions show much lower
flux rates, so that state 2, although only weakly metastable, acts
as a central metastable intermediate. This high flux into state
2 accounts for the high population observed in the equilibrium
distribution of the state despite the weak stability. State 1 is also
weakly metastable but does not have a counter-balancing inward
flux, leaving it as a simpler weak metastable state, which accounts
for its low equilibrium population. State 1 has a large outward
flux to both state 2 and state 3, with the most significant in-
flow coming from the hub-like state 2, positioning state 1 as an
alternate pathway to access the much more stable state 3. State
4 only shows significant exchange with the hub-like state 2 and
shows strong stability and high equilibrium population similar to
state 3.

CDR3α and CDR3β Loops of Type I NKT
TCRs Have Metastable States
Unlike CD4+ and CD8+ αβ TCRs, type I NKT αβ TCRs
recognize lipids presented by CD1d, a monomorphic MHC-
like protein (Rossjohn et al., 2012). NKT TCRs do not show
significant variation in their bound state footprint, and crystal
structures show comparatively little movement between free
and bound conformations, despite variation in the chemical
structures of the presented lipids (Kjer-Nielsen et al., 2006;
Pellicci et al., 2009; Wun et al., 2012). Type I NKT TCRs show
significantly higher binding affinities than CD4+/CD8+ TCRs,
and have binding kinetics that suggest an innate-like response
(Rossjohn et al., 2012). As they use the same immunoglobulin
architecture as standard CD4+/CD8+ TCRs, we investigated the
unbound dynamics of the NKT TCR as a comparison to the
dynamics of the 2C system. We ran 10 independent trajectories
of the NKT15 TCR for 100 ns, collectively totaling 1µs of data.

We applied the tICA decomposition to the backbone dihedral
angles of the CDR3α and CDR3β loops of NKT15 with a time-
lag of 5ns. Similar to the 2C TCR, the tICA decomposition is

FIGURE 4 | Macrostate Markov State Model of the 2C CDR3β, showing the

complex dynamic behavior the loop adopts in solution. The Markov model was

built with a time-lag of 115 ns, distinct from the 5 ns time-lag used for the tICA

decompositions. State clusters are represented by their centroids as initially

described in Figure 3A, and jump probabilities are described by arrows

labeled by the probability of that state transition occurring in a 115 ns time

step. Arrow size is proportional to jump probability.

indicative of low-dimensional, structured motions. Most of the
tICA degrees of freedom consist of Gaussian motions around
a mean of zero, thus consisting of thermal motion, with only
one degree of freedom for each loop showing multiple peaks
that suggest metastable conformational regions (Figures 5A,B).
Plotting the density estimates of the first two degrees of freedom
for each loop, we find that both loops show two distinct high
probability regions separated by lower probability transition
regions (Figures 5C,D). In both CDR3α and CDR3β, the two
local probability maxima are separated along a single axis,
so only a single degree of freedom is responsible for the
transition between these high-probability regions. Furthermore,
in both systems, one of the high-probability regions shows a
much higher probability relative to the other, suggesting the
existence of a single major local energy minima, and a kinetically
nearby metastable state with higher energy. In contrast to
2C, we observe distinct metastable regions in both systems,
although CDR3β is much simpler in NKT15 than in 2C, with
only two metastable states separated along a single degree of
freedom, implying that NKT15’s motions are more restrained
than 2C.

CDR3α and CDR3β Loops Interact in 2C
Through Hydrogen Bonds
Previous work has shown that there is weak, if any, coupling
between the overall loop dynamics of CDR3α and CDR3β loops
in the A6 TCR, yet the DMF5 TCR showed highly correlated
motion (Scott et al., 2012; Ayres et al., 2016). For 2C, we
observe direct hydrogen bond interactions between the CDR3α
and CDR3β loops of 2C when CDR3β adopts meta-stable
state 4. In two of the ten trajectories of 2C, the CDR3β loop
adopts a conformation that permits a hydrogen bond between
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FIGURE 5 | tICA decomposition and k-mediods clustering of the resulting data highlight the significant, but simple, motion of the NKT15 TCR CDR loops. (A)

Probability distributions of the NKT15 CDR3α and CDR3β conformations projected onto each of the first eight tICA degrees of freedom, computed by a 1-D kernel

density estimate with a Gaussian kernel. (B) 2-D probability distribution of NKT15 CDR3α projected on the first two tICA degrees of freedom; selected conformations

from the simulation are shown in orange and gold and overlaid on the probability distribution plot. (C) As in panel (D) for the CDR3β loop with selected conformations

shown in light green and ochre. Probability distributions were computed by a 2-D kernel density estimate with a Gaussian kernel over all collected trajectory data.
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FIGURE 6 | Inter-loop hydrogen bonding plays a significant role in the simulations of the 2C TCR, comprising one of the 4 stable wells of the CDR3β tICA

decomposition. (A) Structural rendering of the 2C hydrogen bond interaction between Ser93 and Gly207 with the Vα domain shown on the left and the Vβ domain

shown on the right. Surrounding hydrophobic residues are shown in pink. (B) Projection of the data frame onto the tICA projections of the CDR3α (left) and CDR3β

(right) loops overlaid in cyan.

the sidechain of Ser93 on CDR3α and backbone of Gly207
on CDR3β (Figure 6A). The CDR3α loop’s conformation that
permits this bond is near the high-probability region observed
in the tICA projection and may account for some of the long-
tail spread observed in the first tICA degree of freedom for
CDR3α (Figure 6B). The CDR3β loop of 2C appears to only
be able to form this bond in state 4 where the CDR3β loop is
oriented to make the Gly207 backbone contact with the CDR3α
Ser97. The hydrogen bond demonstrates significant stability,
appearing in 25% of frames assigned to state 4. The persistence
of this interaction and the specificity of the orientation required
to allow it accounts for the high equilibrium population of
state 4 in the Markov state model. As the model relies
on kinetic information to determine equilibrium populations,
rather than just directly observed conformations, the model
indicates that this hydrogen-bonded state will tend to be a

high-population, dominant state over a much longer sampling
time.

This conformation is further stabilized by multiple intra-
loop polar contacts and a hydrophobic “shell” that protects
the hydrogen bonds from solvent interactions. In addition
to the inter-loop contact between Ser93 and Gly207, in the
sample frame we observe a CDR3α-CDR3α hydrogen bond
between Ser93 and the backbone of Gly94, as well as three
CDR3β-CDR3β intra-loop hydrogen bonds between Thr209 and
Gly206 (Figure 6A). Surrounding these hydrogen bonds are
numerous hydrophobic residues that can shield the hydrogen
bonds from solvent, which has been shown to enhance stability
in other contexts (Fraser et al., 2010, 2011). There are nine
hydrophobic residues within 6 angstroms of either Ser93
or Gly207, creating a hydrophobic shell around the inter-
loop hydrogen bond and shielding some of the intra-loop
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interactions as well. This hydrophobic region demonstrates
significant stability, as transitions out of this state once
entered are not seen in the trajectories where it occurs. This
“hydrophobic collapse” conformational state is both structurally
and kinetically separated from the other conformations, notably
looking unlike known bound states of 2C, and potentially
acting as a hydrophobically driven “off” state that reduces the
overall affinity of the TCR by stabilizing a binding-incapable
state.

At the same time, the hydrophobic side chains that contribute
to the stability of state 4 may explain the instability of states
1 and 2 in which the CDR3β loop is more extended and
thus more solvent accessible. The increased solvent exposure of
the hydrophobic sidechains will create unstable conformations,
leading the CDR3β loop to “search” for a conformation that
once again buries the hydrophobic residues, leading to the
transition-state behavior of states 1 and 2 where the CDR3β
loop is frequently sampling, possibly unsuccessful, transitions out
of the conformational state. State 3, which is a strongly stable
state similar to state 4, does not display the same “hydrophobic
collapse” properties. Instead, this state appears to have a more
significant solvent accessible surface area (SASA) with states 1
and 2, the more “bound-like” states, having a SASA of 1358.43
and 1430.10 Å2, respectively, state 3 having a SASA of 1463.42
Å2 and state 4 having a SASA of 1262.89 Å2. While state 3 is not
“collapsed” it is conformationally distinct from states 1 and 2 and
crystallographic structures, suggesting this may again be a driven
“off” state, driven by ordered waters that have been previously
suggested to be critical in TCR-pMHC interactions (Armstrong
et al., 2008; Holland et al., 2012).

Simulations Reproduce CDR3β Bound
Crystal Structure Orientations
We are able to compare our results with experimentally
determined crystal structures in two ways. First, as the tICA
projection matrix can be applied to existing data sets, we
projected the CDR3β loop conformations of three bound
structures of 2C in complex with H-2Kb/SIYR (PDB 1G6R),
H-2Kb/dEV8 (PDB 2CKB), and H-2Ld/QL9 (PDB 2OI9) onto
the first two tICA degrees of freedom (Figure 7). We omit
CDR3α projections because no bound states of the CDR3α
loop are found in the simulation trajectories, implying either
a much slower transition time as observed for A6 in Scott
et al. (2012), or that the conformation of the CDR3α’s
bound state is unfavorable without the environment of the
peptide-MHC.

Projecting the bound conformations onto the first two
tICA degrees of freedom, we find that H-2Kb/SIYR and H-
2Kb/dEV8 both appear near the most frequently observed region
of the tICA conformational space but are themselves in low
probability regions that appear to be transition regions between
two meta-stable states. This indicates that although the bound
conformations for these antigens are closely sampled in solution,
they are unlikely to directly be the result of selection from a
pre-existing equilibrium. However, they are kinetically close to
two well-populated meta-stable states, making it plausible that

if a binding event is initiated from either of these two meta-
stable regions, then CDR3β will be able to rapidly find the
correct orientation observed in the bound state. In contrast, the
bound conformation for the alloreactive H-2Ld/QL9 falls into
the region corresponding to state 2 of the MSM, which is the
lowest equilibrium population state of the model. Intriguingly,
both antigens that use the H-2Kb MHC fall into the transition-
like region, but nearer to the hub-like state 2, while H-2Ld/QL9
falls into a distinct region and biologically presents in a different
context than H-2Kb.

Reverse Simulations Indicate Slow CDR3α

Dynamics
In our main dataset, CDR3α did not transition to a bound-
like conformation in any of the 10 trajectories. This strongly
suggests that the bound conformation lives in a stable local
energy minima with slow kinetics. To test the stability of
the bound state, we ran an additional 10 trajectories of 2C,
initialized with the coordinates of the bound state for 2C
bound to H-2Kb/SIYR. Trajectories were run for 100 ns each,
collecting an aggregate of 1µs. CDR3α remained near the
bound conformation for the entirety of all 10 trajectories, in
line with the hypothesis that the bound state is a stable local
well. Because no transitions are observed in any trajectory,
we are unable to construct a Markov State Model of CDR3α,
however the data indicate that CDR3α is stable in the bound
conformation independent of the environment of the peptide-
MHC, and the kinetics of transitions between these states are
very slow. This is in line with observations of A6, where
simulations yielded only a single transition of CDR3α in an
aggregate data set of 460 ns (Scott et al., 2011), suggesting that
slow CDR3α dynamics may be a general feature of CD4+/CD8+

TCRs.

DISCUSSION

The flexibility and dynamics of the CDR loops of T cell
receptors have long been a topic of speculation and interest.
Crystallographic work has long demonstrated the existence of
multiple loop conformations in the final bound state of the CDR
loops and indicated that loop flexibility must necessarily play
a role in cross-reactivity. Here, we have used the Markov State
Model framework to show that in 2C’s CDR3β loop, there exist
clusters of conformations that are distinct and exist independent
of the environment of the final binding state, and that these
conformations are much broader even than those variations
observed in the known crystal structures of 2C, our model
system. We have shown that these individual states, made of
many kinetically related conformations, are inherently stable in
a fashion that makes them fitting of the term state, and there
exists a distinctive structure in the movements of the loops
between these states. Previous computational work demonstrated
the existence of distinct clusters of conformations in the unbound
A6 TCR, and provided evidence for a slow mode of motion
in the CDR3α loop and faster, more diverse, motion in the
CDR3β loop (Scott et al., 2012). Our results find good agreement
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with this work, suggesting a common behavior; that of slower,
simpler movement in the CDR3α loop and faster, more complex
motion in the CDR3β loop, for CD4+/CD8+ αβ TCRs. We have
furthermore demonstrated the stability of these clusters, showing
them to be true local minima, providing distinct conformational
groups that can potentially act as a source of initial conformations
from which selections can be made, in either a conformational
selection or conformational melding model of TCR-pMHC
recognition.

The tICA decomposition is a powerful tool for understanding
the complexity of the motions we observe. Previous work,
both computational and crystallographic, has firmly established
the flexibility of the CDR3 loops in CD4+/CD8+ αβ TCRs,
but it has been difficult to understand how well-structured
those flexible motions are, that is, are the motions precise
and organized through specific degrees of freedom, or are the
loops more like a rope, able to flex anywhere along its length?
With the tICA decomposition into linear, orthogonal degrees
of freedom, we can characterize these motions by the number
of orthogonal degrees of freedom that meaningfully contribute
to the state transformations, in the case of 2C CDR3β, we
observe two orthogonal degrees of freedom captured by the tICA
decomposition that reveal evidence of substates and probability
densities that are distinctly non-Gaussian. Thus, 2C’s CDR3β
loop moves, with respect to its internal motions, through a two-
dimensional space, and has a restricted flexibility. Even more
strikingly, we see that with a tICA decomposition of the available
data for NKT15, both CDR3α and CDR3β are described by a
single tICA degree of freedom. The Cα at the tip of the CDR3β
loop of NKT15 shows a larger variation in its location in real
space than the corresponding measurement of 2C’s CDR3β loop,
however NKT15 is less flexible in that it has fewer degrees of
freedom, forcing it to adopt simpler motions than those available
to 2C.

This difference in the dimensionality of flexible motion of
the TCRs is a qualitative demarcation between 2C and A6 on
one hand, and NKT15 on the other. More recent work from
Ayres et. al. characterizing the A6 and DMF5 TCRs suggests
a spectrum of dynamic behaviors for similar TCR sequences
(Ayres et al., 2016). In the present work, only one of 2C’s
bound states falls into the locally most probable region (QL9-
Ld antigen), while the other two bound states appear in a lower
probability transition region between two wells. This supports
the conformational melding hypothesis; there are clear clusters of
conformations that would be capable of more quickly finding the
proper bound state, but the actual bound states are not so likely
that the binding mechanism is well described as conformational
selection. However, Ayres et. al. find that the A6 and DMF5 TCRs
better fit the conformational selection and induced-fit models,
respectively (Ayres et al., 2016). It is possible that the use of
tICA and Markov models could yield similar results for these
TCRs, with the originally distinct conformational selection and
induced-fit models converging toward this middle ground of
conformational melding in the context of higher-dimensional
analysis.

We can roughly partition agonist αβ TCR kinetics into two
classes, those which have slow off rates, and those with on rates

FIGURE 7 | Simulations of the 2C TCR CDR3β loop recapitulate bound crystal

structure conformations and support the conformational melding hypothesis

based on their location in the tICA projections. (A) tICA projections of the

bound 2C CDR3β loop conformations for 2C bound to H-2Kb/SIYR (red),

H-2Kb/dEV8 (green), and H-2Ld/QL9 (blue) overlaid on the 2-D probability

density. (B) Ball and stick render of the CDR3β bound crystal structures

overlaid with the nearest simulation frame by RMSD of the Cα’s after aligning

the β variable domain. Simulation data is shown in cyan.

faster than diffusion where analysis of re-binding events have
been shown to effectively predict signaling (Govern et al., 2010).
In the more classical, slow off rate case, “local search” would
explain the slow observed binding kinetics, as put forward in the
conformational search and conformational melding hypotheses.
Conformational melding effectively argues that the search is
local, requiring cooperation with the pMHC, and thus must
be seeded by a conformation that is initially selected from a
set of equilibrium conformations. These initial conformational
seeds may make sufficient contacts with pMHC for a local
search and refinement of the CDR loop structure can then
commence from these seeds, with final contacts dependent on the
bound peptide. In this model, TCRs can search through pMHCs
quickly and efficiently and initiate response only if a stable final
conformation is found. In the induced fit model, conformational
search on the pMHC surface may be too slow for sufficient
specificity, i.e., a very slow interaction may lead to more non-
specific responses, whereas in the pure conformational selection
model, there is less room for promiscuity, as there are only so
many compatible states that are kinetically distinct and possible
in solution. The observed state clusters in our Markov model
provide distinct initial states in accordance with the melding
hypothesis for the 2C TCR, where a local search starting from
these initial states induced by the pMHC can lead to a specific
interaction.

On the other hand, the innate-like kinetics of type I
NKTs would suggest simpler motions, which are apparent in
the tICA decomposition of the NKT15 simulation data. The
crystallography of type I NKTs demonstrates little variation in
binding orientation. Unlike 2C, the footprints of type I NKT
TCRs are nearly identical across different antigens (Pellicci
et al., 2009; Wun et al., 2012), which is fitting with the faster
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kinetics. The need for faster kinetics and thus simpler loop
dynamics can potentially explain the reduced selection of variable
domains: the reduced selection has been evolutionarily selected
specifically for the tendency to create simpler loop dynamics,
while still using recombination to make minor adjustments
to the enthalpic contacts and potentially alter the equilibrium
distribution of states. As we observe two states for each of the
CDR3α and CDR3β loops in NKT15, it is reasonable to postulate
that these alternative states may act as simple “off” states that
do not permit binding, thus acting to modulate the overall
affinity.

A major outcome of 2C’s flexibility is the creation of the
hydrogen bond interaction between CDR3α and CDR3β and the
hydrophobic region that stabilizes the interaction. It is likely
this state is binding-incapable, as the cluster conformations
differ sharply from the bound conformations present in crystal
structures, which suggest a dual-role for CDR3β in both
MHC recognition and overall affinity adjustment. The hydrogen
bonded state 4, and the less well-characterized, but similarly
stable state 3 in our MSM of CDR3β appear to be “off”
states, whose equilibrium populations would control affinity
by altering the probability that the TCR is binding competent
or binding incompetent. A similar role has been suggested
for CDR3α in the context of A6 due its slow motions (Scott
et al., 2012). If these states are also reachable in the bound
system, they may also adjust the off-rates depending on how
accessible they are. On the other hand, states 1 and 2 divide
the bound conformations by MHC, suggesting that CDR3β
conformations contribute to MHC recognition as well as peptide
specificity. Despite the length of our simulations, transitions out
of the hydrogen-bonded state are not observed, which limits our
understanding of the state dynamics and limits the quantitative
value of the CDR3β MSM. Nonetheless, the qualitative results,
the existence of four distinct conformational clusters, is
clear.

While the primary focus of this research is on the kinetics
of unbound T cell receptors, much work has been done in
the field to characterize the thermodynamics of the TCR-
pMHC interaction. This work has mostly centered around the
roles of entropy and enthalpy in TCR binding. One might
expect, and in some cases it has been shown, that there is a
high entropic penalty upon TCR binding and the majority of
the positive interactions are enthalpic (Boniface et al., 1999;
Willcox et al., 1999). However, there has been significant
research demonstrating that favorable entropic interactions, via
a relatively stiff TCR or ordered waters on a pMHC surface,
can be the driving force behind a TCR-pMHC recognition
event (Armstrong et al., 2008; Holland et al., 2012; Madura
et al., 2013). Here we find that our results strike a middle
ground for the role of entropy and enthalpy in adaptive immune
recognition. While the existence of stable unbound CDR3 states
that are structurally similar to bound TCR-pMHC conformations
suggests a low entropic penalty upon binding, states 3 and 4,
the most stable states in our Markov model, would be entirely
excluded when 2C is bound to pMHC. These results suggest that
2C’s promiscuity for different ligands bound to H-2Kb may be

the result of relatively low entropic penalties upon binding, and
therefore the dependence on favorable enthalpic interactions is
lessened, which leaves room for a wider range in the peptides
recognized. However, without a more complete picture of the
interaction, i.e., simulations of the peptide-MHC complex, we
cannot form a complete picture of the thermodynamics of this
interaction.

Finally, we note that the existence of these slow dynamics
and long-lived metastable states indicates a need for significantly
longer trajectories and larger data sets. We have contributed
a large data set for a single TCR, which we believe to be
the largest set of trajectories for a free TCR that deals with
only a single system, and thus is comparable across trajectories,
as well as allowing for independent trajectories to evolve.
Much work has largely used 100 ns or shorter trajectories,
often with fewer trajectories, with trade-offs between deeper
sampling of a particular phenomenon or broadly sampling
many comparable systems forced by technological and resource
constraints (Borbulevych et al., 2009; Scott et al., 2012; Knapp
et al., 2014). Using MSMs to knit together multiple trajectories
into a larger picture and taking advantage of GPU-enhanced
calculations to greatly extend the size and scope of simulations
offers a much more comprehensive picture for single systems.
While T cell receptors have been the primary focus of MD
simulations in immunology, peptides bound to MHC have been
studied to further improve dynamic structural insights (Reboul
et al., 2012). These results, coupled with clear evidence that
crystal structures are unable to tell the full story, will hopefully
provide other researchers with the impetus to further utilize
molecular dynamics simulations in their work (Holland et al.,
2018).
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