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Abstract 

Background:  Acute myeloid leukemia (AML) is the most common malignancy of the hematological system, and 
there are currently a number of studies regarding abnormal alterations in energy metabolism, but fewer reports 
related to fatty acid metabolism (FAM) in AML. We therefore analyze the association of FAM and AML tumor develop‑
ment to explore targets for clinical prognosis prediction and identify those with potential therapeutic value.

Methods:  The identification of AML patients with different fatty acid metabolism characteristics was based on a 
consensus clustering algorithm. The CIBERSORT algorithm was used to calculate the proportion of infiltrating immune 
cells. We used Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis 
to construct a signature for predicting the prognosis of AML patients. The Genomics of Drug Sensitivity in Cancer 
database was used to predict the sensitivity of patient samples in high- and low-risk score groups to different chemo‑
therapy drugs.

Results:  The consensus clustering approach identified three molecular subtypes of FAM that exhibited significant 
differences in genomic features such as immunity, metabolism, and inflammation, as well as patient prognosis. The 
risk-score model we constructed accurately predicted patient outcomes, with area under the receiver operating char‑
acteristic curve values of 0.870, 0.878, and 0.950 at 1, 3, and 5 years, respectively. The validation cohort also confirmed 
the prognostic evaluation performance of the risk score. In addition, higher risk scores were associated with stronger 
fatty acid metabolisms, significantly higher expression levels of immune checkpoints, and significantly increased 
infiltration of immunosuppressive cells. Immune functions, such as inflammation promotion, para-inflammation, and 
type I/II interferon responses, were also significantly activated. These results demonstrated that immunotherapy tar‑
geting immune checkpoints and immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs) and M2 
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Introduction
Acute myeloid leukemia (AML) is a highly malignant 
hematological tumor with an unclear pathogenesis and 
complex genetic mutations that make it highly hetero-
geneous [1, 2]. AML can be divided into eight French-
American-British (FAB) classifications according to its 
morphological characteristics [3]. Since the end of the 
twentieth century, deeper and broader basic research, as 
well as advances in biological techniques, have improved 
our understanding of AML genetics and pathophysiology, 
including the analysis of the AML genomic landscape. 
This revealed different somatic mutation characteristics 
in AML patients [4, 5]. From 2017 to 2018, the approval 
of multiple targeted therapies led to milestone achieve-
ments for AML therapies [6]. For example, inhibitors of 
mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate 
dehydrogenase 1 and 2 (IDH1 and IDH2) are effective in 
increasing the response rates and improving the prog-
nosis of patients with AML [7–9]. In addition, induced 
apoptosis therapy with venetoclax targeting BCL-2 also 
has achieved significant results [10, 11]. However, as 
AML progresses, new mechanisms of resistance can 
appear due to the emergence of subclonals [12, 13]. The 
activation of some alternative pathways also protects 
AML cells and promotes drug resistance [14–16], and 
the TP53 apoptosis network is also involved as a medium 
to help AML cells resist BCL-2 inhibition [17]. Hence, 
research and exploration of new targets have important 
clinical value for the treatment of AML and resistance 
inhibition.

AML tumor cells are malignant evolutions from bone 
marrow stem/progenitor cells that can directly affect the 
blood microenvironment of patients. The tumor micro-
environment (TME) of AML is often accompanied by a 
hypoxic state in which the entry of glucose-derived pyru-
vate into the tricarboxylic acid (TCA) cycle is inhibited 
[18, 19]. To adapt to extracellular stimuli, AML cells reg-
ulate their own state through metabolic reprogramming, 
including the generation of acetyl coenzyme A to drive 
the TCA cycle and oxidative phosphorylation through 
fatty acid oxidation (FAO), which in turn produces 

sufficient ATP to meet the needs of growth [20]. The 
elderly population has the highest incidence of patients 
with AML [21], and the proportion of adipocytes to 
stromal cells in the bone marrow microenvironment 
increases with age, from approximately 20% in young 
adulthood to approximately 60% by 65 years of age [22]. 
Studies have shown that AML cells promote their energy 
metabolism by absorbing fatty acids released from the 
surrounding adipocytes [23]. Leukemic stem cells (LSCs) 
greatly increase fatty acid uptake in AML cells by overex-
pressing the adipose transporter CD36 and by inducing 
lipolysis in adipocytes to release fatty acids [24]. Thus, 
fatty acid metabolism (FAM) provides the energy sup-
ply for AML cells in anoxic and adipocyte-rich marrow 
microenvironments.

The targeted inhibition of FAM may shed new light 
on AML treatments from the perspective of the energy 
supply. For example, CD36 not only drives FAO to pro-
mote the survival of LSCs, but also stimulates LSCs to be 
enriched in adipose tissue (AT) and to be protected by 
AT to escape the effects of chemotherapy [24]. Several 
existing studies have confirmed that sulfo-n-succinimidyl 
oleate can inhibit fatty acid uptake by cardiomyocytes 
by binding to CD36 [25, 26], and neutralizing antibod-
ies can block the protein of CD36 to suppress melanoma 
and breast cancer cell metastasis [27], suggesting that 
the inhibition of CD36 has potential therapeutic value 
in the treatment of AML. In several studies, AML cells 
co-cultured with bone marrow adipocytes were found 
to highly express the lipid chaperone FABP4 [28]. How-
ever, knockdown of FABP4 was able to promote survival 
in HOXA9/MEIS1-driven leukemia model mice [29]. 
These findings likewise suggest that FABP4 expression 
favors AML cell growth. LSCs in AML-relapse patients 
rely on amino acid metabolism for oxidative phospho-
rylation, and increased FAO compensates for the absence 
of amino acid metabolism [30]. These results all suggest 
that FAM has important biological effects on AML cells. 
Therefore, a comprehensive understanding of the molec-
ular and TME characteristics of FAM in AML patients 
can help us to better understand the characteristics of 

macrophages, are more suitable for patients with high-risk scores. Finally, the prediction results of chemotherapeutic 
drugs showed that samples in the high-risk score group had greater treatment sensitivity to four chemotherapy drugs 
in vitro.

Conclusions:  The analysis of the molecular patterns of FAM effectively predicted patient prognosis and revealed vari‑
ous tumor microenvironment (TME) characteristics.

Keywords:  Fatty acid metabolism, Tumor microenvironment, Personalized treatment, Prognosis, Acute myeloid 
leukemia
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metabolic reprogramming in AML and provide refer-
ences for clinical decision-making and prognostic evalu-
ation. In this study, we analyze the molecular features of 
fatty acid metabolism–related genes (FAMGs) and reveal 
the characteristics of lipid metabolism reprogramming 
and immune infiltration in different AML patients based 
on the expression of FAMGs. We also found that the risk-
score model constructed by the least absolute shrinkage 
and selection operator (LASSO) regression accurately 
predicted the patient prognosis, indicated immune 
function and clinicopathological differences in different 
patients, and revealed drugs with potential therapeutic 
value. Finally, we identified several genes that are strongly 
associated with cancer development. These results may 
provide new ideas for the study of metabolic reprogram-
ming and for the treatment of AML.

Materials and methods
Data processing
The normalized RNA-sequencing data (RSEM tpm) of 
173 Acute Myeloid leukemia samples from The Can-
cer Genome Atlas (TCGA) and 337 whole-blood sam-
ples of healthy participants from the Genome Tissue 
Expression project were downloaded from the Univer-
sity of California Santa Cruz’s XENA database (https://​
xenab​rowser.​net/​datap​ages/). The original microar-
ray data "cel" file of 417 AML samples containing clini-
cal information from the GSE12417-GPL96 cohort were 
downloaded from the Gene Expression Omnibus (GEO) 
database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/), and we 
used robust multiarray averaging (RMA) of the "Affy" 
package to standardize them. For the three GEO datasets 
(GSE111567, GSE155431, GSE100026), we downloaded 

Fig. 1  The workflow of this project

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
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the normalized matrix files. Finally, the "HALLMARK_
FATTY_ACID_METABOLISM" gene set, which con-
tained 158 FAM-related genes, was downloaded from the 
MSigDB database (https://​www.​gsea-​msigdb.​org/​gsea/​
msigdb/). The workflow of this project is shown in Fig. 1.

Gene set variation analysis (GSVA)
GSVA can calculate the enrichment score of a gene 
set in a single sample according to the overall expres-
sion level of genes [31] so as to quantify the activity of 
a corresponding biological process or signaling pathway. 
The gene sets of interest, including the immune check-
points, angiogenesis, nucleotide excision repair, DNA 
damage repair, mismatch repair, and marker genes of 
CD8 + effector T-cells, were designed by Mariathasan 
et  al. [32], while the marker genes of myeloid-derived 
suppressor cells (MDSCs) were previously analyzed by 
Charoentong et al. [33], and we obtained all of them from 
the corresponding literature. The gene sets related to 
lipid metabolism were collected from the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database (https://​
www.​kegg.​jp/), and the gene sets related to the vascular 
endothelial growth factor signaling pathway, adhesion, 
the inflammatory response, hyperoxia, and reactive oxy-
gen species (ROS) were downloaded from the msigdb 
database (Table S1).

Unsupervised clustering of the differentially expressed genes 
(DEGs) of FAMGs
Based on the expression of 140 DEGs, we clustered AML 
patients using the consensus clustering algorithm in the 
"consumusclusterplus" package. This was run 1,000 times 
to ensure the stability of the results [34]. The algorithm 
performs hierarchical agglomerative clustering (based 
on Euclidean distance and Ward’s linkage) by analyzing 
the characterization of gene expression, and identifies 
patients with similar expression patterns.

Calculation of the TME immune cell–infiltration ratio
CIBERSORT, as a deconvolution algorithm, infers the 
proportion of immune cells in tumor samples through 
support vector regression based on a set of reference 
gene-expression values [35]. We used this algorithm to 
calculate the infiltration level of 22 immune cells includ-
ing B cells, T cells, natural killer cells, macrophages, DCs, 
and myeloid subsets in each sample based on the LM22 
gene signatures (Table S2).

Function analysis and construction of a protein–protein 
interaction network
A function analysis was performed using the R package 
“clusterProfiler”. The KEGG enrichment analysis and 
Gene Ontology (GO) annotation were used to analyze 

the function of the common DEGs among the clusters 
and between the high- and low-risk score groups, respec-
tively. A gene set enrichment analysis (GSEA) was used to 
identify the signaling pathways that differed between the 
high- and low-risk score groups. The differential genes 
of the high- and low-risk groups were uploaded to the 
STRING database (https://​string-​db.​org/) for protein–
protein interaction (PPI) network analysis, and the core 
gene network was then further adjusted using Cytoscape 
version 3.8.2.

Construction of the prognostic risk‑score model
We used univariate and multivariate Cox regression 
analyses to identify the DEGs of the FAMGs significantly 
related to prognosis for the construction of a risk-score 
model. Then, LASSO Cox regression analysis was used to 
remove the redundancy of the prognosis-related genes to 
prevent overfitting of the model, and a tenfold cross-val-
idation was conducted to determine the penalty param-
eters (λ) of the model. The following equation was used 
to calculate the risk score of each sample:

where "Coef" represents the non-0 regression coeffi-
cient of each model gene calculated by the LASSO Cox 
regression analysis, and "ExpGene" is the expression 
value of the model gene (Table S3).

Identification of the DEGs between the clustered subgroups 
and between the high‑ and low‑risk score groups
Empirical Bayesian methods via the “LIMMA” package 
were used to analyze the DEGs between the different 
clustered subgroups or between the high- and low-risk 
score groups. Genes with adjusted P values of < 0.05 
and logFC > 1 were considered statistically significantly 
different.

Drug sensitivity prediction
We used the Genomics of Drug Sensitivity in Cancer 
(https://​www.​cance​rrxge​ne.​org/) database to estimate 
each patient’s sensitivity to chemotherapy drugs [36]. The 
half-maximal inhibitory concentration (IC50) value was 
used as an index for drug sensitivity assessment using the 
“pRRophetic” package [37]. The higher the IC50, the less 
sensitive to the drug.

Statistical analysis
The Wilcoxon rank-sum test was used to determine the 
difference between two groups, and the Kruskal–Wallis 
test was used for multiple groups. Spearman’s method 
was used for correlation analysis. The "survminer" pack-
age divided patients into the high- and low-risk score 

Risk score =
i

1
Coefi ∗ ExpGenei

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.kegg.jp/
https://www.kegg.jp/
https://string-db.org/
https://www.cancerrxgene.org/
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groups or high- and low-FAMscore groups based on 
cutoff points for the smallest P value. The log-rank test 
was used to determine the P values between the groups 
in the Kaplan–Meier survival analysis. Univariate and 
multivariate Cox regression analyses were used to iden-
tify the prognostic factors. A receiver operating charac-
teristic (ROC) curve analysis was used to determine the 
specificity and sensitivity of the related metrics, and the 
"pROC" package showed the area under the ROC curve 
(AUC). The "maftools" package was used to characterize 
the somatic mutations of the AML patients. A two-sided 
P value of < 0.05 was considered statistically significant.

Results
Molecular characterization of FAM in the normal and AML 
samples
To analyze the molecular features of FAM in the AML 
patients, we first calculated an enrichment score for the 
FAM gene set, named the FAMscore. The survival analy-
sis showed that patients with high FAMscore values had 
a significantly worse prognosis (Cox regression analysis; 
univariate: HR = 4.33 (1.85–10.14), P = 0.00071; multivar-
iate: HR = 6.00 (2.14–16.86), P = 0.00066) (Fig. 2A), indi-
cating that FAM was progressively enhanced with tumor 
progression in AML patients. Up-regulation of FAM was 
considered an important cause of Venetoclax with azac-
itidine (ven/aza) resistance in AML patients [38]. We 
examined the RNA-seq data from nine AML patients 
treated with ven/aza [38], and three progressors had sig-
nificantly higher FAMscores than six responders (Figure 

S1A). In addition, as the disease progresses in patients 
with chronic myeloid leukemia (CML), CML cells rapidly 
proliferate by enhancing fatty acid metabolism. We ana-
lyzed the differences in the FAMsocres among patients 
of different stages in our own CML cohort data [39]. The 
results showed that the CML patients had significantly 
higher FAMscores than healthy people, and the FAM-
scores of those in the blast crisis (BC) phase were higher 
than those in the chronic phase (CP) (Figure S1B). In 
another dataset containing plasma, the fatty acid content 
of healthy individuals, and the RNA-seq data of periph-
eral blood mononuclear cells (PBMCs) [40], we observed 
no difference in the FAMscores of the PBMCs among 
the groups with different n-3 polyunsaturated fatty acid 
(PUFAs) contents. Compared with the low/high n-6 
PUFAs content group or the low/high saturated fatty acid 
(SFA)/PUFA ratio group, the FAMscore of the middle 
group was higher (Figure S1C). We further analyzed the 
relationship between FAMscore and clinicopathological 
factors. The results showed that among all the FAB sub-
types, M5 had the highest FAMscore, and that patients 
with high white blood cell (WBC) counts and high pro-
portions of peripheral blood (PB) blasts also had sig-
nificantly higher FAMscores (Figure S2A). In addition, 
patients with FLT3 mutations had higher FAMscores 
than wild-type patients (Figure S2B).

The expressions of 71 FAMGs were upregulated and 
those of 69 were downregulated in the AML samples 
compared with the normal control samples (Fig.  2B). 
KEGG analysis showed that these DEGs were primarily 

Fig. 2  Molecular characterization and prognostic analysis of fatty acid metabolism. A Differences in the overall survival (OS) of patients in the high 
and low FAMscore groups determined using the log-rank test. B The difference in the molecular features of the lipid metabolism-related gene 
(FAMG) expression between acute myeloid leukemia and normal samples determined using the Wilcoxon test. * P < 0.05; ** P < 0.01; * P < 0.001. C 
Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the FAMGs. D Gene Ontology annotation of the FAMGs
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enriched in the metabolic pathways, FAM and fatty acid 
degradation, amino acid breakdown, and the TCA cycle 
(Fig.  2C). The Gene Ontology (GO) annotations also 
focused on a large number of biological processes, such 
as FAM, small-molecule metabolism, and the redox of 
organic acids (Fig.  2D). These results revealed aberrant 
alterations in the metabolic genomics in the AML cells, 
which may be involved in the development of AML.

Differences in the biological characteristics 
between the molecular subtypes based on FAMG 
clustering
To better understand the FAM profile of the AML 
patients, we performed a consensus clustering of the 
AML patients in the TCGA cohort based on the expres-
sion of 140 DEGs. The clustering results showed that the 
173 AML patients could be divided into three clusters, 

Fig. 3  Identification of fatty acid metabolism (FAM)-related molecular subtypes. A Consensus matrices for k = 3. B Survival analysis of the different 
FAM-related molecular subtypes performed using the log-rank test. C–H The enrichment score of the signaling pathway or infiltration level of the 
tumor microenvironment cells in the different FAM-related molecular subtypes; C: lipid metabolism pathways, D: hypoxia pathway, E: reactive 
oxygen species pathway, F: 22 tumor microenvironment cells, G: other cancer–promoting pathways, and H: myeloid-derived suppressor cells and 
CD8 + effector T-cells. Kruskal–Wallis test, * P < 0.05; ** P < 0.01; * P < 0.001
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and that this clustering had the greatest cluster stability 
(Fig.  3A). Survival analysis showed that the patients of 
cluster B had the worst prognoses and the highest FAM-
score values (Fig. 3B). To better explore the lipid metabo-
lism characteristics of patients with different molecular 
subtypes, we collected the gene sets of 14 lipid metabo-
lism pathways and calculated the enrichment score of 
each patient (Fig.  3C). We observed that the biosyn-
thesis of fatty acids and steroid hormones in cluster A 
were increased, while the metabolism of multiple lipids, 
including fatty acids, glycerides, glycerophospholipids, 
ether lipids, and sphingolipids, was significantly more 
active in cluster B than the other two clusters. How-
ever, in the metabolic pathways associated with unsatu-
rated fatty acids, we observed that arachidonic acid and 
α-linolenic acid were metabolically enhanced in cluster 
B, linoleic acid was metabolically most active in cluster 
A, and unsaturated fatty acid biosynthesis was increased 
in cluster C. These findings revealed the heterogeneity of 
lipid metabolism in AML patients. In addition, the TME 
is often accompanied by hypoxia, which in turn induces 
mitochondria to produce a large amount of ROS and 
causes oxidative stress. We used the same approach and 
found higher hypoxia levels and more ROS generation in 
cluster B, which may correlate with the increased lipid 
metabolism in cluster B (Fig. 3D and E).

We further analyzed the immune-infiltration charac-
teristics of the different molecular subtypes (Fig. 3F). The 
best prognosis for patients in cluster A could be related 
to the enrichment of a large number of adaptive immune 
cells—such as naïve B-cells, CD8 + T-cells, and follicular 
helper T-cells—and innate immune cells—including NK 
cells, mast cells, and eosinophils. A similar proportion 
of immune cells, albeit slightly less infiltrated, was also 
found in cluster C and cluster A, and the prognostic sta-
tus of a patient in cluster C was slightly worse as a result. 
In addition, in cluster B, a high proportion of mono-
cytes, M2 macrophages, and neutrophils exhibited strong 
inflammatory signals. Importantly, the development 
of inflammation in the TME tends to suppress immune 
function as well as generate drug resistance and manifest 
a poor prognosis, suggesting a potential mechanism that 
may be mediating the inferior survival seen for patients 
in cluster B.

Finally, we analyzed other signaling pathways that may 
be associated with AML tumor development, including 
immune checkpoints, angiogenesis, DNA damage repair, 
cell adhesion, and inflammatory responses. Through an 
enrichment analysis of these pathways, we found that 
cluster C overexpressed the immunological checkpoint, 
activated the tumor angiogenesis signal, and enhanced 
cell adhesion (Fig. 3G). Cell infiltration analysis by GSVA 
showed that cluster B contained more MDSCs, while 

CD8 + effector T-cells were significantly enriched in 
cluster C (Fig.  3H). These signatures all demonstrated 
that when AML cells express more immunosuppres-
sive and cell adhesion molecules at the genomic level, 
they may be more prone to immune escape or adher-
ence to a safe living environment, and this phenomenon 
may explain why the massive immune cell infiltration 
in cluster C was associated with a worse prognosis rela-
tive to cluster A. The high activity of the inflammatory 
response pathway in cluster B also corresponded to the 
enrichment of inflammatory immune cells, and the pro-
inflammatory effect of MDSCs can also further produce 
immunosuppression.

The risk‑score model is robust for prognosis prediction
To better predict the prognosis and characterize the 
TME, we constructed a prognostic risk-score model 
to assess the individual status of patients. In the TCGA 
cohort, univariate and multivariate Cox regression anal-
yses identified a gene significantly associated with the 
prognosis of AML patients (Figure S3A and S3B), and 
LASSO regression analysis further reduced dimension-
ality and screened out 20 FAMGs for model construc-
tion (Fig. 4A and B). We calculated the risk score of each 
patient using the model equation. The "survminer" pack-
age was used to calculate the cutoff value when the P 
value was the smallest, and we divided the 161 patients 
with survival information into high-risk score and low-
risk score groups. As the risk score increased, the sur-
vival time shortened and the number of deaths increased 
(Figures S4A and B). The survival analysis showed that 
patients with high risk scores had significantly worse 
prognoses (Fig.  4C). A heatmap showed the expression 
levels of the model genes in the high and low risk score 
groups (Figure S4C). The time-dependent ROC curve 
analysis revealed that the AUC values ​​at 1, 3, and 5 years 
were 0.870, 0.878, and 0.950, respectively, indicating that 
the model had a high prognostic prediction accuracy 
(Fig.  4D). In another Gene Expression Omnibus (GEO) 
validation cohort, GSE12417-GPL96, we also observed 
a significantly worse prognosis for patients in the high-
risk group (Fig. 4E) while the number of deaths and the 
expression of model genes exhibited the same risk-score 
distribution as the TCGA cohort (Figure S4D–S4F), 
with AUC values ​​for 1, 3, and 5 years of 0.616, 0.608, and 
0.610, respectively (Fig. 4F). The univariate and multivar-
iate independent prognostic analyses further indicated 
that risk score could serve as an independent predictor 
for patient prognosis (Fig. 4G–J). In conclusion, with fur-
ther validation in the GEO cohort, our constructed risk-
score model demonstrated a stable prognostic predictive 
value.
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Correlation analysis of the risk score 
and clinicopathological factors
We further compared the relationships of the different 
clinicopathological factors with the risk scores. Among 
some individual characteristics (Fig.  5A), we found 
no significant differences in the risk score between 
the different genders or between patients with differ-
ent peripheral white blood cell and platelet counts or 
bone marrow and peripheral blood blast counts. How-
ever, patients of advanced age (≥ 60 years old) had sig-
nificantly higher risk scores than those aged < 60 years 
old. In the FAB classification, we observed that the 
risk score decreased sequentially from M0 to M3 and 

increased sequentially from M3 to M7. In addition, the 
worse the cytogenetic risk, the higher the risk score. 
Among the different AML-related gene-mutation sig-
natures (Fig.  5B), we observed no difference in risk 
scores between the mutation-positive patients—such 
as Ras-activating, FLT3-mutated, IDH1-mutated, and 
nucleophosmin cytoplasmic (NPMc) profiles—com-
pared with the mutation-negative patients.

The risk score indicated immune infiltration and can guide 
clinical treatment
High-risk scores are strongly associated with a poor 
prognosis, and we further analyzed the immune and 
other features of the TME in patients with different risk 

Fig. 4  Construction and validation of the risk-score model. A Determination of the log(λ) corresponding to the minimum tenfold cross-validation 
error point. B The non-0 coefficient corresponding to the same log(λ) value. C Survival analysis between the high-risk and low-risk score groups 
in The Cancer Genome Atlas (TCGA) cohort performed using the log-rank test. D Time-dependent receiver operating characteristic (ROC) curve 
analysis of the risk score in the TCGA cohort. E Survival analysis between the high-risk and low-risk score groups in the Gene Expression Omnibus 
(GEO) cohort performed using the log-rank test. F Time-dependent ROC curve analysis of the risk score in the GEO cohort. G, I Univariate 
independent prognostic analyses of the clinicopathologic factors and risk score; G: TCGA cohort and I: GEO cohort. H, J Multivariate independent 
prognostic analyses of the clinicopathologic factors and risk score; H: TCGA cohort, and J: GEO cohort
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scores in an attempt to mine therapeutic targets for dif-
ferent patients. The risk score was significantly and posi-
tively correlated with the FAMscore (Fig. 6A), indicating 
that a higher risk score correlated with stronger FAM 
activity. Among the three clustering subgroups, patients 
in cluster B had the highest risk scores, performed well 
in accordance with the distribution characteristics of the 
FAMscore, and the risk score also discriminated patients 
in different subtypes well (Fig.  6B). The risk score was 
positively associated with aspects of lipid metabolism 
such as fatty acid elongation, degradation, glyceride 
metabolism, and the synthesis of unsaturated fatty acids 
(Fig.  6C). Among the immune cell–infiltration signa-
tures, higher risk scores were associated with less infil-
tration of follicular helper T-cells and resting mast cells 
and more infiltration of monocytes and M2 macrophages 
(Fig.  6D). Among the immune function–related path-
ways, antigen presenting cell (APC) co-inhibition, APC 
co-stimulation, C–C motif chemokine receptor (CCR) 
and human leukocyte antigen (HLA) activity, inflamma-
tion promotion, para-inflammation, the type I interferon 
(IFN) response, and the type II IFN response were more 
active in the high-risk score group (Fig.  6E and Table 
S 4). We then compared the activity of the other signal-
ing pathways that promote tumor development with 

the risk score, and we found that the activity of immune 
checkpoints, mismatch repair, vascular endothelial 
growth factor signaling pathways, and the inflammatory 
response increased in correlation with a higher risk score 
(Fig. 6F). These results demonstrated a state of vigorous 
lipid metabolism, immunosuppression, and the devel-
opment of inflammation in the TME of patients with 
high-risk scores. To better guide the decision-making of 
clinical immunotherapy, we further analyzed the expres-
sion levels of immune checkpoints; notably PD-L1, 
CTLA-4, IDO1, LAG3, HAVCR2, PD-1, PD-L2, CD80, 
CD86, TIGIT, and TNFRSF90 that have been mentioned 
as immune checkpoint–related genes in relevant studies 
[32]. The expressions of PD-L1, CTLA-4, LAG3, PD-1, 
PD-L2, CD80, and TNFRSF90 were significantly upregu-
lated in the high-risk score group (Fig. 6G). In addition, 
high-risk scores were accompanied by the infiltration of 
more MDSCs (Fig. 6H), but a change in effector T-cells 
was not obvious (Fig. 6I). Based on this, we suggest that 
patients with high-risk scores may benefit from certain 
treatment modalities, including FAM inhibition, immune 
checkpoint therapy, and targeted inhibition of M2 mac-
rophages and MDSCs.

In addition, we evaluated the difference in the IC50 
values of 138 chemotherapeutic agents in the high- and 

Fig. 5  Differences in the risk scores among patients with different clinicopathological characteristics. A Risk-score differences in different individual 
characteristics such as age, gender, French-American-British classification, cytogenetic risk, white blood cell or platelet count, and bone marrow 
or peripheral blood blast count. B Risk-score differences in the different somatic variation signatures (e.g., RAS-activating, FLT3/IDH mutation, or 
cytoplasmic nucleophosmin profile). * P < 0.05; ** P < 0.01; * P < 0.001
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low-risk score groups. We simultaneously compared 
the sensitivity to chemotherapeutic agents between 
the high- and low-risk groups in the TCGA and GEO 
cohorts. The data revealed a significant sensitivity 
difference between the TCGA and GEO cohorts (11 
and seven chemotherapeutic agents, respectively), 
with both cohorts identifying four chemotherapeutic 

agents with greater sensitivity in the high-risk score 
group, including ABT.888 (veliparib, a polyADP-ribose] 
polymerase inhibitor), 5-aminoimidazole-4-carboxamide 
ribonucleoside (AICAR, an adenosine monophosphate 
kinase activator), all-trans-retinoic acid (ATRA), and 
AUY922 (luminespib, an HSP90 inhibitor) (Fig.  7A 
and B).

Fig. 6  Correlation analysis between the tumor microenvironment characteristics and the risk score. A Correlation analysis between the FAMscore 
and the risk score. B Differences in the risk scores of the clustering subtypes. C Correlation analysis between lipid metabolism and the risk score. 
D Correlation analysis between the proportion of immune cell infiltration and the risk score. E Differences in the risk scores between the different 
immune functions. F Correlation analysis between other cancer-promoting signaling pathways and the risk score. G Differences in the risk scores 
of different immune checkpoints. H Correlation analysis between the infiltration level of myeloid-derived suppressor cells and the risk score. I 
Correlation analysis between the infiltration level of CD8 + effector T-cells and the risk score. * P < 0.05; ** P < 0.01; * P < 0.001
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Identification of key genes with significant differences 
between the high‑ and low‑risk score groups
To better reveal genes with obvious expression differ-
ences in the high- and low-risk score groups and identify 
potential key genes involved in AML tumor develop-
ment, a GSEA was conducted. Its results showed that the 

top five signaling pathways with the smallest enrichment-
difference P values in the high-risk score group were as 
follows: cytokine receptor interaction, cell-adhesion 
molecules, antigen processing and presentation, the 
chemokine signaling pathway, and the intestinal immune 
network for immunoglobulin A production. In the 

Fig. 7  Prediction of drugs for the high-risk and low-risk score groups. A, B Sensitivity analysis of anti-cancer drugs in the high and low FSMscore 
groups performed using the Wilcoxon test; A: The Cancer Genome Atlas cohort and B: The Gene Expression Omnibus cohort. In the red dashed box 
are drugs with the same sensitivity differences predicted by both the TCGA and GEO cohorts
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Fig. 8  Identification of the significant difference pathways and key genes between the high- and low-risk score groups. A The gene set enrichment 
analysis revealed pathways with significant enrichment differences between the high- and low-risk score groups. B The heatmap showed the 
expression of genes with significant differences between the high- and low-risk score groups. C A protein–protein interaction network showed 
the interaction and subnetworks of the differentially expressed genes. D Identification of the core genes with the highest connectivity in the 
subnetwork. The green subnetwork is on the left, and the red subnetwork is on the right
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low-risk score group, only one ribosome-related signal-
ing pathway was enriched (Fig. 8A). These results again 
suggested that tumor development in AML is accompa-
nied by significant inflammatory and immunobiological 
process changes.

We further identified 94 DEGs in the high- and low-
risk score groups (Fig.  8B) and constructed a PPI net-
work. We then used k-means clustering to further divide 
the network into two subnetworks (Fig.  8C and Table 
S5). In the green subnetwork, we were surprised to find 
a large enrichment of the homeobox (HOX) family genes 
that have been extensively studied to prove that high 
expression of these genes promotes leukemia devel-
opment. The KEGG enrichment analysis showed that 
the green-subnetwork genes were primarily involved 
in transcriptional dysregulation, metabolic pathways, 
cell-adhesion molecule signaling pathways, and the 
mammalian target of rapamycin and PI3K Akt signal-
ing pathways in cancer (Figure S5A). The GO annota-
tions were primarily enriched in the regulation of the 
RNA biosynthetic process, definitive hemopoiesis, and 
immune system development (Figure S5B). In the red 
subnetwork, the results of the KEGG analysis primar-
ily enriched viral protein interactions with cytokine and 
cytokine receptors, the chemokine signaling pathway, 
the B-cell receptor signaling pathway, cytokine-cytokine 
receptor interactions, and ECM receptor interactions 
(Figure S5C). GO annotations were primarily found in 
entries such as vesicle-mediated transport, neuronal 
activation induced in immune responses, myeloid leuko-
cyte activation, and immune responses (Figure S5D). By 
combining these two subnetworks’ enriched pathways 
and biological processes, abnormal transcription regula-
tion, abnormal cytokine expression, increased adhesion, 
metabolic reprogramming, and increased vesicle trans-
port were deemed to be characteristic signatures for the 
development of AML tumors. In addition, we identified 
the genes with the most connections as key genes in the 
subnetwork (Fig. 8D). In the green subnetwork, HOXA5, 
HOXA6, HOXA7, PBX3, and MEIS1 were located at the 
core of the network, while in the red subnetwork, FGR, 
LILRB2, ITGAX, MPO, PPBP, PF4, and ElANE had the 
highest connectivity.

Discussion
Lipid metabolism, especially FAM, is an important pro-
cess in cell life activities. After obtaining nutrients, cells 
will process and convert them into intermediates of vari-
ous metabolic pathways, and these intermediates play a 
role in cell membrane synthesis, energy reserve, and the 
production of active molecules [41]. As an important 
form of the metabolic reprogramming of tumor cells, 
abnormal changes in FAM will affect the reactivity and 

activity of other metabolic pathways at the same time and 
have a great impact on the bioenergetics, proliferation, 
growth, and signal transduction of tumor cells [18]. In 
addition, lipid metabolism also affects the migration and 
invasion of tumor cells in the TME, induces tumor angio-
genesis, promotes tumor cells to evade the surveillance 
of body immunity, and increases drug resistance [42]. In 
AML, the anoxic bone marrow microenvironment inhib-
its the ratio of acetyl coenzyme A after glycolysis and thus 
limiting the tricarboxylic acid (TCA) cycle. However, the 
activation of FAO will promote more ATP production, 
which is beneficial to the growth and survival of leuke-
mia cells [18]. Currently, most studies on FAM and the 
occurrence and development of AML have focused on a 
single molecule, and there is a lack of systematic evalu-
ation of the relationship between the FAM-related gene 
set and the pathological characteristics of AML. There-
fore, exploring the molecular model of FAM and its rela-
tionship with biological processes, such as immunity and 
inflammation, may lead to a better understanding of the 
impact of FAM on the development of AML.

Our study innovatively integrated FAMGs and revealed 
the pathobiological states of metabolic reprogramming, 
immune escape, and inflammation development in the 
TME of different AML patients based on the transcrip-
tome expression levels of these genes, representing the 
first attempted exploration in AML research. We first 
found that the FAMscore was associated with a poor 
prognosis in AML patients, suggesting that the exac-
erbation of AML may be accompanied by increased 
FAM. Ven/aza-resistant AML cells exhibited highly 
active fatty acid metabolism, consistent with our calcu-
lated high FAMscore. In our CML cohort, a high FAM-
score also reflected enhanced fatty acid metabolism and 
the rapid proliferation of malignant phenotypes of CML 
cells. This is because CML cells require a lot of energy 
and promote the fluidity of cell membranes by increas-
ing the content of unsaturated fatty acids [43]. All these 
indicate that the FAMscore has certain accuracy in pre-
dicting the fatty acid metabolism activity of leukemia 
cells. We further assessed the correlation between the 
plasma fatty acid content and the FAMscore in PBMCs 
in healthy individuals, and the relationship between the 
FAMscore and different levels of n-6 PUFAs, or of that 
between different ratios of SFA/PUFA, was “bell shaped”, 
as appears to be the case for the relationship between the 
status of many nutrients and the PBMC function [44], 
the excessive intake of certain fatty acids may inhibit 
the function of PBMC. However, there are still few stud-
ies and data regarding the relationship between lipids 
in the plasma and the PBMC function. This correlation 
analysis may have reference value for revealing the rela-
tionship between fatty acids in peripheral blood and the 
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metabolism of AML cells. In the correlation analysis 
between FAMscore and clinicopathological factors, M5 
AML, which originated from the malignant transforma-
tion of primitive monocytes, had the highest FAMscore, 
which may be related to the energy supply required for its 
inflammatory effect [45]. And these AML cells can fully 
utilize fatty acid oxidation to activate cancer-promot-
ing signaling pathways such as AMPK, and up-regulate 
genes such as PPARγ, FABP4, CD36 and BCL2 genes to 
promote their own survival and proliferation [28]. FLT3-
mutated AML patients also exhibited high FAMscore. 
One study showed that L-carnitine was significantly 
more abundant in AML cells from FLT3 mutant patients 
compared to wild-type patients, and that it produces cel-
lular energy through fatty acid beta-oxidation [46]. Simi-
lar features were observed in patients with non-small cell 
lung cancer [47].

We next conducted a cluster analysis based on the 
FAMGs present with differential expressions in AML 
patients and normal individuals. We found that patients 
with different levels of FAM had different TME fea-
tures; more specifically, patients with reduced FAM 
had abundant immune cell infiltration, lower activities 
of various lipid metabolism pathways, and possessed 
the best prognostic status, corresponding to cluster A. 
With further enhancement of FAM in cluster C, patient 
prognosis became poorer and patients began to exhibit 
immunosuppression, including highly expressed immune 
checkpoints, the strongest cell-adhesion ability of all the 
clusters, and progressive inflammation, along with the 
biosynthesis of unsaturated fatty acids, which are the 
biological behaviors that prompt AML cells to evade 
immune cell attack. This trend may also be responsi-
ble for the massive infiltration of CD8 + effector T-cells 
in the TME of such patients through feedback regula-
tion. Patients in cluster B had the strongest FAM of all 
the clusters, along with significantly increased activity 
of other lipid metabolism pathways; this was indicated 
by less tumor killer immune-cell infiltration in the TME 
of these patients, along with increased infiltration of M2 
macrophages promoting the development of inflamma-
tion, as well as massive monocyte infiltration. This sug-
gested a highly developed inflammatory condition, which 
was also confirmed by the hyper-responsive status of the 
inflammatory signaling pathways. The malignant devel-
opment of inflammation may be an important reason for 
the suppression of immune cell responses, and the abun-
dant infiltration of MDSCs also suggests a high degree of 
immunosuppression in such patients [48], who therefore 
also exhibit the worst prognosis. The status of the devel-
opment of immunosuppression and inflammation in the 
TME of patients can be further assessed by monitoring 
the levels of FAM in AML cells.

To better link FAM to the prognosis and TME char-
acteristics of AML patients, we developed a risk-score 
model based on FAM-related genes. This risk score was 
highly positively correlated with FAM and could accu-
rately predict the prognosis of patients; this was verified 
in another AML cohort. We focused on the association 
of the risk score with the TME characteristics, with a 
higher risk score being associated with a stronger metab-
olism of fatty acids and glycerides, glycerophospholipids, 
and a greater biosynthesis of unsaturated fatty acids. In 
addition, patients with high risk scores had significantly 
higher expression levels of immune checkpoint-related 
genes, such as PD-1, PD-L1, PD-L2, and CTLA-4, and 
significantly increased infiltration of immunosup-
pressive cells, such as MDSCs and M2 macrophages. 
Immune functions, such as inflammation promotions, 
para-inflammation, and type I/II IFN responses, were 
also significantly activated in the high-risk score group, 
suggesting that AML cells in this group can effectively 
receive immune stimulation. Therefore, immunotherapy 
targeting immune checkpoints and immunosuppres-
sive cells is of significance as a reference for the clinical 
treatment of patients with high-risk scores. We similarly 
observed greater treatment sensitivity in patients with 
high-risk scores to four chemotherapeutic agents, with 
ABT-888 (veliparib) targeting poly (ADP-ribose) poly-
merase exhibiting intermediate cytotoxic activity in the 
AML cells and being capable of enhancing the growth 
inhibitory effect of the alkylating agent temozolomide on 
AML primary leukemia cells [49, 50]. All-trans-retinoic 
acid (ATRA) predominantly promotes oncoprotein PML-
RARα knockdown to eliminate AML M3 leukemia cells 
[51], and this can significantly improve the prognosis of 
M3 patients. 5-aminoimidazole-4-carboxamide ribonu-
cleoside (AICAR), as an agonist of adenosine monophos-
phate–activated kinase, can promote the differentiation 
and inhibit the proliferation of leukemia cells, and its 
combination with ATRA can promote the differentia-
tion of various classifications of AML cells [52, 53]. In 
the form of molecular chaperones, heat shock protein 90 
(Hsp90) synergizes with the signaling pathways involved 
in cancer cell proliferation, growth, and cellular adapta-
tion, and the Hsp90 inhibitor AUY922 (luminespib) sig-
nificantly promotes the degradation of the KG-1a fusion 
oncoprotein FOP2-FGFR1 and inhibits the PI3K and IKK 
signaling pathways in AML cell lines. The combination 
of AUY922 with cytarabine also significantly improves 
outcomes in AML [54, 55]. These studies all confirmed 
the therapeutic value of four chemotherapeutic agents 
in AML, and the somatic mutational signatures or clas-
sification characteristics of patients with high-risk scores, 
used alone or in combination, have implications for clini-
cal decision-making.
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The TME differed significantly between patients in 
the high- and low-risk score groups, and we further 
explored the genes influencing these biological changes. 
We observed that most members of the HOX gene family 
had consistently high expression in the high-risk group, 
and many studies have confirmed that the high expres-
sion of HOX family genes blocks hematopoietic cell dif-
ferentiation as an important influence on AML tumor 
development [56–58]. Mutant NPM1 maintains the leu-
kemic state through the expression of HOX [59, 60], while 
mixed-lineage leukemia-specific chromosomal aberra-
tions or abnormalities interfere with normal hematopoie-
sis by regulating the overexpression of HOX genes [61]. 
In addition, the PBX proteins and MEIS proteins can 
regulate the transcription of downstream target genes 
by binding to HOX proteins to form dimers or trimers 
[62, 63]. We observed that the PBX3 gene and the MEIS3 
gene were highly expressed in the high-risk score group. 
We also observed the aberrant overexpression of MEIS1 
and HOXA9, members of the same family as MEIS3, that 
is highly effective in transforming hematopoietic pro-
genitors and driving mice toward a lethal leukemia [64, 
65]. In addition, their overexpression is also required for 
the maintenance and induction of mixed-lineage leuke-
mia [66]. However, the role of MEIS3 in the development 
and progression of AML has been less studied. To date, 
PBX3 has been confirmed to promote leukemogenesis as 
a cofactor of HOXA9 [67]. However, the selective inhibi-
tion of other genes, such as the Src family kinase FGR, 
can hinder AML cell growth [68], and genes such as inte-
grin ITGAX and PPBP have been less frequently reported 
in AML. Furthermore, these genes all showed high tran-
scriptome levels of expression in the high-risk score 
group. In conclusion, the differential genes between the 
high- and low-risk score groups are widely reported to 
be closely related to the occurrence and development of 
AML tumors, and an integrative analysis and combined 
targeted inhibition of the genes at the core of these net-
works may have an instructive role in the study of AML 
mechanisms and treatments.

In summary, based on the expression of FAMGs, this 
project revealed the molecular characteristics of the 
TME biological signals in different AML patients, such 
as FAM, immune infiltration, and inflammation. The 
risk-score model can accurately assess the prognosis of 
patients and indicate tumor-related pathological features. 
Higher risk scores may reflect stronger lipid metabolism, 
immunosuppression, and the development of inflamma-
tion. The high expression of immune checkpoints in the 
high-risk score group suggests that these patients may 
be more sensitive to immunotherapy, and the sensitivity 
prediction of multiple chemotherapeutic drugs can also 
provide reference for further research. These findings 

not only provide a high-precision prognostic assessment 
model for the clinic, but also provide a new perspective 
for the study of metabolic reprogramming in AML. How-
ever, there are still many limitations in this study. The 
conclusions of these analyses are based on public data-
sets. We need to verify in more clinical or independent 
cohorts, and further confirm through in vivo and in vitro 
experiments. In the future, we will further explore the 
effect of inhibiting FAM on AML cells and the mecha-
nisms associated with leukemia stem cell-induced 
relapse.

Conclusions
This project revealed significant differences in the TME 
characteristics among AML patients with different FAM 
patterns. Moreover, the risk-score model we constructed 
effectively predicted the prognosis of AML patients, and 
indicated the activity of FAM and the characteristics of 
immune infiltration in the TME. And from a genom-
ics perspective, samples in AML patients with high-risk 
scores were predicted to be adaptive to immunotherapy 
and high sensitivity to four chemotherapeutic agents.
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