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Abstract

A gene regulatory network can be described at a high level by a directed graph with signed

edges, and at a more detailed level by a system of ordinary differential equations (ODEs).

The former qualitatively models the causal regulatory interactions between ordered pairs of

genes, while the latter quantitatively models the time-varying concentrations of mRNA and

proteins. This paper clarifies the connection between the two types of models. We propose

a property, called the constant sign property, for a general class of ODE models. The con-

stant sign property characterizes the set of conditions (system parameters, external signals,

or internal states) under which an ODE model is consistent with a signed, directed graph. If

the constant sign property for an ODE model holds globally for all conditions, then the ODE

model has a single signed, directed graph. If the constant sign property for an ODE model

only holds locally, which may be more typical, then the ODE model corresponds to different

graphs under different sets of conditions. In addition, two versions of constant sign property

are given and a relationship between them is proved. As an example, the ODE models that

capture the effect of cis-regulatory elements involving protein complex binding, based on

the model in the GeneNetWeaver source code, are described in detail and shown to satisfy

the global constant sign property with a unique consistent gene regulatory graph. Even a

single gene regulatory graph is shown to have many ODE models of GeneNetWeaver type

consistent with it due to combinatorial complexity and continuous parameters. Finally the

question of how closely data generated by one ODE model can be fit by another ODE model

is explored. It is observed that the fit is better if the two models come from the same graph.

Introduction

A gene regulatory network is a collection of molecular classes such that each molecular class

interacts with a small number of other molecular classes, creating a sparse graph structure [1].

A goal of systems biology is to understand gene regulatory networks and infer them from data

[2, 3]. A directed graph with vertices representing genes and signed edges representing gene-

to-gene interactions, also known as a circuit model [4] or a logical model [5], is a model with

a high level of abstraction (see S1 Appendix). The vertices of such graph models often only
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consist of the genes but not the properties of the derived proteins because the latter informa-

tion is usually not available. An ordinary differential equation (ODE) model is far more

detailed than a graph model: they quantitatively describe the dynamics of the time-varying

mRNA and protein concentrations of the genes, and can be used to capture complex effects,

including protein–protein interaction, post-translational modification, environmental signals,

diffusion of proteins in different parts of the cell, and various time constants. As a result,

ascribing a directed graph to a biologically plausible gene regulatory network can miss impor-

tant biological details and dynamics because of the abstraction. However, it is significantly

more challenging to ascribe a particular ODE model to a gene regulatory network than to

ascribe a directed graph because an ODE model requires much finer classification with possi-

bly orders of magnitude more amount of data. As one example, the work [6] is notable for suc-

cessful identification of an ODE model that captures the gene regulatory network underlying

the dynamics of the circadian clock. The ODE model in [6] is based on a number of previous

empirical and modeling studies, and it is shown that parameters for the model can be selected

to give a good match to the data. In general, however, without such prior knowledge, the rela-

tion between the graph models and the ODE models is unclear. The purpose of this paper is to

explore the connections between the two types of models.

We propose a property of the ODE models, called the constant sign property (CSP), such

that an ODE model corresponds to a single graph model under a set of conditions if and only

if the ODE model satisfies CSP under that set of conditions. An ODE model is said to satisfy

global constant sign property (GCSP) if it satisfies CSP under all conditions, in which case the

ODE model corresponds to a single graph model. Typically, an ODE model corresponds to

different graph models under different conditions characterizing the context-dependent and

time-varying nature of biological systems [7, 8]. An ODE model that does not satisfy GCSP is

illustrated in Fig 1.

One particularly rich class of ODE models that satisfy GCSP are based on GeneNetWeaver

[10, 11], the software used to generate expression data in DREAM challenges 3–5 [11–13] and

recently applied to single-cell analysis [14, 15]. In these ODE models a layer of intermediate

elements called modules are constructed with transcription factors (TFs) as their input and

target genes their output. The activity level of a module depends on its input and its type, and

determines the production rate of its output. The modules model the binding of protein com-

plexes to DNA in transcriptional regulation. TFs can regulate the target gene through one or

multiple modules. Assuming for each TF and each target gene there is only one module that

takes the TF as an input and the target gene as an output, we show that CSP is satisfied, so each

GeneNetWeaver ODE model has a well-defined graph model associated with it. The combina-

torial nature of the number of possible module configurations (i.e., the number of the modules

and their input and output) and the continuous value parameters make the GeneNetWeaver

ODE models extremely rich.

The organization of this paper is as follows. In the first subsection of the Materials and

Methods section, we describe the ODE models and the graph models, and propose two

notions of CSP. In the second subsection of the Materials and Methods section, we describe

ODE models based on GeneNetWeaver. The Results section has three subsections. In the

first, a relation of the two notions of CSP is provided. In the second, the GeneNetWeaver

ODE models are shown to satisfy the constant sign property, and their complexity is investi-

gated. In the third, a case study of a core soybean flowering network based on the literature is

presented to demonstrate the use of the GeneNetWeaver ODE models. First it is illustrated

that a single signed, directed graph model has a large space of consistent ODE models. Sec-

ond, to study how different the GeneNetWeaver ODE models are, we explore the problem

of numerically fitting parameters of one ODE model to synthetic expression data generated
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from another. The generalization, implication and limitation of CSP are discussed before the

concluding remarks.

Materials and methods

ODE model and constant sign property

In this section we define the constant sign property, a property under which ODE models

are consistent with signed directed graphs. Roughly speaking, CSP holds when unilaterally

increasing the expression level of one gene causes the expression level of another gene to move

in one direction. In other words, the effect of one regulator gene has a constant sign on a target

gene. In rare cases, CSP may hold globally, regardless of the expression levels of all the genes

and the concentrations of any other molecular classes. More generally, CSP may hold only for

a set of expression levels and system parameters, leading to a local definition. We present the

precise definition of CSP in this section.

Let x1(t), x2(t), . . ., xn(t) be the mRNA abundances for the n genes (the observables) at time

t. Let xn+1(t), xn+2(t), . . ., xn+m(t) be the protein concentrations (the unobservables) at time t,
which may include derived (protein complexes and modifications like protein phosphorylation)

and localized (e.g., cytoplasmic and nuclear) proteins. Let xn+m+1(t), xn+m+2(t), . . ., xn+m+l(t) be

the strengths of the chemical and environmental signals (the controllables, e.g., temperature

and photoperiod) at time t. Let x(t) = (xi(t):i2[n+m+l]) be the system state at time t, where [n]

denotes the set of integers {1, 2, . . ., n}. Let l 2 Rs
be the parameters of the ODE model and let

fi : Rnþmþl
� Rs

! R be the time derivative of xi as a function of the (n + m + l)-dimensional

system state and the parameters for i 2 [n + m]. Note the domain of fi is assumed to be the

entire Euclidean space rather than a subset of it without loss of generality because one can

always restrict fi to a subset of states that x takes. Examples of f for the single-input case

(n + m + l = 1) include the Michaelis–Menten kinetics and the more general Hill kinetics.

Examples of f for the multi-input case (n + m + l� 2) include the Shea–Ackers model [16, 17],

which is the average production rate based on a Gibbs measure of the control states, and the

GeneNetWeaver model to be discussed later in this paper, which models the additive effect

of multiple intermediate Shea–Ackers type modules. Both the Shea–Ackers model and the

GeneNetWeaver model generalize the Hill kinetics to multi-input scenarios in their own ways

Fig 1. Network reconstruction for an ODE model in the study [9] without global CSP. The ODE model f governs

the dynamics of all parts of the plant, and expression data collected from different parts of a plant (flower vs. leaf) can

correspond to different graph models.

https://doi.org/10.1371/journal.pone.0235070.g001
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and are, among many other sophisticated ODE models, within the framework of ODE models

in this paper.

Formally, given the numbers of molecular classes (i.e., n classes of mRNAs, m classes of pro-

teins, and l classes of molecular signals), the dynamics of an ODE model are characterized by

the collection of time derivatives for the uncontrollable variables f = (fi:i2[n + m]). In the rest

of the paper an ODE model refers to the collection of the functions f. The trajectories of the

mRNA and protein concentrations evolving with time depend on ðx0; ~x; lÞ, where x0 ¼ ðx0
i :

i 2 ½nþm�Þ are the initial conditions of the mRNAs and proteins at time 0, ~x ¼ ð~xiðtÞ :

nþmþ 1 � i � nþmþ l; t � 0Þ are the predefined external signal strengths for all time,

and l 2 Rs
are the parameters. The trajectories can then be obtained by solving the following

initial value problem.

xið0Þ ¼ x0
i ; i 2 ½nþm�;

xiðtÞ ¼ ~xiðtÞ; nþmþ 1 � i � nþmþ l; t � 0;

dxiðtÞ
dt
¼ fiðxðtÞ; lÞ; i 2 ½nþm�:

Note the signals (xi:n + m + 1�i�n + m + l) are exogenously controlled and not solved via

the equations. In this paper we assume existence and uniqueness of the solution on the entire

positive time horizon for ease of exposition. The concept of CSP can be easily generalized to

ODE models where only local solutions exist.

Infinitesimal monotonicity. We first define a version of monotonicity called infinitesi-

mal monotonicity such that CSP using this definition of monotonicity can be applied to a

broad class of ODE models.

Roughly speaking, infinitesimal monotonicity characterizes the monotone influence of

one observed variable on another over a sufficiently short period of time. Such monotonicity

depends on the current system state. For each regulator–target pair, to avoid external and indi-

rect influence, we clamp the exogenous signals as well as the observed variables other than the

target to their initial values, so only the unobserved variables and the target observed variable

are allowed to change with time. The clamped value of the regulator can be perturbed. A

change in the constant value of the regulator can cause a change in the target observed variable

in continuous time, possibly through one or multiple unobserved variables. The system with

the input at the regulator observable and output at the target observable is thus treated as a

black box in the sense that one does not need to know its internal states (the unobservables) to

determine the infinitesimal monotonicity of the system. This assumes that the initial internal

states are fixed.

Given the ODE model f, and given a state x 2 Rnþmþl
and parameters l 2 Rs

, let j be the tar-

get gene and let the dynamics of the clamped ODE model be driven by

f̂ ðjÞk ¼

( fk if k 2 fjg [ ½nþ 1 : nþm�;

0 otherwise;

for any k 2 [n + m + l]. Here [a: b] denotes the set of integers {a, a + 1, . . ., b}. Then

f̂ ðjÞ ¼ ðf̂ ðjÞk : k 2 ½nþmþ l�Þ determines the dynamics of a system where the mRNA abun-

dances and exogenous signals remain constant across time except for the mRNA abundance

of gene j. Fix a potential regulator gene i 6¼ j and let ðZðjÞðt; h; x; lÞ 2 Rnþmþl : t � 0Þ be

the solution of the initial value problem with initial condition (xi + h, x−i), dynamics f̂ ðjÞ,
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parameters λ. Note here η(j) also includes the clamped exogenous signals. Also note that for

any t we have

Z
ðjÞ
k ðt; h; x; lÞ � xk for k 2 ½n�nfi; jg and k > nþm;

Z
ðjÞ
i ðt; h; x; lÞ � xi þ h;

and

Z
ðjÞ
j ð0; h; x; lÞ ¼ xj:

The following definition gives a precise characterization of the target gene expression to be

strictly increasing or decreasing with respect to the regulator gene expression in a small future

time period.

Definition 1 (Infinitesimal monotonicity). For an ODE model f at state x with parameters λ
and (i, j)2[n]2 with i 6¼ j, the infinitesimal monotonicity for i on j is given by

Binfði; j; x; lÞ ¼

; if 8h and 8t; ZðjÞj ðt; h; x; lÞ ¼ Z
ðjÞ
j ðt; 0; x; lÞ;

f1g if 9� > 0 such that 8t 2 ð0; �Þ and 8h 2 ð� �; 0Þ [ ð0; �Þ;

Z
ðjÞ
j ðt;h;x;lÞ� Z

ðjÞ
j ðt;0;x;lÞ

h > 0;

f� 1g if 9� > 0 such that 8t 2 ð0; �Þ and 8h 2 ð� �; 0Þ [ ð0; �Þ;

Z
ðjÞ
j ðt;h;x;lÞ� Z

ðjÞ
j ðt;0;x;lÞ

h < 0;

f1; � 1g otherwise:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Equivalently, in less mathematical terms, Binf(i, j, x, λ) = ; indicates gene i does not affect

gene j at state x and parameters λ. The cases with Binf(i, j, x, λ) = {1} and {−1} indicate gene i
activates or represses gene j, respectively, at state x and parameters λ in a small time period

with small perturbation. The case with Binf(i, j, x, λ) = {1, −1} indicates gene i does not affect

gene j in a monotone way.

Remark 1. Note the case Binf(i, j, x, λ) = {1, −1} can happen when the expression level of the

target gene j reaches the maximum with respect to xi, so that a change of xi in either direction

will cause the solution Z
ðjÞ
j ðt; h; x; lÞ to decrease for small t, in which case the monotonicity is

indeterminate (neither increasing nor decreasing).

In practice the values of x and λ may be unknown, so we are interested in how Binf varies

with x and λ. Usually we expect some level of continuity of Binf with respect to x and λ, so the

infinitesimal monotonicity of the ODE model may be consistent in a small set of (x, λ) pairs,

denoted by S. In the case when S equals the entire state–parameter space, the infinitesimal

monotonicity is consistent globally. The following definition generalizes Definition 1 by

checking the consistency of infinitesimal monotonicity over a set S, and defines an associated

graph.

Definition 2 (Infinitesimal gene regulatory graph). The infinitesimal gene regulatory graph

of an ODE model f over S � Rnþmþl
� Rs

is given by a graph ð½n�; E infðSÞ;BinfðSÞÞ, where the

set of edge labels Binf(S) = (Binf(i, j, S):(i, j)2[n]2, i6¼j) is defined by

Binfði; j; SÞ ¼
[

ðx;lÞ2S

Binfði; j; x; lÞ
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and the set of edges is

E infðSÞ ¼ fði; jÞ : Binfði; j; SÞ 6¼ ;g:

Equivalently, in less mathematical terms, Binf(i, j, S) = ; indicates gene i does not affect gene

j when (x, λ) is in S. The case with Binf(i, j, S) = {1} indicates gene i can increase gene j for some

(x, λ) in S, but cannot decrease gene j for any (x, λ) in S. The case with Binf(i, j, S) = {−1} indi-

cates gene i can decrease gene j for some (x, λ) in S, but cannot increase gene j for any (x, λ) in

S. The case with Binf(i, j, S) = {1, −1} indicates the monotonicity is indeterminate over S.

Definition 3 (Infinitesimal constant sign property). An ODE model f satisfies the infinitesi-

mal constant sign property over S � Rnþmþl
� Rs

if 8ði; jÞ 2 E infðSÞ;Binfði; j; SÞ ¼ f1g or

Binf(i, j, S) = {−1}. In other words, the ODE model satisfies infinitesimal constant sign property

on S if no pair of (i, j) has indeterminate monotonicity on S.

Remark 2. The set S represents the set of states where the infinitesimal CSP holds. If S is the

entire state space then we say the infinitesimal CSP holds globally. Complex biological systems

usually do not satisfy CSP globally, but may satisfy CSP locally over the set S where the system

states reside. For example, in Fig 1, the gene expressions in the flowers may be contained in

set S1 where the infinitesimal CSP is satisfied with a gene regulatory graph G1, while the gene

expressions in the leaves may be contained in set S2 that does not intersect with S1, and the

infinitesimal CSP is satisfied with a different gene regulatory graph G2.

Sum–product monotonicity. Infinitesimal monotonicity gives a natural notion of mono-

tonicity, but it is expressed in terms of the solutions of the differential equations, and solving

the differential equations can be analytically challenging and numerically unstable. Hence, in

this section we focus on ODE models with a smooth f and propose another notion of monoto-

nicity that does not require solving the system of ODEs.

Definition 4 (Molecular graph). The molecular graph of an ODE model is a graph whose

vertices are the internal molecular classes (i.e., the observables and the unobservables) and

whose edges indicate non-constant effects among the internal molecular classes with signs

indicating monotonicity of the effects. Formally, given an ODE model f, the molecular graph

at state x 2 Rnþmþl
with parameters l 2 Rs

is a directed graph with vertices [n + m] and edges

Emol, where

Emol¼ fði; jÞ 2 ½mþ n�2 : there exists x 2 Rnþmþl
; l 2 Rs

; and x0i 2 R such that

fjðx; lÞ 6¼ fjððx0i; x� iÞ; lÞg:

In other words ði; jÞ =2 Emol if fj does not actually depend on xi. See Fig 2(A) for an example

of a molecular graph. Note in general we could have edges from unobservables to unobserva-

bles (e.g., protein–protein interactions) and from observables to observables (modeling fast

translation where mRNA abundances and protein concentrations are considered the same).

The molecular graph represents the interactions among all the molecular classes. However,

usually only the mRNA abundances are measured; the proteins and their derived products are

not measured, making the molecular graph only partially observed. As a result, one often seeks

an induced graph on the mRNA classes, which leads to the following definitions analogous to

the clamped systems for infinitesimal monotonicity.

Definition 5 (Unobserved path of length q for q� 1). Given a molecular graph, the set of

unobserved paths from one mRNA to another is the set of paths that do not go though another

mRNA. Formally, given n, m, l, and edges Emol � ½nþm�2 and i, j 2 [n] with i 6¼ j, the set of
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unobserved paths of length q connecting i and j is

Pq
ij ¼

�

ðr0; r1; . . . ; rqÞ 2 ½nþm�qþ1
: rq ¼ i; r0 ¼ j; and 8k 2 ½1 : q � 1�; rk 2 ½nþ 1 : nþm�;

and 8k 2 ½q�; ðrk; rk� 1Þ 2 Emol

�

:

Definition 6 (Molecular distance). The molecular distance from i to j is

q�ij ¼

(minfq : Pq
ij 6¼ ;g if Pq

ij 6¼ ; for some q;

1 otherwise:

Definition 7 (Sum–product monotonicity). For genes i and j, state x and parameters λ, the

sum–product monotonicity is defined by

Bsumði; j; x; lÞ ¼

; if q�ij ¼ 1;

f1g if q�ij <1 and Dði; j; x; lÞ > 0;

f� 1g if q�ij <1 and Dði; j; x; lÞ < 0;

f1; � 1g if q�ij <1 and Dði; j; x; lÞ ¼ 0;

8
>>>>>>><

>>>>>>>:

where Dði; j; x; lÞ ≜
P

r2P
q�ij
ij

Qq�ij
l¼1 @rl frl� 1

ðx; lÞ.

Fig 2. A molecular graph and its corresponding gene regulatory graph for the single-loop network in the study [18]. (A) The

molecular graph for the ODE model of the single-loop network. Blue edges indicate positive first-order partial derivatives, and red

edges indicate negative first-order partial derivatives. (B) The corresponding global gene regulatory graph for (A) with blue edges

indicating activation and red edges indicating repression (the constant sign property is satisfied globally under both notions of CSP

by Proposition 1).

https://doi.org/10.1371/journal.pone.0235070.g002
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Note Bsum is only based on derivatives of f, not solving the ODEs. It plays a similar role as

Binf. Thus we can define sum–product gene regulatory graph and sum–product constant sign

property in a similar way as Definitions 2 and 3. A relation between the infinitesimal monoto-

nicity and the sum–product monotonicity is given in 1 in the Results section.

GeneNetWeaver ODE model

We consider a differential equation model such that transcription factors participate in mod-

ules which bind to the promoter regions of a given target gene. This model is based on the

GeneNetWeaver software version 3 [10]. Part of the model of the popular simulator is

described in the studies [12] and [11], but there is no good reference that precisely describes

the model. So in this section we describe the generative model in GeneNetWeaver based on a

given directed graph, and show in the next section that the CSP is satisfied. Note GeneNet-

Weaver models are a special class of ODE models with the molecular graphs being bipartite,

resulting in no unobserved paths of length greater than 2, unlike the general case as illustrated

in Fig 2. GeneNetWeaver allows fast protein–protein interactions though the f function, but

does not characterize slow protein–protein interactions or external signals.

The model in GeneNetWeaver is based on standard modeling assumptions (see [19])

including statistical thermodynamics, as described in the study [20]. The activity level of the

promoter of a gene is controlled by one or more cis-regulatory modules, which for brevity we

refer to as modules. A module can be either an enhancer or a silencer. Each module has one

or more transcription factors as activators, and possibly one or more TFs as deactivators. For

each target gene, a number of modules are associated with its TFs such that each TF is an input

of one of the modules. For simplicity assume that each module regulates only a single target

gene.

Let ð½n�; E; bÞ be a directed signed graph with vertices [n], edge set E, and edge signs b. For

target gene j, let Nj ≜ fi 2 ½n� : ði; jÞ 2 Eg be the set of its TFs and let Sj � PðNjÞ be a partition

of Nj according to the input of the modules. Then the modules for target gene j can be indexed

by the tuple (K, j) (denoted by K: j in the subscripts), where K 2 Sj. Note each TF regulates the

target gene j only through one module. The random model for assignment of the TFs to mod-

ules and of the parameters in GeneNetWeaver is summarized in S2 Appendix. Let the sets of

activators and deactivators for module K: j be AK: j and DK: j with AK: j[DK: j = Nj and AK:

j\DK: j = ;. For a module K: j, let cK: j be the type (1 for enhancer and −1 for silencer), rK: j

the mode (1 for synergistic binding and 0 for independent binding). Note rK: j only matters

for multi-input modules (i.e., those with |K|>1). Let βK: j� 0 be the absolute effect of module

K: j on gene j in mRNA production rate. Note that by the construction in S2 Appendix, it is

guaranteed that bij ¼ cK:jð1fi2AK:jg
� 1fi2DK:jg

Þ.

Let xi(t) and yi(t) be the mRNA and protein concentrations for gene i at time t. We ignore t
in the remainder of the paper for simplicity. The dynamics are given by

dxi
dt
¼ fiðyÞ � dixi

and

dyi
dt
¼ f ðpÞi ðxiÞ � d

ðpÞ
i yi;

where fi(y) is the relative activation rate for gene i (i.e. the mRNA production rate for gene i
for the normalized variables) discussed in the next two subsections, f ðpÞi ðxiÞ ¼ rixi is the trans-

lation rate of protein i, and δi and d
ðpÞ
i are the degradation rates of the mRNA and the protein.
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Because only x is observed in RNA-seq experiments, without loss of generality the unit of the

unobserved protein concentrations can be chosen such that ri ¼ d
ðpÞ
i for all i (see nondimen-

sionalization in the study [12]). Note the GeneNetWeaver model is a special ODE model with

m = n and l = 0.

Activity level of a single module. For edge (i, j), the normalized expression level of gene

i, νij, is defined by

nij ¼
yi
kij

 !hij

;

where kij is the Michaelis–Menten normalizing constant and hij is a small positive integer, the

Hill constant, representing the number of copies of the TF i that need to bind to the promoter

region of gene j to activate the gene. (If gene i is not bound to the promoter region of gene j,
it is like taking the Hill constant equal to zero and thus normalized expression level equal to

one.) The activity level of module K: j denoted by MK: j, which is the probability that module K:

j is active, is given in the following three cases.

Type 1 modules: Input TFs bind to module independently

In this case, rK: j = 0, and we have

MK:j ¼
Y

i2AK:j

nij

1þ nij

0

@

1

A
Y

i2DK:j

1

1þ nij

0

@

1

A:

Interpreting each fraction as the probability that an activator is actively bound (or a deacti-

vator is not bound), the activation MK: j is the probability that all the inputs of module K: j
are working together to activate the module, i.e., the probability that the module is active. It is

assumed that for a module to be active, all the activators must be bound and all the deactivators

must be unbound, and all the bindings happen independently.

One can think of module K: j as a system with 2|A
K: j|+ |DK: j| possible states of the inputs.

Suppose each input j binds with rate νij and unbinds with rate 1 independently. Then the sta-

tionary probability of the state that all the activators are bound and none of the deactivators is

bound is MK: j.

Alternatively, one can assign additive energy of

Eij ¼ � log nij

¼ � hij log
yi
kij

to each bound input gene i and energy zero to each unbound gene. Then MK: j is the probabil-

ity that all activators are bound and none of the deactivators is bound in the Gibbs measure. In

other words, the Type 1 modules are Shea–Ackers models with all binding states possible and

only the one state with all the activators initiating transcription.

Type 2 modules: TFs are all activators and bind to module as a complex

In this case, DK: j = ;, rK: j = 1, and we have

MK:j ¼

Q
i2AK:j

nij

1þ
Q

i2AK:j
nij
:

One can think of such a module as a system with only two states: bound by the activator

complex, or unbound. The transition rate from unbound to bound is
Q

i2AK:j
nij, and that from
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bound to unbound is 1. Then the activation of the module is the probability of the bound state

in the stationary distribution, given by MK: j.

Alternatively, this corresponds to the Shea–Ackers model as in the previous case, except all

the states other than fully unbound and fully bound are unstable (i.e. have infinite energy).

Type 3 modules: Some TFs are deactivators and bind to module as a complex

In this case, DK: j 6¼ ; and rK: j = 1, and we have

MK:j ¼

Q
i2AK:j

nij

1þ
Q

i2AK:j
nij þ ð

Q
i2AK:j

nijÞ ð
Q

i2DK:j
nijÞ

: ð1Þ

In this case the system can be in one of three states: unbound, bound by the activator com-

plex, and bound by the deactivated (activator) complex. The Gibbs measure in the Shea–Ackers

model for Type 3 modules with three stable states (i.e. have finite energy) assigns probability

MK: j to the activated state.

Note if ∏i 2 ; νij is understood to be 0 then Eq (1) reduces to Type 2 when DK: j = ;. How-

ever historically
Q

i2DK:j
nij was understood as 1 in an early version of GeneNetWeaver and

caused a bug of wrong Type 2 modules.

Remark 3. Presumably it is possible for there to be more than three stable states for a mod-

ule, so additional types of modules could arise, but for simplicity, following GeneNetWeaver,

we assume at least one of the three cases above holds.

Remark 4. If a module K: j has only one input i (i.e. K = {i}) then the module is type 1 and

MK:j ¼
nij

1þnij
or MK:j ¼

1

1þnij
. We will see later in the random model of GeneNetWeaver that only

the former (single activator) is allowed.

GeneNetWeaver software uses the 3 types of modules derived above. In all three cases the

activation MK: j is monotonically increasing in yi for activators i 2 AK: j, and monotonically

decreasing in yi for deactivators i 2 DK: j.

Production rate as a function of multiple module activations. The relative activation of

gene j as a function of the protein concentrations y is

fjðyÞ ¼
X

s2f0;1gSj

aj;s

Y

K2Sj : sK¼1

MK:j

0

@

1

A
Y

K2Sj : sK¼0

ð1 � MK:jÞ

0

@

1

A; ð2Þ

where αj,s is the relative activation of the promoter under the module configuration s. Note that

α in Eq (2) gives 2jSj j degrees of freedom, one for every possible subset of the modules being

active. However, following the GeneNetWeaver computer code [10], we assume that the inter-

action among the modules is linear, meaning that for some choice of αj,basal, ðcK:j : K 2 SjÞ, and

ðbK:j : K 2 SjÞ, we have for any configuration s 2 f0; 1gSj ,

aj;s ¼ aj;basal þ
X

K2Sj : sK¼1

cK:jbK:j; ð3Þ

This reduces the number of degrees of freedom for α to jSjj þ 1. Then, combining Eqs (2)

and (3) yields

fjðyÞ ¼ Eaj;S
¼ aj;basal þ

X

K2Sj

cK:jbK:jESK

¼ aj;basal þ
X

K2Sj

cK:jbK:jMK:j;

ð4Þ
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where S is distributed by the product distribution of the Bernoulli distributions with means

ðMK:j : K 2 SjÞ. So the relative activation, or the mRNA production rate, of a gene is given

by the basal activation plus the inner product of the module effects and the module activation.

We also note that the effect of the modules is not assumed to be statistically independent: all

we need to know to compute the relative activation of a gene are the marginal probability of

activation of the single modules.

Taking into account the three different types of modules described in the previous section

on activity level of a single module, Eq (4) yields the following expression for the relative acti-

vation of gene j:

fjðyÞ ¼ aj;basal þ
X

K:rK:j¼0

cK:jbK:j

Y

i2AK:j

nij

1þ nij

0

@

1

A
Y

i2DK:j

1

1þ nij

0

@

1

A

þ
X

K : rk:j ¼ 1

DK:j ¼ ;

cK:jbK:j

Q
i2AK:j

nij

1þ
Q

i2AK:j
nij

þ
X

K : rk:j ¼ 1

DK:j ¼ ;

cK:jbK:j

Q
i2AK:j

nij

1þ
Q

i2AK:j
nij þ

�Q
i2AK:j

nij

��Q
i2DK:j

nij

� :

ð5Þ

As we will see in the Results section, f satisfies the CSP. Note that in the actual GeneNet-

Weaver source code every αj,s is truncated to the interval [0, 1]:

aj;s ¼ aj;basal þ
X

K2Sj : sK¼1

cK:jbK:j

2

4

3

5

1

0

;

where ½x�1
0
¼ maxfminfx; 1g; 0g is the projection of x to the [0, 1] interval. Then the relative

activation in each state may not be linear in the individual module effects. In that case one has

to resort to Eq (2) instead of Eq (5) for computing the mRNA production rate. The resulting

truncated model does not necessarily satisfy the CSP because fj may not be monotone in MK: j

in Eq (2).

Results

A relation between infinitesimal monotonicity and sum–product

monotonicity

The following result establishes the equivalence of the two notions of monotonicity for ODE

models that satisfy the sum–product CSP. So if the sum–product CSP holds, we do not need to

distinguish between the sum–product CSP and the infinitesimal CSP. Consequently, given an

ODE model, one can easily find the corresponding graph models for different system parame-

ters, external signals, and internal states by calculating the sum products of the first-order par-

tial derivatives of the input function f.
Proposition 1. If f is smooth and satisfies the sum–product CSP over S � Rnþmþl

� Rs
, then

it also satisfies the infinitesimal CSP over S, and the sum–product gene regulatory graph and the
infinitesimal gene regulatory graph are the same.

proof. It suffices to show Bsum(i, j, x, λ) = Binf(i, j, x, λ) if Bsum(i, j, x, λ)6¼{1, −1} for any (x,

λ)2S. For fixed i, j, x, λ, let Zðt; hÞ ≜ ZðjÞðt; h; x; lÞ be the solution of the clamped initial value
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problem at time t with initial condition η(0, h) = (xi + h, x−i). We are interested in the sign of

gðt; hÞ ≜ Zjðt; hÞ � Zjðt; 0Þ:

If q�ij ¼ 1 then we readily have Bsum(i, j, x, λ) = Binf(i, j, x, λ) = ;. Suppose q�ij ¼ q <1.

Then by Corollary 4.1 in Section 5 of [21] (page 101), f being smooth implies g is also smooth,

and we can show that (see the proof in S3 Appendix)

@tahbgð0; 0Þ ¼
Dði; j; x; lÞ if ða; bÞ ¼ ðq; 1Þ;

0 if 0 � a � q � 1 or b ¼ 0:

(

ð6Þ

Hence by the multivariate Taylor’s theorem (see, e.g., [22])

gðt; hÞ ¼ gð0; 0Þ þ g 0ð0; 0Þðt; hÞ þ
1

2
gð2Þð0; 0Þðt; hÞ2 þ . . .

þ
1

ðqþ 1Þ!
gðqþ1Þð0; 0Þðt; hÞqþ1

þ oðjtjqþ1
þ jhjqþ1

Þ

¼ 0þ 0þ . . .þ 0þ
1

ðqþ 1Þ!

�
@
qþ1g
@tqþ1

ð0; 0Þtqþ1 þ
qþ 1

1

� �
@
qþ1g

@tq@h
ð0; 0Þtqh

þ . . .þ
@
qþ1g
@hqþ1

ð0; 0Þhqþ1

�

þ oðjtjqþ1
þ jhjqþ1

Þ

¼
1

q!
Dði; j; x; lÞtqhþ oðjtjqþ1

þ jhjqþ1
Þ

as (t, h)! (0, 0). So g(t, h) has the same sign as Δ(i, j, x, λ)tq h in a sufficiently small neighbor-

hood of (0, 0). Hence Bsum(i, j, x, λ) = Binf(i, j, x, λ).

Remark 5. If multiple ODE models satisfy CSP with the same gene regulatory graph, then

they can be combined into a single ODE model with different parameterization so that the

combined ODE model still satisfies CSP with the same gene regulatory graph. For example,

ODE models for different environmental temperatures can be either considered different

models or a single unified model with different temperature parameter. Then the temperature-

specific models satisfy CSP with the same gene regulatory graph if and only if the unified

model satisfies CSP for all temperatures.

Remark 6. The effect of a gene on itself can be either autoregulation or degradation. The

two effects can be distinguished with the molecular graph: a self-loop with negative derivative

indicates degradation, and a loop of multiple hops indicates autoregulation. The infinitesimal

monotonicity does not distinguish the two effects.

The following is an example of an ODE model that does not satisfy CSP globally, based on

the interactions among FT, TFL1, FD, and LFY genes in the study [9].

Example 1. Consider a four-gene ODE model with the following dynamics for gene 4.

_x4 ¼ f4ðx1; x2; x3Þ

≜
x1x3

l1 þ x1x3

l2

l2 þ x2x3

;

where we use x for both the mRNA and protein concentrations. The biological meaning could

be genes 1 and 3 form a protein complex that activates gene 4, while genes 2 and 3 form a pro-

tein complex that represses gene 4. Then it can be checked that the effect of gene 3 on gene 4
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does not satisfy the CSP globally. Indeed, one can check that

@3f4 ¼
x1l2

ðl1 þ x1x3Þ
2
ðl2 þ x2x3Þ

2
ðl1l2 � x1x2x

2

3
Þ:

So gene 3 activates gene 4 if l1l2 > x1x2x2
3
, and represses gene 4 if l1l2 < x1x2x2

3
.

Here is an example of a molecular graph having a shorter unobserved path dominating a

longer unobserved path with the opposite sign, taken from part of the gene regulatory network

in the study [23], achieving CSP with the sign of the shorter path (see Fig 3).

Example 2. The mRNA ELF4m is transcribed into the protein ELF4p, which then forms the

complex ECc with the protein LUXp. The complex ECc induces the transcription of the mRNA

GIm. Then there is a 3-hop path (ELF4m–ELF4p–ECc–GIm) and a 4-hop path (ELF4m–ELF4p–

LUXp–ECc–GIm) from ELF4m to GIm with opposite signs. The ODE model of the molecular

graph satisfies CSP with ELF4 activating GI in the gene regulatory graph.

GeneNetWeaver: CSP and complexity

In this section GeneNetWeaver models (without the truncation of the α terms in the imple-

mentation) are shown to satisfy the CSP globally, regardless of the parameters and the system

states, and thus correspond to the signed directed graphs that were used to generate the mod-

els. Moreover, when data is generated through multifactorial perturbation for the DREAM

challenge (primarily for generation of stationary expression levels, rather than trajectories),

each ensemble of networks produced is also associated with the same directed signed graph.

This is in contrast to the Shea–Ackers model, which is shown to be able to generate non-

monotone behavior [17]. Formally we have the following result.

Proposition 2. Given any directed signed graph, the ensemble of the GeneNetWeaver models
satisfy CSP over (0,1)2n and the gene regulatory graphs coincide with the given graph.

Fig 3. Molecular graph and gene regulatory graph of the ELF4–GI regulation in the study [23]. (A) The molecular

graph with blue edges indicating positive partial derivatives and red edges indicating negative partial derivatives. (B)

The gene regulatory graph.

https://doi.org/10.1371/journal.pone.0235070.g003
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Proof. Fix any model of the ensemble of GeneNetWeaver models for the given graph. For

any target gene j and its regulator i 2 Nj, there exists a unique module, indexed by K:j, whose

input K 2 Sj includes i. Then for any of the three module types,

@nijMK:j

> 0 if i 2 AK:j;

< 0 if i 2 DK:j:

8
<

:

Then by Eq (4),

@yi fj ¼ cK:jbK:j@nijMK:jhij
yhij� 1

i

khijij

and

@xi f
ðpÞ
i ¼ ri:

Because only cK: j and @nijMK:j can be negative in @yi fj@xi f
ðpÞ
k , the sum–product of the first-

order partial derivatives of the path from xi to xj has the same sign as cK:j@nijMK:j, which is con-

sistent with the sign bij in the given graph by the construction in S2 Appendix. Hence by Prop-

osition 1 the fixed ODE model satisfies CSP over all positive state vectors with gene regulatory

graph equal to the given graph. Repeat this for all ODE models in the ensemble and the propo-

sition is proved. We now discuss the complexity of GeneNetWeaver ODE models for a given

gene regulatory graph. The complexity comes from both the large number of parameters and

the combinatorial nature of the module configurations. The complexity indicates that ODE

models are both much more detailed and considerably harder to infer compared to the graphi-

cal models.

For each gene i there are 5 non-negative real parameters (αi,basal, xi(0), yi(0), d
ðmÞ
i , d

ðpÞ
i ). For

each edge (i, j) there is a non-negative real parameter (kij) and an integer parameter (hij). For

each module K: i there is a positive real parameter (βK: i) and two binary parameters (cK: i and

rK: i).

The module configuration encodes great combinatorial complexity. Given a gene has K� 1

input genes, the number of ways to partition the genes into modules is the Kth Bell number.

The first ten Bell numbers are 1, 2, 5, 15, 52, 203, 877, 4140, 21147, and 115975. In addition,

each input to a given module needs to be classified as an activator or deactivator.

Case study: Soybean flowering networks

In this section the similarities of the ODE models corresponding to three different graph mod-

els are studied. First the classes of ODE models are listed for the three graph models. Then,

to investigate their similarities, we generate expression data from one ODE model, and fit

another model to the data by optimizing the parameters. The level of fitness of one class of

ODE model to the data generated from another is used as a metric of similarity. As we will see,

ODE models corresponding to the same graph model tend to have a higher similarity, while

those from different graph models tend to have a lower similarity, as long as the least-squares

problem is sufficiently overdetermined. The result implies that the graph model corresponding

to the ODE model may be recovered with moderate amount of data, while the amount of data

required for ODE model recovery may be of a much higher order. The simulation code for the

data fitting results is available at [24].
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Five-gene graph and ODE models. In this section we explicitly write out the classes of

GeneNetWeaver ODE models of three graph models. The first two graph models are compiled

from the literature, with only the sign of one edge different between them (the difference is

discovered in the study [25]). The third graph model is an arbitrary five-gene repressilator for

comparison purpose.

Flowering network with COL1a activating E1. A graph model of a five-gene soybean

flowering network is shown in Fig 4. The network is based on the flowering network for Arabi-
dopsis and homologs of Arabidopsis genes found in soybean (see Table 1). The corresponding

gene IDs are shown in Table 2.

The mRNA and proteins concentrations of the soybean genes E1, COL1a, FT4, FT2a,

and AP1a are denoted by (xi)1�i � 5 and (yi)1�i � 5. The differential equations based on the

Fig 4. A graph model of the core flowering network for soybean.

https://doi.org/10.1371/journal.pone.0235070.g004
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GeneNetWeaver model are

_x1 ¼ a1;basal þ
ðy2=k21Þ

h21

1þ ðy2=k21Þ
h21
b2:1 � d

ðmÞ
1
x1: ð7Þ

_x2 ¼ a2;basal þ
ðy1=k12Þ

h12

1þ ðy1=k12Þ
h12
b1:2 � d

ðmÞ
2
x2: ð8Þ

_x3 ¼ a3;basal þ
ðy1=k13Þ

h13

1þðy1=k13Þ
h13

ðy2=k23Þ
h23

1þ ðy2=k23Þ
h23
b12:3 � d

ðmÞ
3
x3

ðindependent bindingÞ; or

_x3 ¼ a3;basal þ
ðy1=k13Þ

h13 ðy2=k23Þ
h23

1þðy1=k13Þ
h13 ðy2=k23Þ

h23
b12:3 � d

ðmÞ
3
x3

ðsynergistic bindingÞ; or

_x3 ¼ a3;basal þ
ðy1=k13Þ

h13

1þðy1=k13Þ
h13
b1:3 þ

ðy2=k23Þ
h23

1þðy2=k23Þ
h23
b2:3 � d

ðmÞ
3
x3

ðtwo modulesÞ:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð9Þ

_x4 ¼ a4;basal �
ðy2=k24Þ

h24

1þ ðy2=k24Þ
h24
b2:4

 !þ

� d
ðmÞ
4
x4: ð10Þ

Table 1. Core flowering genes.

regulatory interaction reference

E1 activates COL1a [26]

E1 activates FT4 [27]

COL1a activates E1 [25]

COL1a represses E1 [26]

COL1a activates FT4 [26], [25]

COL1a represses FT2a [26], [25]

FT4 represses AP1a [27]*

FT2a activates AP1a [28]

� For FT4 only, not for the interaction with AP1a.

https://doi.org/10.1371/journal.pone.0235070.t001

Table 2. Core flowering genes.

index gene ID gene name

1 Glyma.06G207800 E1
2 Glyma.08G255200 COL1a
3 Glyma.08G363100 FT4
4 Glyma.16G150700 FT2a
5 Glyma.16G091300 AP1a

https://doi.org/10.1371/journal.pone.0235070.t002
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_x5 ¼ a5;basal þ
1

1þðy3=k35Þ
h35

ðy4=k45Þ
h45

1þðy4=k45Þ
h45
b34:5 � d

ðmÞ
5
x5

ðindependent binding enhancerÞ; or

_x5 ¼ a5;basal �
ðy3=k35Þ

h35

1þðy3=k35Þ
h35

1

1þðy4=k45Þ
h45
b34:5

� �þ
� d

ðmÞ
5
x5

ðindependent binding silencerÞ; or

_x5 ¼ a5;basal þ
ðy4=k45Þ

h45

1þðy4=k45Þ
h45þðy3=k35Þ

h35 ðy4=k45Þ
h45
b34:5 � d

ðmÞ
5
x5

ðsynergistic binding enhancerÞ; or

_x5 ¼ a5;basal �
ðy3=k35Þ

h35

1þðy3=k35Þ
h35þðy3=k35Þ

h35 ðy4=k45Þ
h45
b34:5

� �þ
� d

ðmÞ
5
x5

ðsynergistic binding silencerÞ; or

_x5 ¼ a5;basal �
ðy3=k35Þ

h35

1þðy3=k35Þ
h35
b3:5 þ

ðy4=k45Þ
h45

1þðy4=k45Þ
h45
b4:5

� �þ
� d

ðmÞ
5
x5

ðtwo modulesÞ:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð11Þ

_y1 ¼ r1ðx1 � y1Þ: ð12Þ

_y2 ¼ r2ðx2 � y2Þ: ð13Þ

_y3 ¼ r3ðx3 � y3Þ: ð14Þ

_y4 ¼ r4ðx4 � y4Þ: ð15Þ

_y5 ¼ r5ðx5 � y5Þ: ð16Þ

Here (x)+ = max{x, 0}. We apply nondimensionalization by setting δi = αi,basal + ∑j βj: i, so

that the steady state expression levels are between 0 and 1. We can see that given the graph,

there are 15 configurations of the ODEs (3 for x3 times 5 for x5). We use [i, j] with 1� i� 3

and 1� j� 5 to denote the configuration using the ith equation for x3 and the jth equation for

x5, and use the symbol F[i,j],+ to denote the class of flowering network ODE models with con-

figurations [i, j] (the plus sign signifies the activation regulation of COL1a on E1). The initial

conditions, namely the 5 mRNA abundances x(0)’s and the 5 protein concentrations y(0)’s, are

10-dimensional. In addition, there are 24–26 positive real parameters (depending on the con-

figuration) and 7 discrete parameters (the Hill coefficients) for the dynamics. For example, for

configuration [1, 1], the parameters for the dynamics consist of the basal activations α’s (5),

the Michaelis–Menten constants k’s (7), the absolute effect of modules β’s (7), the translation

rate ρ’s (5), summing up to 24 parameters.

Flowering network with COL1a repressing E1. A slight variant of the soybean flowering

graph model in Fig 4 is shown in Fig 5. Note the only difference is the sign of the edge from

COL1a to E1. The symbol F[i,j],− denotes the class of ODE models Eqs (7)–(16) with the ith
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and the jth configurations in Eqs (9) and (11), but with Eq (4) replaced by

_x1 ¼ a1;basal �
ðy2=k21Þ

h21

1þ ðy2=k21Þ
h21
b2:1

 !þ

� d
ðmÞ
1
x1: ð17Þ

Here the negative sign in F[i,j],− signifies the repression regulation of COL1a on E1. The num-

ber of parameters is the same as the network in Fig 4.

Repressilator. An arbitrary repressilator network is shown in Fig 6.

Fig 5. A variant of the graph model of the core flowering network for soybean.

https://doi.org/10.1371/journal.pone.0235070.g005
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The symbol R denotes the class of ODE models for the repressilator, given below.

_x1 ¼ a1;basal �
ðy3=k31Þ

h31

1þ ðy3=k31Þ
h31
b3:1

 !þ

� d
ðmÞ
1
x1: ð18Þ

_x2 ¼ a2;basal �
ðy1=k12Þ

h12

1þ ðy1=k12Þ
h12
b1:2

 !þ

� d
ðmÞ
2
x2: ð19Þ

Fig 6. A five-gene repressilator graph model.

https://doi.org/10.1371/journal.pone.0235070.g006
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_x3 ¼ a3;basal �
ðy4=k43Þ

h43

1þ ðy4=k43Þ
h43
b4:3

 !þ

� d
ðmÞ
3
x3: ð20Þ

_x4 ¼ a4;basal �
ðy5=k54Þ

h54

1þ ðy5=k54Þ
h54
b5:4

 !þ

� d
ðmÞ
4
x4: ð21Þ

_x5 ¼ a5;basal �
ðy2=k25Þ

h25

1þ ðy2=k25Þ
h25
b2:5

 !þ

� d
ðmÞ
5
x5: ð22Þ

There is only one possible configuration for each target gene. The dynamics involve 20

parameters.

Data generation. The synthetic expression dataset is generated as follows. For the gener-

ated data, we use F[1,1],+ (the flowering network with configuration [1, 1] and COL1a activating

E1) with a fixed set of parameters for the dynamics. For a single set of trajectories (i.e., for a

single plant), we use a set of initial values x(0)’s and y(0)’s generated uniformly at random

between 0 and 1. The entire dataset may consist of only a single set of trajectories, correspond-

ing to a single plant; or the dataset may consist of multiple sets of trajectories, corresponding

to multiple plants. If multiple sets of trajectories are used, the initial conditions for each set of

trajectories are generated independently, while the parameters for the dynamics are the same

across all sets of trajectories. In other words, we model distinct plants by assuming distinct ini-

tial conditions, while using common parameters for the dynamics. To produce the data, the x
variables are sampled at time points 0, 1, 2, 3, 4, 5, 6, so that each set of trajectories (i.e., each

plant) produces 35 data points. Because each set of trajectories is sampled at different times

from the system with one initial condition representing different stages of a single plant, the

synthetic datasets are of multi-shot sampling, as opposed to one-shot sampling in practice

where each individual is only sampled once [29]. We also generate random expression

datasets with reflected Brownian motions with covariance 0.05, and denote such a stochastic

model by B.

Fitting results. The counts for data points and parameters are summarized in Table 3.

Note that with a single set of trajectories, the number of parameters is close to the number of

data points. As the number of sets of trajectories increases, the number of data points outgrows

the number of parameters because each additional set provides 35 new data points while only

allowing 10 more parameters from the initial conditions (because the dynamic parameters are

shared across all sets of trajectories).

A Basin-hopping algorithm in the Python package LMFIT [30] is used to perform the

global optimization of the curve fitting (see details in the source code of the simulation [24]).

Table 3. Number of parameters in different ODE models.

S (number of sets of trajectories) 1 2 5 10

STn (number of data points) 35 70 175 350

F[1,1],+ 34 44 74 124

F[3,5],+ 36 46 76 126

F[1,1],− 34 44 74 124

R 30 40 70 120

https://doi.org/10.1371/journal.pone.0235070.t003
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The sample size varies between 35 and 350 depending on the number of sets of trajectories.

The fit is evaluated by the fitting loss and the coefficients of determination (R2) shown in

Tables 4 and 5. The fitting loss function for two S×T×n tensors x and x̂ is defined by

lðx; x̂Þ ¼
1

STn

XS

i¼1

XT

j¼1

Xn

k¼1

ðxijk � x̂ijkÞ
2

 !1=2

;

where S is the number of sets of trajectories in the dataset, T the number of time points, and n
the number of genes.

Note the time scale of the ODE is assumed to be known, which restricts how fast the expres-

sion levels can change. The time scale thus acts as a regularizer to prevent overfitting.

We make the following observations from Tables 4 and 5.

1. The implemented optimization algorithm failed to find the optimal parameters in row 1

(the best fit should be a perfect fit with zero loss), but the relative loss compared to the aver-

age nondimensionalized expression level 0.5 is very small (less than 0.5%), and the coeffi-

cients of determination are close to 1. Both indicate a near-optimal fit.

2. ODE models from all three graph models (rows 1, 2, 3, and 4) fit the synthetic flowering

network data well when there are only one or two sets of trajectories (columns 1 and 2).

The relative losses are less than 1% and R2 is larger than 0.9997. We can see from Table 3

that the number of data points is close to the number of parameters in the S = 1 setting, and

only moderately larger in the S = 2 setting. So when S� 2 the three graph models in this

case study are nearly indistinguishable. In other words, one may not be able to infer the

graph structure with very limited data.

3. When fitting the models to 5 or 10 sets of trajectories simultaneously, i.e., when the system

is sufficiently overdetermined, only the models from the correct graph (rows 1 and 2) fit

well. The models from incorrect graphs (rows 3 and 4) suffer a roughly 4% relative loss after

fitting for 10 sets of trajectories and R2 falls below 0.998. Note that F[1,1],− differs from the

ground truth of the data F[1,1],+ only by the sign of one edge, while the model R shares no

Table 4. Fitting losses using different classes of ODE models on different synthetic datasets.

S (number of sets of trajectories) 1 2 5 10

fit F[1,1],+ model to F[1,1],+ data 0.0015 0.0015 0.0010 0.0009

fit F[3,5],+ model to F[1,1],+ data 0.0016 0.0021 0.0019 0.0021

fit F[1,1],− model to F[1,1],+ data 0.0032 0.0036 0.0165 0.0208

fit R model to F[1,1],+ data 0.0030 0.0037 0.0148 0.0204

fit F[1,1],+ model to B data 0.1269 0.1125 0.1307 0.1390

https://doi.org/10.1371/journal.pone.0235070.t004

Table 5. Coefficients of determination using different classes of ODE models on different synthetic datasets.

S (number of sets of trajectories) 1 2 5 10

fit F[1,1],+ model to F[1,1],+ data 0.99996 0.99995 0.99999 0.99999

fit F[3,5],+ model to F[1,1],+ data 0.99995 0.99991 0.99996 0.99995

fit F[1,1],− model to F[1,1],+ data 0.99980 0.99974 0.99702 0.99517

fit R model to F[1,1],+ data 0.99983 0.99972 0.99760 0.99535

fit F[1,1],+ model to B data 0.88639 0.90175 0.87241 0.87517

https://doi.org/10.1371/journal.pone.0235070.t005
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edges in common with the ground truth at all. Yet the fitness of the slight variant of the

ground truth graph is as bad as the completely different repressilator graph.

4. Both F[1,1],+ and F[3,5],+ fit the F[1,1],+ data very well for all numbers of sets of trajectories

(rows 1 and 2). This indicates the classes of ODE models with different configurations of

the same graph model are similar in terms of data fitting. Consequently, even with data

sufficient to infer the correct graph model, it may be impossible to infer the specific ODE

model.

5. The models from the flowering network cannot fit the random dataset (reflected Brownian

motions with covariance 0.05) well. It turns out that the ODE models with 34 parameters

have trouble following the highly variable 35 data points from the reflected Brownian

motions. The low fitness level to the random dataset shows great redundancy in the param-

eters in terms of generating data points. It also indicates the fitting results to the synthetic

ODE data are significant compared to fitting a random dataset.

Discussion

Generalization of CSP to related gene regulatory network models

The concept of CSP can be applied to many other models. We first explain this for continu-

ous-state models, and then for discrete-state models.

Continuous-state models. A network model somewhat similar to ODE models is a fixed-

point model. The study by Van den Bulcke et al. [31] uses a fixed-point model for gene regula-

tory networks. ODE models based on Michaelis–Menten and Hill kinetics and linear degrada-

tion terms are used to determine the expression level of a given gene as a function of the

expression levels of other genes. Then a fixed point is produced. This can model equilibrium

points, also known as resting points, of ODE models. The concept of constant sign property

can be applied to fixed-point models as well. Van den Bulcke et al. [31] focuses on models for

the network topology, which is not addressed in this paper.

Other continuous-state models have been used for gene regulatory networks. The study by

Mendes et al. [32] simulates gene regulatory networks using a biochemical simulator called

Gepasi [33], which models complex biochemical pathways using ODEs. For such biochemical

systems, constant sign property discussed in this paper can be used to find the causal depen-

dency among observed variables (e.g., mRNA abundances in the special case of gene regulatory

networks). In order to avoid the difficult calibration of the parameters in ODEs, Ocone et al.

[34] models the promoter by a binary state process and approximates the transcription–trans-

lation network with stochastic differential equations. Constant sign property can be easily gen-

eralized to such hybrid models by introducing a notion of monotonicity for the stochastic

systems. It is worth mentioning that constant sign property is defined with directionality for

causal relationship among the genes and not suitable for models based on mere correlation

(e.g., graphical Gaussian models [35]).

Discrete-state models. One common type of discrete models used for gene regulatory

networks are Bayesian networks (see, e.g., Friedman et al. [36]). Boolean networks, as a special

case of Bayesian networks, are used to capture qualitative gene regulation (see, e.g., Liang et al.

[37]), for which constant sign property can be defined based on the monotonicity of the bool-

ean functions. The study by Husmeier [38] evaluates a dynamic Bayesian network inference

algorithm using simulated data based on an ODE model whose genetic network model is

taken from Zak et al. [39] and whose equations are taken from chemical kinetics (see Chapter

22 of Atkins and de Paula [40]). Similarly, the study by Smith et al. [41] also proposes a
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dynamic Bayesian network algorithm, and evaluates its performance on sampled and quan-

tized data from a dynamic Bayesian network simulator that models different regions of the

brain of songbirds regulated by their behaviors. The simulated data is generated with a small

step size before being sampled, and thus resembles an ODE model simulator. For the dynamic

Bayesian network gene expressions are quantized to discrete values. The constant sign prop-

erty can also be applied to dynamic Bayesian network models using a partial order of the con-

ditional distributions (e.g., stochastic dominance) of target genes given the expressions of their

regulators. Husmeier [38] gives an example of a graphical model that is more detailed than the

gene regulatory graph in this paper. Although both the GeneNetWeaver model and the ODE

models in Husmeier [38] are based on chemical kinetic equations, one difference is that the

Michaelis–Menten and the Hill kinetics in GeneNetWeaver arise from considerations of a

faster time scale of the binding of TF to the promoter regions (see Alon [19]). Nevertheless,

both GeneNetWeaver and the ODE models for realistic simulation in Husmeier [38] fall into

the general framework of ODE models in this paper and hence the constant sign property we

have proposed applies to both.

Implication of GCSP

GCSP of an ODE model generalizes the notion of a linear dynamical system by allowing the

variation of the state vector (i.e., the concentrations of molecular classes) to be nonlinear in the

state vector so long as the overall effect of the most influential pathways in the molecular graph

keeps the same sign (i.e., activation stays activation and repression stays repression regardless

of the expression of the regulator, the target gene, or any other molecular classes). Biologically,

GCSP indicates homogeneity of the gene regulatory network in the sense that the qualitative

properties of gene regulation are preserved after cellular differentiation and under different

external conditions. Lack of GCSP indicates significant change in regulatory functions after

cellular differentiation and under different external conditions. Note that GCSP is more likely

to hold for the subnetwork of a small number of genes compared to a larger network.

Limitation of infinitesimal CSP

The definitions of CSP proposed in this paper focus on short time behavior. Over short time

periods, the paths with the smallest number of hops dominate. Often the shortest paths have

the strongest influence, as seen in Example 2. But in some cases the shortest paths could be

weaker than some slightly longer paths, and if the longer paths have an opposite sign, then the

focus on short time and shortest paths can be misleading, because the longer paths will take

over quickly after the brief initial dominance by the shortest paths. In the extreme case of a

complete molecular graph, where every molecular class has a (possibly tiny) regulatory effect

on every other molecular class, the gene regulatory graph defined in this paper would be deter-

mined by only the direct edges in the molecular graph and all the actual biological pathways

would be entirely ignored. This also shows the importance of network sparsity.

Conclusion

Gene regulatory networks are modeled at different abstraction levels with tradeoff between

accuracy and tractability. Graph models with signed directed edges provide circuit-like charac-

terization of gene regulation, while ODE models quantify detailed dynamics for various molec-

ular classes. The constant sign property proposed in this paper connects the two types of

models by identifying a set of conditions under which ODE models correspond to a single

graph model, and provides a deeper understanding of the context-dependent and time-varying

nature of gene regulatory networks. A class of ODE models for a given graph model based on
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the source code of a popular software package GeneNetWeaver is described in detail and

shown to satisfy the global constant sign property. Exploration of data fitting of one ODE

model to the data generated from another shows better fit when two models have the same

graph model.
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