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A proper geometric model of the vascular systems in the liver is crucial for modeling blood flow, the connection between the
organ and the rest of the organism. In vivo imaging does not provide sufficient details, so an algorithmic concept for extending
measured vascular tree data is needed such that geometrically realistic structures can be generated. We develop a quantification
of similarity in terms of different geometric features. This involves topological Strahler ordering of the vascular trees, statistical
testing, and averaging. Invariant features are identified in human clinical in vivo CT scans. Results of the existing “Constrained
Constructive Optimization” algorithm are compared to real vascular tree data. To improve bifurcation angles in the algorithmic
results, we implement a postprocessing step calibrated to the measured features. This framework is finally applied to generate
realistic additional details in a patient-specific hepatic vascular tree data set.

1. Introduction

The most important link between the liver and the rest of the
organism is the blood flow through three vascular systems [1,
2]. These include two supplying systems, the portal vein (PV)
providing venous blood drained from the digestive system
and hepatic artery (HA) providing arterial blood, as well as
one draining system, the hepatic vein (HV). The bile duct is
a fourth vascular system which transports the secreted bile
from the bile canaliculi out of the liver into the cystic and
common bile duct finally leading into the duodenum.

On the one hand, for the functioning of the liver
metabolism a proper blood supply and drainage are essential.
In fact, the liver receives about 25% of the cardiac blood
output, which amounts to about 100 mL/min per 100 g net
liver weight [3]. On the other hand a variety of pathological
conditions result in impaired blood flow conditions. For
example cirrhosis decreases total hepatic perfusion while
increasing the fraction of arterial blood [4]; metastases also
lead to an increased arterial fraction [5]. Also, it is known
that the blood flow plays a major role in the regeneration
capabilities of the liver. In summary the blood flow plays a

central role in the liver function and understanding blood
flow, and its regulation can be seen as a key to understanding
liver physiology and pathology.

Biophysical modeling and simulation have become pow-
erful tools in analyzing and understanding the behavior of
complex dynamical systems or to predict future states of
such systems without actually performing the corresponding
experiments. Such modeling and simulation of physiological
processes in the human body do not only have impact
on the basic science of understanding life but also direct
consequences ranging from pharmaceutical developments
up to improved quality in surgical interventions.

In order to properly model and simulate the metabolic
function of the liver, it is crucial to have an appropriate model
of the blood transportation systems. In a multiscale model
[6], the range between the whole organ (e.g., pharmacoki-
netic models such as [7, 8], and the individual lobules [9–11]
is covered by the vascular systems).

For modeling and understanding physiological processes,
the level of detail needed in the vascular structures depends
on the spatial heterogeneity and the scale of the process
being considered. For planning liver resection surgery
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(see, e.g., [12]), one main task is to determine the territories
supplied by large vessels. For this purpose, details available
from in vivo imaging are sufficient. Certain liver diseases
were observed to be spatially inhomogeneous, for example,
chronic hepatitis and cirrhosis [13], fibrosis [14, 15], and
steatosis [16]. In this case, a multiscale model considers
representative volume cells, consisting of groups of lobules,
of the liver sufficiently small such that their properties can
be assumed to be more or less homogeneous. The vascular
structures then need to be sufficiently detailed to properly
reflect supply and drainage of such representative volumes.
Lobules, their internal sinusoidal network and a potential
zonation of hepatocytes, can and should be viewed on a
separate scale in a multiscale simulation framework.

However, current imaging and image processing tech-
niques are not capable of resolving the full vascular system
in human livers. Thus, studying the vascular structures from
coarse to fine scale, from the portal vein to the finest hepatic
units, the sinusoids, is not directly possible.

In vivo CT scans of the human liver provide a resolution
of a few hundred micrometers. Ex vivo corrosion casting is an
established technique requiring huge skills. If not prepared
in situ, however, a deformation of the organ needs to be
accepted. Corrosion casts are obviously smaller than whole
bodies and permit higher doses of radiation and thus provide
better image data, but only few of them are available.

Microscopy generates optical images at much higher res-
olution which are capable of resolving intralobular sinusoids,
but the images are essentially only 2D. Reflectance confocal
microscopy [17] or fluorescence confocal microscopy allows
optical imaging a few 100μm below the surface without
physical sections. Histological serial slices can be created and
scanned optically, but the cutting process introduces physical
artifacts that can only be remedied to a limited extent by
image processing (registration, inpainting).

To bridge this resolutional gap, algorithms for generating
vascular systems can be applied, thus allowing to build full
three-dimensional vascular trees that permit modeling and
simulation of liver blood flow from the coarsest to the finest
scales. However, to assess and improve the quality of such
algorithmically generated structures, that is, to determine
whether they are sufficiently realistic for modeling purposes,
requires better techniques than merely a visual comparison.

The purpose of this paper is twofold. On the one
hand, we describe a method to quantify the difference
between structural and geometric features of different vas-
cular structures in Section 3. We will compare a significant
number of real contrast-enhanced liver CT data sets and
several corrosion casts. Thus we will be able to quantify the
similarity of hepatic vascular structures over a large group
of individuals. On the other hand, we use these findings
to improve an existing algorithmic method to more closely
resemble hepatic vascular structures found in humans in
Section 4. After this calibration, the method is finally applied
to extending measured vascular networks by more details
than we can obtain from the image data. While we restrict
the description and analysis to one of the vascular systems
of the liver in this work, the framework is generic and can
be applied to other organs as well. Moreover, the extension

to more than a single vascular structure is possible and
currently being investigated.

2. Review of Related Work

Vascular structures have been studied for a variety of human
organs such as lungs [18, 19], hearts [20, 21], retinas [22],
and livers [23] as well as in whole rats [24] and animal
organs such as cat lungs [25], pig hearts [26–28], rat hearts
[29], and rat kidneys [30]. Even though this section provides
a relatively detailed overview on existing work, it is by no
means meant to be an exhaustive literature review.

Borrowing vocabulary from graph theory (see, e.g., [31]),
many vascular systems can be described as trees consisting
of nodes and edges. In the tree hierarchy we will use the
terms “parent” and “daughter” edge and permit only strictly
bifurcative trees; that is, each edge has exactly zero or two
successors, with a single edge incident to the root node.
In most cases we are not merely interested in the topology
but also the geometry of vascular structures, so nodes are
typically assigned a geometric position and edges a radius. As
the edges play a more important role in our considerations
than bifurcations/nodes, we assign geometric quantities to
edges in our analysis. To avoid confusion with “Couinaud
segments” going back to [32], we avoid the term “segment”
when dealing with vascular networks.

Topological Classification. The simplest topological classifi-
cation for edges in a tree is the generation number [33]
(also named “bifurcation level” [20], “level” [24], “Weibel
order” [34]) which, however, is incapable of distinguishing
the “importance’’ of edges in terms of their supplied subtree).
The most commonly used classification is the “Strahler”
order (e.g., in [19, 35, 36] and many more articles) originally
used to classify rivers [37, 38], a measure nondecreasing
from leaves to the root. More precisely, edges leading to
leaves are assigned order 1; parent edges are assigned the
larger order of its daughters (if they differ) or the two
daughters’ order plus 1; see also Figure 2. While it may seem
problematic at first glance to start at the smallest edges with
highest measurement uncertainty, this scheme is actually
very robust. Compared to the more intuitive generation
counting, Strahler ordering is a “major improvement [. . .]
because it takes into account the asymmetric branching
pattern” [39]. Two edges near the root have the same
generation number even if one is “small” and leads to a leaf
node and its sibling supplies a “large” subtree; see also [25].

The Strahler ordering scheme has been refined by also
including radius information (e.g., in [34, 39, 40]). The order
at a bifurcation is then only changed if there is a sufficient
increase of radius. In our analysis we chose not to use this
type of levels because it is no longer strictly topological and
because the radius data in our data sets is not very accurate
[41].

Geometrical Features. The two most obvious geometrical
features for tubular edges are their radius and length [42–
44]. At bifurcations, different angles can be considered:
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the angle between the continued parent edge and either of the
daughters [28, 45, 46], the angle between the two daughters
[29], the inclination of one of the edges with respect to the
plane spanned by the other two (cf. [43]). In [47], Voronoı̈
cells of the leaf nodes are considered, and their asphericity
is measured. They can be combined to supplied volumes of
edges, but in any case the resulting general polyhedra are not
easily comparable.

From the previous “natively” geometric features, derived
geometric features can be computed. From the radius, we
can compute the radius ratio to the parent [28], the radius
asymmetry between larger and smaller daughter radius
(“branching ratio” in [20], “bifurcation index” in [28, 48])
or vice versa [42]; cross-section areas and analogous cross-
section area ratios [20, 48] and asymmetries [49]. Moreover,
a “bifurcation exponent” γ can be computed for r

γ
p = r

γ
1 + r

γ
2

where rp is the parent radius and r{1,2} are the daughter radii;
see, for example, [48, 50]. The exponent γ = 3 is an optimal
trade-off between power dissipation for moving the blood
and metabolic cost for maintaining the blood vessel wall if
laminar Poiseuille flow can be assumed [51, 52]. While this is
a property of a single vascular edge, flow (mass) conservation
at bifurcations allows considering γ to be a property of a
bifurcation. An alternative value γ = 2.7 is used in [53] as
it minimizes vascular wall material [54] and was measured
in [55]. The value γ = 2.55 minimizes the reflection of pulse
waves at bifurcations [56].

Based on the purely geometric features, derived features
have been investigated, computed according to additional
assumptions. These include pressure drops, inertance, com-
pliance [57], perfusion heterogeneity and asymmetry of
supplied volume [58], edge flow, exit pressure and transit
times [59], additional compliances [60], pressure profiles
[61] and perfusion inhomogeneity in surrounding tissue [61,
62], and wall shear, internal pressure, and circumferential
tension [63]. Theoretically optimal angles are discussed in
[64, 65].

Various geometric features were determined depending
on the bifurcation order/generation number [20, 29, 44] or
on the Strahler order [18, 19, 30, 66] and on radius-based
Strahler orders [18, 34, 58]. Also, the dependency of various
features on edge radii, which are a noninteger quantity was
investigated [33, 59, 67–69]. Also, relations between different
features were discussed in [21, 44, 50], to name just a few.
Software for analyzing vascular trees is presented in [29].
Self-similarity and other fractal properties were frequently
observed and investigated; see, for example, [70–75].

Our geometric analysis will be based on the strictly
topological Strahler order scheme and only take into account
purely geometric features so that there is no dependency on
additional physical or physiological assumptions.

Constructive Optimization. Different types of algorithms for
generating vascular structures have been presented in the
literature. One class of algorithms is based on construc-
tive optimization, that is, determining vascular networks
satisfying physiological optimality criteria (e.g., minimal
intravascular volume) for a given supply requirement. This

requirement is typically given by a set of pseudorandomly
distributed leaf nodes interpreted as connections to lobules
on the next finest geometric scale. The most prominent
approach here is “Constrained Constructive Optimization”
(CCO) [61, 69, 76, 77]. These were originally developed for
supplying a convex domain (organ); an extension to the
nonconvex case is presented in [78]. In contrast, “Global
Constructive Optimization” [79, 80] performs a multiscale
optimization finding an optimal tree for all leaf nodes at the
same time.

The basic principle of CCO is to construct a strictly
binary tree by adding one leaf node at a time to an initial
tree, each time introducing an optimal bifurcation. Thus,
CCO can be seen to be driven by the assumption of
equal in- or outflow at all leaf nodes representing constant
supply/drainage for each lobulus. Moreover, at bifurcations
the radii are balanced such that the flow resistance according
to the Hagen-Poiseuille law [81] is equal for both subtrees.
This finally results in equal exit pressures at the leaf nodes.

Deterministic Geometric Construction. Other authors use a
deterministic geometric construction using Cartesian [82] or
hexagonal [53] cell-based models or constructions inspired
by self-similar (fractal) or area/space filling objects [43,
83–86]. Such approaches benefit (in terms of algorithmic
complexity) from avoiding optimization problems. The
resulting vascular networks, however, suffer from an artificial
overall structure, which is even visually perceptible, so that
they are not appropriate for general models.

Angiogenesis-Based Construction. Yet another approach is
modeling angiogenesis, the actual process by which vascular
structures grow. This type of approach requires more
involved models and algorithms than basic optimality
conditions. Earlier results in this area [46, 53, 82, 87]
exhibit a visually artificial structure or “somewhat stylized
appearance” [82, Figure 1]. More recent work includes [88,
89], the latter combining introducing new vascular edges
due to angiogenesis with subsequent geometric optimization
of the vascular tree. Grid-based methods typically produce
visual geometric artifacts reflecting the grid used. To us
there seems no easy way of introducing parameters in
these algorithms for being able to calibrate them to better
match geometric features measured in the vasculature of
human livers. One could combine angiogenesis models
with geometric parameters by changing the way how new
vascular edges form. Instead of only considering gradients
of angiogenetic factors generated by ischemic cells, also
properties of the existing vascular edge for which a new
bifurcation is to be introduced, on the branching angles
of that bifurcation or on other properties of the existing
vascular structure, could be taken into account. This would,
however, involve additional assumptions for the model and
parameters in the algorithmic implementation which are not
easily observed experimentally.

In this paper we base the construction of vascular
structures on CCO as this is an established technique and
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Figure 1: A bifurcation with the radii, lengths, and angles
considered for our geometric analysis.

avoids the drawbacks of deterministic or angiogenesis-based
methods.

3. Morphometry of Hepatic Vascular Systems

In this section, we aim at quantifying the similarity between
different vascular networks. We first describe the specimens
used for this study. A similarity measure is introduced and
results are presented.

3.1. Data Acquisition. For the geometric analysis, two types
of data were used. Corrosion casts of 6 human PVs from
[86, 90] and described therein plus one additional PV
data set were used. Only 3 corrosion cast HV data sets
were available from these studies, not enough for a robust
statistical analysis, so we ignored them for our purposes.
CT scan image data was segmented and skeletonized by a
semiautomatic procedure described in [23]. This yields a
graph representation of the vascular structures with curved
edges of nonconstant radius. Moreover, 167 PV and 165 HV
vascular trees were obtained from clinical in vivo CT scans
using contrast agent, for which image preprocessing the same
procedure was applied. Edges of the HA scans are thinner,
and the extracted data is less reliable than for the other
structures, so they were excluded from our consideration.
As the HA is essentially parallel to the PV (and bile ducts)
and is responsible for roughly one-third of the PV flow
(albeit of different composition), a separate analysis of these
was considered of minor importance. The bile duct is not
considered here.

Depending on the quality of the image data and the
preprocessing steps the graph representations were further
modified because different properties of the tree may violate
the strictly bifurcative property needed for our analysis.
Isolated nodes, monofurcations, or multifurcations (edges
with more than two daughters) may be present. Loops
may exist in two different flavors, either as two distinct
paths between two nodes in edge-parent direction (improper
loops) or as nontrivial paths in edge-parent direction from
a node to itself (proper loops). Improper loops contain at
least one node with two incident parent edges. The root
node may have more than one incident daughter edge. Thus
a correction step is needed to make the extracted graphs
suitable for our further analysis.

In this correction step, existing trivial edges (initial
node equals terminal node) are removed. Nodes are then
tested for the number of incident parent edges. If multiple
parent edges coming from the same initial node are found,
their radii are combined such that the cross-section area is

preserved. For multiple parent edges with different initial
node, one with maximum radius is preserved, and the
others are removed. Next, monofurcations are removed
and multifurcations are split by again introducing trivial
edges. Removing monofurcations requires averaging the
radii of the two edges involved. As these radii are already
estimated radii from the image data, this is only a slight
modification comparable to inaccuracies introduced by the
skeletonization. Introducing trivial edges does not affect the
geometry of the vascular structures at all.

Next, we test for the existence of proper loops which,
however, did not occur in our data sets. Any isolated nodes
are removed and we finally copy the subtrees for all root
nodes found, introducing trivial edges if necessary such that
root nodes only have one incident daughter edge.

When dealing with corrosion casts, we must note that
deformations of the corrosion casts not produced in situ
particularly affect bifurcation angles for the larger edges. Also
we must be aware of the fact that radius information is not
very accurate in the graphs [41] and resulting trees. This lim-
itation is mainly due to the fact that the vascular structures
are only a few voxels wide in the image data. Thinner vascular
segments—if they are present in the corrosion cast or filled
by contrast agent at all—are not visible in the image data.
The algorithms used in the semiautomatic image processing
have a high hardware demand and are currently limited to
processing images of about 70 megavoxels. Simpler, fully
automatic image processing techniques do not produce
satisfying results because the connectivity of the individual
networks, but separateness of separate networks, if present
in one image data set, cannot be obtained reliably.

3.2. Topological and Geometrical Quantification. As we have
different sources of image data (contrast enhanced CT, CT
of corrosion casts) with different image quality, we will be
comparing vascular structures with potentially different level
of detail resolved. Thus, Strahler orders of the respective
root edges differ, and edges of a given Strahler order play
a different role in different trees. We hence introduce a
the notion of Strahler∗ order, assigning to each edge the
difference between the Strahler orders of the root and the
current edge; see Figure 2.

For the analysis of the vascular structures we will focus
on the following geometric features for each edge in the tree.
For an overview of the many possible geometric properties
and of what has been considered in the literature we refer to
Section 2.

Radii. Each edge has a radius r, a ratio ηr = parent
radius/current radius, except for the root edge. More-
over, for each nonterminal edge there is a ratio σr =
max daughter radius/ min daughter radius. Moreover, the
bifurcation exponent γ described previously is considered a
property of the parent edge.

Lengths. Each edge has a length l, ηl and σl are defined as the
obvious analogues of ηr and σr .
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Figure 2: The (a) sketch shows the definition of Strahler∗ orders: the order decreases towards the root if two edges of the same order meet,
else the minimum is used, and the values are shifted such that the root edge has order 0. Images (b) and (c) show Strahler∗ orders (HSV
color coded from blue = 0 to red = 5) for two of the clinical PV data sets.

Angles. A bifurcation is fully described by three angles. With-
out loss of generality, assume the two daughter segments lie
in the xy plane such that their angle bisector is aligned with
the x axis. Then let ϕa be the angle between the two daughter
edges, let ϕc be the angle between the projection of the
parent edge to the xy plane and the x axis, and let ϕb be the
inclination of the parent edge to the xy plane; see Figure 1.
Note that these angles can be computed as properties of the
parent without distinguishing the two daughters.

If, at a given bifurcation, a geometric feature cannot be
computed, the value is not considered for the evaluation later
on. Hence, the number of bifurcations actually considered
for different features may vary.

Fractal properties, despite being interesting for individ-
ual, were not considered for a comparison later on. Further-
more, features computed from the purely geometric features
were not considered such as to avoid redundancy and/or
dependency on physical or physiological assumptions. These
could be interesting in later studies.

3.3. Quantification of Similarity. In order to obtain a scalar
measure of similarity within one set Tm of vascular trees (e.g.,
measured trees) or between two sets Tm and Tg of vascular
trees (e.g., measured versus generated ones), we perform six
steps in which we successively compute

(1) Strahler∗ orders for each segment of each tree and the
applicable geometric features,

(2) histograms of the geometric features described previ-
ously per Strahler∗ order for each tree,

(3) a binary decision of similarity for each geometric
feature and each Strahler∗ order between each pair
of trees (within either Tm × Tm \ Δ or Tm × Tg);
we are then interested in the ratio (number of pairs
classified similar) over (number of all pairs), still for
each geometric feature and each Strahler∗ order,

(4) a weighted average of these ratios over the Strahler∗

orders for each geometric feature,

(5) weighted averages for the radius, length, and angle
features;

(6) a weighted overall average.

Statistical Interpretation. The computation in Step 1 is
straightforward and described in Section 3.2. For the remain-
ing steps, we consider the values as samples of an unknown
underlying probability distribution, for which we compute
the (empirical) cumulative distribution function (CDF) in
Step 2. Note that we do not use probability densities because
the CDFs are directly used in subsequent statistical testing
and because they avoid binning when plotting the data.

Testing for Similarity. For two CDFs corresponding to the
same geometric features of edges of fixed Strahler∗ order
of two different vascular trees we use the two-sample
Kolmogorov-Smirnov test [91, 92] (KS test), to check the
null hypothesis that the two CDFs have the same underlying
distribution. In Step 3 we classify two trees T0,T1 as “similar”
(in terms of this feature and Strahler∗ order, written as T0 ∼
T1) unless the test rejects the null hypothesis at significance
P = 0.05. Note that there is no particular reason for choosing
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this value here; other than that is is very common [93].
In comparison to other statistical tests, for example, the
Cramér-von Mises test [91], the KS test has the advantage of
being independent of scaling in the values of the underlying
distributions.

Let us first consider the case of one set T of vascular
trees, where we are interested in the similarity among, for
example, the clinical PVs. This will also be referred to as the
single-population case. A similarity ratio for a fixed geometric
feature f and Strahler∗ order s is then computed as

mf ,s(T ) :=
#
{(

Ti,Tj

)
∈ T × T | Ti ∼ Tj , Ti /=Tj

}

#
{(

Ti,Tj

)
∈ T × T | Ti /=Tj

} ,

(1)

Where∼ denotes classification as “similar” in terms of f and
s in the sense defined above.

If we are interested in the similarity between, for example,
a set Tm of measured vascular trees and a set Tg of generated
trees, we define a similarity ratio as

mf ,s

(
TmTg

)
:=

#
{

(T0,T1) ∈ Tm × Tg | T0 ∼ T1

}

#
{

(T0,T1) ∈ Tm × Tg

} (2)

and refer to this as the two-population case.
Note that due to the nature of statistical testing, we

cannot expect these similarity values to be larger than 1− P.
This also holds for the weighted averages in the following.

Averaging over Strahler∗ Orders. In order to average over
the Strahler orders in Step 4, but still considering a fixed
geometric feature f , we wish to take into account the number
of edges present in the tree at different Strahler∗ orders. Since
different vascular trees in the population considered may
have different level of detail, we restrict the averaging to those
Strahler∗ orders (s < s̃) below which at least half of the trees
actually have edges. The weighted average mf (T ) is obtained
as

ns(T ) := #
{
Ti ∈ T | Ti � edges of order s

}
,

s̃(T ) := max
{
s ∈ N | ns(T ) ≥ #T

2

}
,

ws(T ) := total # edges of order s,

(3)

mf (T ) :=
∑

s<s̃ ws(T ) ·mf ,s(T )∑
s<s̃ ws(T )

. (4)

In the two-population case, the maximal Strahler∗ order
s̃ is the maximal order at which at least half of the trees
in both populations actually have edges and the averaging
weights are the geometric means of the same values as before.

The weighted average mf (TmTg) for a fixed geometric feature
f is obtained as

s̃
(
Tm, Tg

)
:= min

(
s̃(Tm), s̃

(
Tg

))
,

ws

(
Tm, Tg

)
:=
√
ws(Tm) ·ws

(
Tg

)
,

(5)

mf

(
Tm, Tg

)
:=
∑

s<s̃ ws

(
Tm, Tg

)
·mf ,s

(
Tm, Tg

)

∑
s<s̃ ws

(
Tm, Tg

) . (6)

Averaging over Features. For averaging over features in Step
5 in the one-population case, we use the arithmetic mean to
quantify an average similarity. In the two-population case, we
use the values mf (Tm) as averaging weights so that invariant
features in the measured trees are weighted stronger than
noninvariant ones, such that we can quantify “similarity
where it is expected.” The two numbers should hence not be
compared directly. Averages mF over a set F of features are
defined as

mF(T ) := 1
#F

∑

f∈F
mf (T ), (7)

mF

(
Tm, Tg

)
:=
∑

f∈F mf (Tm) ·mf

(
Tm, Tg

)
∑

f∈F mf (Tm)
(8)

in the one- and two-population cases, respectively.
Finally, in Step 6 we average over different sets F of

features (related to radii, lengths, and angles, resp.) in such
a way that the different numbers #F of features per set are
taken into account. In the one- and two-population cases we
average as follows:

wF :=
∑

f∈F mf (T )

#F
,

m(T ) :=
∑

F wF ·mF(T )∑
F wF

,

(9)

m
(
Tm, Tg

)
:=
∑

F wF ·mF

(
Tm, Tg

)
∑

F wF
. (10)

Implementation of the KS Test. The two-sample two-sided KS
test [91, 92] involves three steps, computing the maximal
difference between the two CDFs, rescaling it by the factor√
n0n1/n0 + n1 depending on the two sample sizes and

evaluating the KS distribution to check whether it is smaller
than the significance level. Evaluating the KS distribution
requires a brief discussion.

Tabulated vales [94, 95] (e.g., [96] based on Monte Carlo
simulations) for fixed significance levels were used tradition-
ally, which lacks the possibility to use arbitrary significance
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levels if this is desired. The limiting KS distribution [97, 98]
for large sample sizes

PK(x) = 1− 2
∞∑

i=1

(−1)i−1e−2i2x2

=
√

2π
x

∞∑

i=1

exp
−(2i− 1)2π2

8x2

(11)

is the same in the one- and two-sample cases [99] with
appropriate scaling factors for the sample size.

Evaluation of the distribution in the one-sample case
for small samples is discussed in detail in [98]. A review
of current software capable of doing two-sample KS tests
reveals that octave [100, 101] and root [102, 103] use the
limiting KS distribution regardless of sample size. For small
samples, R [104] uses [105] for the one-sample test and
an undocumented method for the two-sample test, which
seems to be a generalization of [106] to samples of different
cardinality.

We performed own Monte Carlo Simulations creating
many small samples with (uniformly distributed or the sum
of two uniformly distributed) random numbers, obtained
using the Mersenne Twister [107], and computing the KS
values for them. These should be uniformly distributed in
[0, 1], regardless of the distribution of the sample if all
samples are drawn from the same distribution. For the lim-
iting distribution, we confirmed the known “overestimating
effect” [108]. Using the one-sample implementation of [98],
available as a supplement to that paper, in the two-sample
case showed only a slight overestimation of the distribution.
The code used in R, however, produced accurate results. The
numerical computation of the CDFs and their differences
should be performed with at least IEEE double accuracy.

3.4. Results. Results of the topological analysis are shown in
Tables 1 and 2 show that how many of the vascular trees
considered had edges at different Strahler∗ orders and how
many edges there were on average, as well as a histogram
of the connectivity between different Strahler∗ orders. The
maximal Strahler∗ order in the clinical CT scans and the
corrosion cast data sets is 6 even though the corrosion casts
contain more edges, in particular of high Strahler∗ order,
which is also reflected in the connectivity histogram. For
a strictly binary tree with 2s

∗
leaf nodes, these histograms

would show only connections between subsequent levels,
approximately 0.5s

∗−s · 100% for the connection between
levels s− 1 and s.

The cumulative distributions of the bifurcation expo-
nents γ for all the data sets considered are shown in Figure 3.
These turn out to be very similar for all Strahler∗ orders > 0
but differ between the clinical PV and HV as well as between
clinical and corrosion cast PV data sets. Radius data, in
particular for thin radii at high Strahler∗ orders, is not very
accurate, so part of these distributions may be due to imaging
and image processing inaccuracies. However, larger radii are
more robust and exhibit the same distribution.

The results of the similarity analysis for our data sets
are listed in Table 3. We can observe that the similarity

among HV trees is slightly smaller than the similarity among
PV. The similarity among the corrosion cast PV data sets
is much smaller; this is probably due to the small number
of specimens considered and the different conditions under
which they were manufactured. Comparing clinical and
corrosion cast PV, radii and absolute lengths are relatively
different whereas angles are only slightly less similar than
among the clinical PV. Moreover, Table 3 shows that the
similarity between PV and HV is comparable to the similarity
within each of the two populations, except for the angle
features.

The averaging procedure over Strahler∗ orders for two
fixed geometric features in the one- and two-population
cases is shown in Table 4. The plots of the CDFs also illustrate
that not only the average difference but also number of
samples (visible as vertical steps in the graph) influences
the similarity percentages medge radii,s(T ) and mγ,s(T0, T1)—
which is what the statistical test is meant to take into account.
The decrease of the average radius with increasing Strahler∗

order, see, for example, [86], and other dependencies of
geometric quantities on the topological orders can be
confirmed in the detailed results but were not within the
scope of the statistical comparison in this study.

4. Algorithmic Generation of
Vascular Structures

In this section, we first discuss our implementation and
application of standard CCO. We then propose improve-
ments and quantify their effects finally showing applications
of the improved scheme.

4.1. Constrained Constructive Optimization. First, we con-
sider CCO as described in the literature [61, 69, 76, 77]. Since
livers are of nonconvex shape, we use a penalty approach
[109, Section 4.2] inspired by [78]. We penalize the location
of bifurcation nodes lying outside the organ domain by the
squared distance from the organ scaled by a constant such
that our objective function becomes

F(T) =
∑

edges e

l(e)rλ(e) + C
∑

nodesn

dist2(n, organ
)

(12)

with C = 42 mmλ−1 if the unit of lengths is mm. The
node-based penalty approach clearly only considers the two
endpoints of a cylinder and ignores its radius, but we
consider it appropriate as these cylinders are only meant to
be an approximation of vascular edges which may be curved
in reality. We choose λ = 2 but investigated different values
of lambda (see also [110]).

The main task in CCO is to add one new leaf node to
an existing vascular tree, finding an optimal new bifurcation.
The topology of the optimal connection is not clear a
priori; thus different new connections need to be tried
and optimized geometrically. The geometric location of the
newly introduced bifurcation is optimized using a gradient
descent method with Armijo line search [109, 111]. The
gradient is not evaluated analytically but using a centered
difference quotient. This is because the radii of edges change,
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Table 1: Average number of human PV and HV trees considered for statistical analysis that have edges of Strahler∗ orders 0 to 6, along with
the average number of edges per tree where such edges are present.

Strahler∗ order 0 1 2 3 4 5 6

PV
No. of trees 167 166 166 164 149 62 5

avg. no. of edges 5.365 16.771 31.627 67.329 134.134 277.323 408.200

HV
No. of trees 165 163 161 157 152 76 3

avg. no. of edges 5.242 17.840 39.745 78.720 152.474 272.816 480.667

corr. PV
No. of trees 7 7 7 7 7 7 5

avg. no. of edges 6.286 39.000 70.429 158.714 369.571 719.143 1183.8

Table 2: Histogram (in percent) of transitions at bifurcations between different Strahler∗ orders present in the human clinical PV and HV
((a) and (b)) and corrosion cast PV (c) considered.

(a) Clinical PV

↗ 0 1 2 3 4 5 6

0 2.0778 1.3015 0.4116 0.4916 0.6231 0.1017 0.0032

1 4.8997 3.8477 1.6626 1.5727 0.4004 0.0193

2 7.7653 10.9897 3.3854 0.6742 0.0181

3 10.3169 25.6297 1.8365 0.0552

4 4.5875 14.5209 0.1550

5 0.3786 1.2481

(b) Clinical HV

↗ 0 1 2 3 4 5 6

0 1.7181 1.8558 0.5686 0.1943 0.4118 0.1045 0.0040

1 4.3881 3.3495 1.1340 1.5930 0.4851 0.0027

2 7.6727 7.9742 3.7217 1.2453 0.0034

3 10.5644 23.4566 2.6166 0.0041

4 5.9190 17.9726 0.0092

5 0.2213 0.7363

(c) Corrosion cast PV

↗ 0 1 2 3 4 5 6

0 0.2833 0.1780 0.0247 0.0509 0.0799 0.0425 0.0084

1 1.7340 0.5611 0.2953 0.4949 0.4139 0.3248

2 2.7724 1.6919 0.8550 0.9524 0.4416

3 5.4717 5.8915 2.2215 1.4351

4 10.0147 20.7643 3.8929

5 9.4238 29.6258

and not only locally so, as soon as a bifurcation is moved, as
radii are rebalanced as described in Section 2. Leaving this
out or only rebalancing radii after optimizing the position
for fixed radii produces considerably different results.

It is known that a constant viscosity μ of blood can only
be assumed for radii greater than 150μm due to the Fåhræus-
Lindqvist effect [112]; see also [60] in the lung context. This
is relevant because radii in a full vascular network range
down to 10μm [50]. Changes in the effective viscosity can
easily be integrated in the CCO procedure by evaluating the

viscosity, which is needed when computing flow resistances
for determining radii [63]; refer to [113] for a formula:

μ(r) = μ∞
(1 + δ/r)2 (13)

with μ∞ = 4.0 cP = 4 · 10−3 Pa s, δ = 4.29μm in the range
r ∈ [4, 150] μm. In order not to have a discontinuity in μ,
we add a linear transition to μ∞ in the range 140μm ≤ r ≤
160μm.
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Figure 3: Overall histograms of the bifurcation exponents γ for our clinical PV (a), HV(b), and corrosion cast PV (c) data sets for different
Strahler∗ orders.

Table 3: For different geometric features, the table lists the one-population similarity within the human clinical PV, HV, and corrosion cast
PV data sets. Moreover, the two-population similarity between the clinical and corrosion cast PV as well as the clinical PV and HV data sets
is listed. Unlike for the individual features, the numerical values of the averages in the one- and two-population cases cannot be compared
due to the different averaging formulas (7) and (8).

Feature f
Similarity Similarity

PV HV corr. PV PV/corr. PV PV/HV

Radius r 0.270 0.259 0.047 0.174 0.240

Radius decrease ηr 0.689 0.706 0.308 0.506 0.670

Radius asymmetry σr 0.772 0.720 0.238 0.449 0.737

Bif. exponent γ 0.895 0.896 0.395 0.684 0.890

Lengths l 0.780 0.800 0.386 0.384 0.775

Length decrease ηl 0.969 0.968 0.835 0.965 0.969

Length asymmetry σl 0.925 0.957 0.707 0.937 0.927

Angle ϕa 0.923 0.834 0.519 0.810 0.633

Angle ϕb 0.938 0.902 0.692 0.908 0.894

Angle ϕc 0.872 0.918 0.677 0.827 0.856

Radius average 0.657 0.645 0.247 0.515 0.721

Length average 0.891 0.909 0.643 0.716 0.898

Angle average 0.911 0.885 0.629 0.849 0.794

Total average 0.820 0.813 0.506 0.737 0.812
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Table 4: The tables show the invariance analysis for two example features, edge radii and the bifurcation exponent γ. In (a), we consider
the one-population case of clinical PV, and (b) treats the two-population case clinical versus corrosion cast PV. The average number of
trees as well as the average number of edges per tree is those considered for the respective feature and may thus vary due to geometric
degeneracies. We moreover list the averaging weights ws from (3) and (5), respectively, to determine the average invariance m from the
individual invariances mf ,s for the different Strahler∗ orders s. The plots show the empirical cumulative distribution functions of the features,
red for the clinical and green for the corrosion cast data sets.

(a) Detailed similarity analysis for clinical PV

Strahler∗ order s 0 1 2 3 4 5 6

medge radii r(T ) = 0.270

No. of trees 167 166 166 164 149 62 5

avg. no. of edges 5.365 16.771 31.627 67.329 134.134 277.323 408.200

ws(T ) 0.045 0.139 0.263 0.553 0 0 0

medge radii, s(T ) 0.682 0.428 0.301 0.183 0.114 0.081 0.100

mγ(T ) = 0.895

No. of trees 161 166 164 149 62 5 0

avg. no. of edges 3.627 11.711 23.939 53.966 123.613 193.200 0

ws(T ) 0.090 0.301 0.608 0 0 0 0

mγ,s(T ) 0.986 0.928 0.865 0.688 0.470 0.400 n/a

(b) Detailed similarity analysis for clinical PV/corrosion cast PV

Strahler∗ order s 0 1 2 3 4 5 6

medge radii r(T0T1) = 0.174

No. of trees 167, 7 166, 7 166, 7 164, 7 149, 7 62, 0 5, 0

avg. no. of edges 5.365, 6.286 16.771, 39.000 31.627, 70.429 67.329, 158.714 134.134, 369.571 277.323, 0 408.200, 0

ws(T0, T1) 0.032 0.141 0.260 0.567 0 0 0

mr,s(T0, T1) 0.640 0.297 0.243 0.085 0.009 0.005 0

mγ(T ) = 0.684

No. of trees 161, 5 166, 7 164, 7 149, 7 62, 7 5, 0 0, 0

avg. no. of edges 3.627, 4.200 11.711, 24.000 23.939, 48.000 53.966, 107.000 123.613, 275.857 193.200, 0 0, 0

ws(T0, T1) 0.060 0.312 0.627 0 0 0 0

mγ,s(T0, T1) 0.974 0.870 0.563 0.319 0.177 0.080 n/a

Computational Workload. To limit the computational work-
load for doing so, only a fixed number of nearby existing
edges are tried (we heuristically determined that the 40 edges
with closest midpoint to the new leaf node practically always
contained the optimal new connection). Moreover, we first
optimize with a rough stopping criterion (square root of the
final tolerance), select the 20 best candidate topologies, then
optimize these fully and select the optimum.

Without considering the Fåhræus-Lindqvist effect, the
computational complexity for adding one new leaf node to
an existing vascular tree with n nodes is O(n log(n)), where

factors log(log(n)) and higher logarithms are neglected here.
This assumes that the number of gradient descent steps and
Armijo steps in each gradient descent step is limited (we
observed this in practice but cannot provide a rigorous proof
for this claim) so that the number of radius rebalancing
loops and cost function evaluations is bounded by a constant.
The latter can be performed in O(n log(n)) if appropriate
elaborate caching of unchanged values is used. So the total
workload for generating a vascular tree with N leaf nodes
is O(N2 log(N)). If, in addition, viscosity depends on radius
due to the Fåhræus-Lindqvist effect, the radius rebalancing
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becomes more expensive because caching can no longer
make use of relative radii of subtrees.

Applying CCO in a Calibration Procedure. Our goal is not to
create vascular trees from scratch but to generate a higher
level of detail in patient-specific given data sets so that in
particular the coarse anatomic details are fixed and need not
be generated algorithmically. To check how good generated
vascular trees resemble measured ones, we thus proceed as
follows.

(1) A given data set is loaded and preprocessed (made
strictly bifurcative) as described in Section 3.1.

(2) The vascular tree is pruned to containing only coarse
anatomy by preserving the root and recursively its
daughters as long as the initial node of the edge is
outside the organ mask or the radius is larger than
0.25 times the maximum radius of the tree (see also
Figure 4). The first condition makes sense because in
the given data sets, the vascular structures start from
outside the segmented organ mask.

(3) Next, leaf nodes at pseudorandom positions (based
on [107]) with a minimal distance between them are
generated. Due to a pruning step later on, we here
generate 1/0.27 times the actually desired number
of leaf nodes (which in turn is chosen uniformly
distributed in [150, 350], thus being in a similar range
as the data sets we wish to compare to).

(4) One by one, these leaf nodes are added to the tree
using CCO as described previously.

(5) Finally, the leaf nodes of the “coarse anatomy” tree
and additionally all generated leaf nodes are pruned
from the tree, reducing the bifurcation level of the
resulting data set. This is meant to reflect the fact
that the clinical CT images were obtained at limited
resolution, leaving out a lot of fine anatomy, and in
particular not having leaf nodes near the boundary
of the organ. The factor 1/0.27 above was determined
heuristically to compensate for this pruning. Clearly
more than one bifurcation level of nodes is missing
in the clinical CT data sets (a human liver has
1 to 1.5 million lobules [114]), but in order to
limit the computational workload for the calibration,
we consider this one additional set of leaf nodes
sufficient.

(6) For each clinical CT data set, we generate 12 different
CCO trees (different random seed leads to different
sets of leaf nodes).

Postprocessing for Geometric Analysis. In order to avoid
numerical artifacts due to very short segments in the sub-
sequent geometric analysis and comparison to the measured
vascular trees, very small edges shorter than a given threshold
were contracted to length 0, partially resulting in Inf and
NaN values being ignored in the analysis.

4.2. Results and Shortcomings of Standard CCO. In order to
verify that λ = 2.0 minimizing intravascular volume in the
CCO cost function indeed produces the best overall results,
we apply the CCO procedure described previously for λ =
1.4, 1.6, . . . , 2.6 to generate 7 different CCO trees for each of
16 of the clinical PV data sets. The effects of different λ on
the appearance of the vascular trees generated by CCO were
discussed in [47, 115]. As we can see from Table 5, λ = 2.0
produces better overall results than the smaller or larger
values of λ considered here. Radii, for which we consider
the measurements inaccurate, actually are least similar, but
lengths are most similar for λ = 2.0. Angles are more similar
for smaller λ, but these are postprocessed later on. Let us
point out that the averages obtained for λ = 2.0 differ slightly
from the values presented in Table 6 because only a subset of
the clinical PV trees was considered here.

Results of the Geometric Analysis. Results of the comparison
of generated and measured clinical PV and HV trees are
shown in Table 6. From these data and the underlying cumu-
lative histograms (not shown), a number of observations can
be made.

Absolute radii are in a comparable but larger range
than in the measured data sets, maybe indicating that the
Strahler∗ ordering scheme is not the optimal topological
classification. The radius decrease factor is bounded by
1 in the generated data sets which is not the case in
the measured data. Radius asymmetry compares poorly,
generated bifurcations are generally more asymmetric than
the measured ones. The bifurcation exponent is fixed to
γ = 3 in the algorithm, which is clearly an artifact compared
to the measured distributions of γ (see Figure 3). However,
the radius data from the measurements is not particularly
accurate [41], so a high similarity between generated and
measured radius-related features is not to be expected.

Absolute lengths are in a comparable but larger range
than the measured data sets, similar to the absolute radii.
Length decrease factors and length asymmetries are nicely
similar between generated and measured trees.

Angles ϕc are nicely similar; ϕa in the generated data
sets are significantly smaller than in the measured data. The
same is true for the ϕb, which is not surprising because
the optimality criterion causes bifurcations to be flat. Note,
however, that not all bifurcations are flat because CCO is not
a global optimization procedure.

4.3. Improved CCO. As for further improving the standard
CCO as described previously, we first tried to obtain a higher
similarity of the bifurcation exponent γ, fixing which to 3 is
clearly an artifact of the algorithm, as suggested by [20, 115].
This did not turn out to be useful, neither by fixing values
according to the observed distribution (see Figure 3) already
in the optimization procedure nor as a postprocessing step.
In both cases, we obtained very unnaturally small absolute
radii throughout the generated vascular trees. In case of
postprocessing, the leaf edge radii are changed to a wide
range, conflicting with the idea behind CCO that leaf nodes
should provide homogeneous supply.
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Original

Pruned Standard CCO results Angles postprocessed

Original

Standard CCO results Angles postprocessed

Figure 4: For the “dense” example in Figure 2, the (a, d) shows the preprocessed clinical PV tree before (a, b, c) and after (d, e, f) pruning to
the coarse anatomic structures. Two resulting CCO trees before and after angle postprocessing are shown in the (b, e) and (c, f), respectively.

The poor similarity of the angles between daughters ϕa

(which are too small on average) is improved by shifting
the bifurcation point in the direction of the angle bisector
as a postprocessing step. A value of 9% of the mean of the
daughter edges was chosen for this purpose to fit the mean ϕa

values of the generated vascular trees to the measured data.
Moreover, the poor similarity of the inclination angles

ϕb is improved in a second postprocessing step. For this
purpose, we consider one triangle per bifurcation, its vertices
being the initial node of the parent and the terminal nodes
of the daughter edges. We then compute the distance of the
bifurcation point from this triangle relative to the longest
edge of the triangle, also giving us a measure of nonflatness of
the bifurcation for which the distribution can be computed
separately for the clinical PV and HV data. As postprocessing,
we modify the bifurcations in the generated vascular trees
by moving the bifurcation points in normal direction to
the triangles described before according to the nonflatness
distribution, unless the triangle is degenerate. Note that this
should not be done on a per-Strahler∗ order basis because
data for the ranges we later want to apply the algorithm to is
not available.

Calibration Results. The similarity results of the improved
CCO output are listed in Table 6 next to the standard
CCO results. Radii are not affected by the postprocessing.
In particular, we do not rebalance radii throughout the
tree afterwards; this turns out to further decrease similarity.
Similarity in terms of length features becomes slightly worse
by the postprocessing. Angle features, however, become
much more similar, even the third angle ϕc for which
an improvement was not aimed at by our postprocessing
procedure.

Table 5: The best overall CCO results before postprocessing are
achieved for a radius exponent λ = 2.0 in the cost function (12).

Cost exponent
λ

1.4 1.6 1.8 2.0 2.2 2.4 2.6

Radius average 0.442 0.428 0.393 0.322 0.333 0.407 0.332

Length average 0.348 0.387 0.460 0.860 0.489 0.405 0.342

Angle average 0.852 0.820 0.748 0.554 0.429 0.498 0.469

Total average 0.560 0.559 0.549 0.603 0.425 0.440 0.386

The visual macroscopic difference introduced by the
postprocessing is marginal; see Figure 4. Also notice that
postprocessing the output of an optimization procedure
decreases the optimality of the results. This cannot be seen
in the cost function; actually the volume decreases by 5.5%
on average (PV and HV) due to shorter daughter segments
at bifurcations, but at the same time the flow resistance
increases. This indicates that future work should also include
“functional” features rather than merely geometric ones.

As we could already observe for the standard CCO case,
generated HV is less similar to measured ones than it is the
case for PV.

Application of Improved CCO. Finally let us show an applica-
tion of the improved construction algorithm. Starting from
the dense PV example shown in Figure 2 (without pruning),
we construct a tree supplying 10 000 leaf nodes. A human
liver has about 1.0 to 1.5 million lobules [114], so that in this
setting one leaf node corresponds to about 53 = 125 lobules.
The resulting vascular tree is shown in Figure 5.
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Table 6: In this table we compare the similarity of vascular trees
obtained by standard CCO (sCCO) and improved CCO (iCCO)
to the clinical CT data sets. The similarity values for individual
features, but not the averages, can be compared to the HV and PV
single-population similarities in Table 3.

Feature PV/sCCO HV/sCCO PV/iCCO HV/iCCO

Radius r 0.182 0.133 0.182 0.133

Radius decrease ηr 0.363 0.246 0.363 0.246

Radius asymmetry σr 0.376 0.206 0.376 0.206

Bif. exponent γ 0.219 0.150 0.219 0.150

Lengths l 0.662 0.615 0.614 0.574

Length decrease ηl 0.943 0.939 0.902 0.887

Length asymmetry σl 0.896 0.922 0.849 0.865

Angle ϕa 0.444 0.479 0.779 0.581

Angle ϕb 0.345 0.212 0.918 0.903

Angle ϕc 0.865 0.784 0.875 0.902

Radius average 0.299 0.190 0.299 0.190

Length average 0.845 0.838 0.800 0.787

Angle average 0.545 0.494 0.857 0.802

Total average 0.588 0.542 0.687 0.634

5. Conclusions and Outlook

Even though the coarsest vascular structures in human livers
have a large variability, the overall geometric properties
are largely invariant between different individuals. Vascular
trees generated by the CCO algorithm, that is, constructed
to satisfy physical optimality conditions for homogeneous
supply, show a certain similarity to measured vascular trees
in reality. The similarity can be improved further by a
postprocessing step modifying bifurcation angles.

Limitations. Several limitations of the methods presented
here need to be mentioned.

The main limitation for obtaining more robust radius
data is the imaging resolution, but more sophisticated image
processing methods can possibly also improve the radius
data. Higher resolution image data of small subsamples
as described in Section 1 could be used for validation of
geometric features at a smaller scale. However, a sufficient
number of such datasets were not yet available for this study.

The similarity analysis and corresponding assessment
of CCO are here limited to purely geometric features of
the vascular structures. One could, for example, consider
supplied territories by different parts of the vascular trees.
In the model, these could be obtained, for example, by
determining watersheds or Voronoı̈ cells. Experimentally one
could measure territories where an appropriately injected
substance is distributed. However, such measurements in
humans in vivo are not feasible. Functional properties as
described in Section 2 could also be taken into account
for validation of the results. Computing these, however, is
not a trivial task and requires well-established and validated

Figure 5: This vascular tree was generated applying the CCO
algorithm including angle postprocessing to extend the clinical PV
data set from Figure 4 without first pruning it. Each of the 10 000
leaf nodes in this setting is meant to supply about 125 lobules in the
corresponding human liver.

additional assumptions. Also, measuring appropriate data is
difficult, in particular if in vivo measurements are desired.

We work with a simplified geometric representation of
vascular trees allowing only straight cylindrical edges. This
is only an approximation of real vascular edges which can
be curved and of varying, not necessarily circular, cross-
section. Varying out/inflow per leaf node (lobulus) can easily
be integrated in the CCO implementation if such data is
available. The flow model determining flow resistances does
not yet take branching angles into account. The effective
influence of the microscopic flow at bifurcations could be
used to determine correction factors here.

Finally, the computational performance of our CCO
implementation is not satisfactory yet for generating highly
detailed vascular trees. This can possibly be remedied by
using a multiscale approach partitioning the organ in
separate supplied territories.

Outlook. Currently, only a single vascular network is gen-
erated algorithmically. If PV, HV, and possibly HA are
considered simultaneously, penetration of the distinct vas-
cular trees needs to be prevented. This can probably be
achieved by considering a joint flow/pressure model also
including an effective representation of the organ tissue
between the vascular trees following [116] and by adding a
nonpenetration constraint in the construction process.

The vascular tree data sets used here are obviously
limited to human livers, but the similarity measures and
construction algorithm are generic. We plan to apply the
methods presented here to in vivo μCT scans of rats and mice
and to μCT scans of murine hepatic corrosion casts.

Geometric representation of hepatic vascular trees deter-
mined by the methods presented here will be used for flow
simulations in the context of multiscale liver modeling.

Acknowledgments

The authors acknowledge funding by the German Ministry
of Education and Research (BMBF) via the systems biology
network “Virtual Liver.” they also thank Jean Fasel and



14 International Journal of Hepatology

Horst Hahn for creating the corrosion casts and providing
the corresponding vascular tree data sets. Furthermore they
thank Uta Dahmen, Olaf Dirsch, Andrea Schenk, Stephan
Zidowitz, Niko Komin, and Karolis Blaževičius for fruitful
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Baeza, and S. González, “In vivo and ex vivo virtual
biopsy of the liver with near-infrared, reflectance confocal
microscopy,” Modern Pathology, vol. 18, no. 2, pp. 290–300,
2005.

[18] S. Singhal, R. Henderson, K. Horsfield, K. Harding, and G.
Cumming, “Morphometry of the human pulmonary arterial
tree,” Circulation Research, vol. 33, no. 2, pp. 190–197, 1973.

[19] W. Huang, R. T. Yen, M. McLaurine, and G. Bledsoe, “Mor-
phometry of the human pulmonary vasculature,” Journal of
Applied Physiology, vol. 81, no. 5, pp. 2123–2133, 1996.

[20] S. Aharinejad, W. Schreiner, and F. Neumann, “Morphome-
try of human coronary arterial trees,” The Anatomical Record,
vol. 251, no. 1, pp. 50–59, 1998.

[21] N. Mittal, Y. Zhou, S. Ung, C. Linares, S. Molloi, and G. S.
Kassab, “A computer reconstruction of the entire coronary
arterial tree based on detailed morphometric data,” Annals of
Biomedical Engineering, vol. 33, no. 8, pp. 1015–1026, 2005.

[22] M. E. Martinez-Perez, A. D. Hughes, A. V. Stanton et
al., “Retinal vascular tree morphology: a semi-automatic
quantification,” IEEE Transactions on Biomedical Engineering,
vol. 49, no. 8, pp. 912–917, 2002.

[23] D. Selle, B. Preim, A. Schenk, and H.-O. Peitgen, “Analysis of
vasculature for liver surgical planning,” IEEE Transactions on
Medical Imaging, vol. 21, no. 11, pp. 1344–1357, 2002.

[24] M. Zamir and S. Phipps, “Network analysis of an arterial
tree,” Journal of Biomechanics, vol. 21, no. 1, pp. 25–34, 1988.

[25] R. T. Yen, F. Y. Zhuang, and Y. C. Fung, “Morphometry of cat
pulmonary venous tree,” Journal of Applied Physiology, vol.
55, no. 1, pp. 236–242, 1983.

[26] G. S. Kassab, K. Imoto, F. C. White, C. A. Rider, Y.-C. Fung,
and C. M. Bloor, “Coronary arterial tree remodeling in right
ventricular hypertrophy,” American Journal of Physiology, vol.
265, no. 1, pp. H366–H375, 1993.

[27] G. S. Kassab, D. H. Lin, and Y.-C. B. Fung, “Morphometry of
pig coronary venous system,” American Journal of Physiology,
vol. 267, no. 6, pp. H2100–H2113, 1994.

[28] M. Gössl, M. Rosol, N. M. Malyar et al., “Functional anatomy
and hemodynamic characteristics of vasa vasorum in the
walls of porcine coronary arteries,” The Anatomical Record,
vol. 272, no. 2, pp. 526–537, 2003.

[29] S. Y. Wan, E. L. Ritman, and W. E. Higgins, “Multi-
generational analysis and visualization of the vascular tree in
3D micro-CT images,” Computers in Biology and Medicine,
vol. 32, no. 2, pp. 55–71, 2002.

[30] D. A. Nordsletten, S. Blackett, M. D. Bentley, E. L. Ritman,
and N. P. Smith, “Structural morphology of renal vascula-
ture,” American Journal of Physiology, vol. 291, no. 1, pp.
H296–H309, 2006.

[31] R. J. Trudeau, Introduction to Graph Theory, Dover Publica-
tions, 1993.



International Journal of Hepatology 15

[32] C. Couinaud, Le Foie: Études Anatomiques et Chirurgicales,
Masson, Paris, France, 1957.

[33] K. Horsfield and G. Cumming, “Morphology of the
bronchial tree in man,” Journal of Applied Physiology, vol. 24,
no. 3, pp. 373–383, 1968.

[34] G. S. Kassab, C. A. Rider, N. J. Tang, and Y.-C. B. Fung,
“Morphometry of pig coronary arterial trees,” American
Journal of Physiology, vol. 265, no. 1, pp. H350–H365, 1993.

[35] S. B. Barker, G. Cumming, and K. Horsfield, “Quantitative
morphometry of the branching structure of trees,” Journal of
Theoretical Biology, vol. 40, no. 1, pp. 33–43, 1973.

[36] K. Horsfield, “Morphometry of the small pulmonary arteries
in man,” Circulation Research, vol. 42, no. 5, pp. 593–597,
1978.

[37] R. E. Horton, “Erosional development of streams and their
drainage basins; hydrophysical approaches to quantitative
morphology,” Bulletin of the Geological Society of America,
vol. 56, pp. 275–370, 1945.

[38] A. N. Strahler, “Quantitative analysis of watershed geomor-
phology,” Transactions of the American Geophysical Union, no.
8, pp. 913–920, 1957.

[39] Z. L. Jiang, G. S. Kassab, and Y. C. Fung, “Diameter-defined
Strahler system and connectivity matrix of the pulmonary
arterial tree,” Journal of Applied Physiology, vol. 76, no. 2, pp.
882–892, 1994.

[40] R. Z. Gan, Y. Tian, R. T. Yen, and G. S. Kassab, “Morphometry
of the dog pulmonary venous tree,” Journal of Applied
Physiology, vol. 75, no. 1, pp. 432–440, 1993.

[41] J. Drexl, V. Knappe, H. K. Hahn et al., “Accuracy analysis of
vessel segmentation for a LITT dosimetry planning system,
Perspective in Image-Guided Surgery,” in Proceedings of
the Scientific Workshop on Medical Robotics, Navigation and
Visualization, T. M. Buzug and T. C. Lueth, Eds., pp. 204–
213, World Scientific, 2004.

[42] E. VanBavel and J. A. E. Spaan, “Branching patterns in the
porcine coronary arterial tree: estimation of flow heterogene-
ity,” Circulation Research, vol. 71, no. 5, pp. 1200–1212, 1992.

[43] J. C. Parker, C. B. Cave, J. L. Ardell, C. R. Hamm, and
S. G. Williams, “Vascular tree structure affects lung blood
flow heterogeneity simulated in three dimensions,” Journal of
Applied Physiology, vol. 83, no. 4, pp. 1370–1382, 1997.

[44] J. N. Maina and P. van Gils, “Morphometric characterization
of the airway and vascular systems of the lung of the domestic
pig, Sus scrofa: comparison of the airway, arterial and venous
systems,” Comparative Biochemistry and Physiology, vol. 130,
no. 4, pp. 781–798, 2001.

[45] H. B. M. Uylings, “Optimization of diameters and bifurca-
tion angles in lung and vascular tree structures,” Bulletin of
Mathematical Biology, vol. 39, no. 5, pp. 509–520, 1977.

[46] M. F. Kiani and A. G. Hudetz, “Computer simulation of
growth of anastomosing microvascular networks,” Journal of
Theoretical Biology, vol. 150, no. 4, pp. 547–560, 1991.

[47] R. Karch, F. Neumann, M. Neumann, P. Szawlowski, and W.
Schreiner, “Voronoi polyhedra analysis of optimized arterial
tree models,” Annals of Biomedical Engineering, vol. 31, no. 5,
pp. 548–563, 2003.

[48] M. Zamir, “On fractal properties of arterial trees,” Journal of
Theoretical Biology, vol. 197, no. 4, pp. 517–526, 1999.

[49] M. Zamir, “Nonsymmetrical bifurcations in arterial branch-
ing,” Journal of General Physiology, vol. 72, no. 6, pp. 837–845,
1978.

[50] C. A. Dawson, G. S. Krenz, K. L. Karau, S. T. Haworth, C. C.
Hanger, and J. H. Linehan, “Structure-function relationships

in the pulmonary arterial tree,” Journal of Applied Physiology,
vol. 86, no. 2, pp. 569–583, 1999.

[51] C. D. Murray, “The physiological principle of minimum
work. I. The vascular system and the cost of blood volume,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 12, no. 3, pp. 207–214, 1926.

[52] K. Horsfield and M. J. Woldenberg, “Diameters and cross-
sectional areas of branches in the human pulmonary arterial
tree,” The Anatomical Record, vol. 223, no. 3, pp. 245–251,
1989.

[53] R. Gödde and H. Kurz, “Structural and biophysical simula-
tion of angiogenesis and vascular remodeling,” Developmen-
tal Dynamics, vol. 220, no. 4, pp. 387–401, 2001.

[54] H. Kurz and K. Sandau, “Modelling of blood vessel develop-
ment bifurcation pattern and hemodynamics, optimality and
allometry,” Comments on Theoretical Biology, no. 4, pp. 261–
291, 2007.

[55] N. Suwa, T. Niwa, H. Fukasawa, and Y. Sasaki, “Estimation
of intravascular blood pressure gradient by mathematical
analysis of arterial casts,” The Tohoku Journal of Experimental
Medicine, vol. 79, pp. 168–189, 1963.

[56] T. Arts, R. T. Kruger, W. van Gerven, J. A. Lambregts, and R.
S. Reneman, “Propagation velocity and reflection of pressure
waves in the canine coronary artery,” The American Journal of
Physiology, vol. 237, no. 4, pp. H469–H474, 1979.

[57] G. S. Krenz, J. H. Linehan, and C. A. Dawson, “A fractal
continuum model of the pulmonary arterial tree,” Journal of
Applied Physiology, vol. 72, no. 6, pp. 2225–2237, 1992.

[58] M. Marxen and R. M. Henkelman, “Branching tree model
with fractal vascular resistance explains fractal perfusion
heterogeneity,” American Journal of Physiology, vol. 284, no.
5, pp. H1848–H1857, 2003.

[59] N. Mittal, Y. Zhou, C. Linares et al., “Analysis of blood flow
in the entire coronary arterial tree,” American Journal of
Physiology, vol. 289, no. 1, pp. H439–H446, 2005.

[60] F. Y. Zhuang, Y. C. Fung, and R. T. Yen, “Analysis of blood
flow in cat’s lung with detailed anatomical and elasticity
data,” Journal of Applied Physiology, vol. 55, no. 4, pp. 1341–
1348, 1983.

[61] W. Schreiner and P. F. Buxbaum, “Computer-optimization of
vascular trees,” IEEE Transactions on Biomedical Engineering,
vol. 40, no. 5, pp. 482–491, 1993.

[62] R. Karch, F. Neumann, B. K. Podesser, M. Neumann,
P. Szawlowski, and W. Schreiner, “Fractal properties of
perfusion heterogeneity in optimized arterial trees: a model
study,” Journal of General Physiology, vol. 122, no. 3, pp. 307–
321, 2003.

[63] A. Kamiya and T. Takahashi, “Quantitative assessments of
morphological and functional properties of biological trees
based on their fractal nature,” Journal of Applied Physiology,
vol. 102, no. 6, pp. 2315–2323, 2007.

[64] M. Zamir, “Optimality principles in arterial branching,”
Journal of Theoretical Biology, vol. 62, no. 1, pp. 227–251,
1976.

[65] M. Zamir, “The role of shear forces in arterial branching,”
Journal of General Physiology, vol. 67, no. 2, pp. 213–222,
1976.

[66] K. Horsfield and W. I. Gordon, “Morphometry of pulmonary
veins in man,” Lung, vol. 159, no. 4, pp. 211–218, 1981.

[67] W. Schreiner, F. Neumann, M. Neumann, A. End, S. M.
Roedler, and S. Aharinejad, “The influence of optimization
target selection on the structure of arterial tree models



16 International Journal of Hepatology

generated by constrained constructive optimization,” Journal
of General Physiology, vol. 106, no. 4, pp. 583–599, 1995.

[68] W. Schreiner, F. Neumann, M. Neumann, A. End, and M. R.
Müller, “Structural quantification and bifurcation symmetry
in arterial tree models generated by constrained constructive
optimization,” Journal of Theoretical Biology, vol. 180, no. 2,
pp. 161–174, 1996.

[69] R. Karch, F. Neumann, M. Neumann, and W. Schreiner,
“Staged growth of optimized arterial model trees,” Annals of
Biomedical Engineering, vol. 28, no. 5, pp. 495–511, 2000.

[70] J. H. G. M. van Beek, S. A. Roger, and J. B. Bassingthwaighte,
“Regional myocardial flow heterogeneity explained with
fractal networks,” American Journal of Physiology, vol. 26, pp.
H1670–H1680, 1989.

[71] F. Family, B. R. Masters, and D. E. Platt, “Fractal pattern
formation in human retinal vessels,” Physica D, vol. 38, no.
1–3, pp. 98–103, 1989.
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