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Abstract 

Background: Anti-CD3 therapy can induce immunosuppression by several non mutually exclusive mechanisms that 
have been proposed to explain the therapeutic effect the administration anti-CD3 mAb, but its immunoregulatory 
mechanism is still not completely clear. In T cells, microRNAs (miRNAs) regulate several pathways, including those 
associated with immune tolerance. Here, we report changes in miRNA expression in T cells following treatment with 
anti-human CD3 antibodies. Peripheral blood mononuclear cells were cultured in the presence of the monoclonal 
antibody OKT3 or a recombinant fragment of humanized anti-CD3. Following these treatments, the expression pro-
files of 31 miRNA species were assessed in T cells using TaqMan arrays.

Results: Eight of the tested miRNAs (miR-155, miR-21, miR-146a, miR-210, miR-17, miR-590-5p, miR-106b and miR-
301a) were statistically significantly up- or down-regulated relative to untreated cells.

Conclusions: Stimulation of T cells with anti-human CD3 antibodies alters miRNA expression patterns, including of 
miRNA species associated with immune regulatory pathways.
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Background
CD3+ T cells play a major role in immune responses asso-
ciated with autoimmune disease and organ transplanta-
tion. These cells form heterogeneous populations that 
can be distinguished based on molecular surface mark-
ers, and subsets of these markers can be used to denote 
various stages of T lymphocyte differentiation [1, 2]. Fol-
lowing activation by antigens and co-stimulatory signals, 
CD3+ CD4+ T cells orchestrate immune responses by 
differentiating into various effector T cell subsets, includ-
ing Th1, Th2, Th17 and regulatory T cells [3, 4].

Clinical data have suggested that anti-CD3 therapy is a 
promising treatment option for autoimmune disease and 

organ transplantation. The mechanism of action underly-
ing this therapy is not fully understood, and several non 
mutually exclusive mechanisms have been proposed to 
explain the therapeutic effect of the administration anti-
CD3 mAb and the generation of Tregs (T regulatory 
cells) that seems to be associated to immunosuppression 
and immunological tolerance [5–8]. In  vivo, T cells are 
stimulated by T cell receptors (TCRs), an integral com-
ponent of which is CD3. In the presence of co-stimula-
tory signals, T cells differentiate into specific phenotypic 
subtypes. Several of these subtypes are involved in sup-
pressing or terminating natural inflammatory signals. 
Hence, the clinical administration of anti-CD3 antibodies 
may interfere with or overcome natural TCR stimulation 
and therefore lead to the accumulation of suppressive T 
cell populations, including CD4+ CD25+ FOXP3+Tregs 
[9–11].

Open Access

BMC Research Notes

*Correspondence:  brigido@unb.br 
3 Department of Cell Biology, Institute of Biological Sciences, University 
of Brasilia, Brasilia, Brazil
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7136-7059
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-017-2442-y&domain=pdf


Page 2 of 8Sousa et al. BMC Res Notes  (2017) 10:124 

The anti-CD3 monoclonal antibody OKT3 
(muromonab-CD3, Ortho Biotech) was the first mono-
clonal antibody (mAb) approved for clinical use in trans-
plantation rejection therapy [12]. However, OKT3 is a 
murine monoclonal antibody that displays high toxicity 
in humans due to its heterologous nature and mitogenic 
activity. The effectiveness of long-term OKT3 therapy is 
hampered both by cytokine release syndrome and the 
presence of neutralizing antibodies [13]. Due to these 
clinical limitations, OKT3 was removed from the mar-
ket in 2010 [14, 15]. Currently, a new generation of anti-
CD3 therapy is being developed [16]. We have previously 
described a humanized anti-CD3 antibody fragment that 
displays less mitogenic activity than OKT3 [17] and may 
therefore be useful in modulating the immune system.

MicroRNAs (miRNAs) are small, non-coding RNA 
molecules that control many important cellular pro-
cesses, including development, differentiation, survival, 
cell fate determination, and proliferation. Additionally, 
miRNAs have a pivotal role in immune cell function-
ing by controlling cytokine, chemokine, growth factor, 
cell adhesion molecule, and co-stimulatory molecule 
expression; antibody production; inflammatory mediator 
release and apoptosis induction [18–24].

Experimental ablation of miRNAs has demonstrated 
the importance of these molecules in T cell development, 
especially with regard to Tregs [25]. Therefore, tracking 
changes in miRNA profiles following stimulation with 
anti-CD3 antibodies may offer insights into stimulation 
of T cell transformation, reveal potential methods of 
programming differentiation, and produce valuable bio-
marker information. In this work, we measured changes 
in miRNA expression in anti-CD3 antibody-stimulated 
human T cells in  vitro in the context of the peripheral 
blood mononuclear cell (PBMC) milieu. By comparing 
two different antibodies, a mAb and a recombinant anti-
body fragment, we unveiled changes in miRNA expres-
sion profiles that may be associated with T cell fate.

Methods
Donors
Peripheral blood was collected from five healthy indi-
viduals enrolled in this study (Additional file 1: Table S1). 
The study protocol was approved by the local ethics com-
mittee (CAAE: 32874614.4.0000.0030).

Antibodies
The anti-CD3ɛ antibody Muromonab-CD3 (OKT3) was 
purchased from eBioscience (San Diego, CA, USA), and 
humanized antibody fragment (a fusion of a scFv and 
gamma 1 Fc) was produced in transfected CHO-K1 cells 
as previously described (FvFc version R) [17].

Stimulation of PBMCs and T cell enrichment
Fresh PBMCs were isolated using Ficoll-Paque density 
gradient centrifugation (GE Healthcare, Sweden). Whole 
PBMCs were cultured in RPMI media (Invitrogen, Carls-
bad, CA, USA) supplemented with 4  mM  l-glutamine 
and 10% FBS in the presence or absence of soluble anti-
CD3 antibodies. A total of 250 ng of antibody was applied 
to PBMCs at a concentration of 1 × 106 cells/mL. After 
72  h, CD3+ T cells were isolated by negative selection 
using magnetic beads according to the manufacturer’s 
instructions (Dynabeads® Untouched™ Human T Cells 
Kit, Invitrogen).

Flow cytometry
T cell subpopulations and the efficiency of T cell isola-
tion from PBMCs were quantified by three-color stain-
ing using the following sets of mAbs: (1) anti-CD18 FITC 
(Becton–Dickinson, San Jose, CA, USA), anti-CD3 APC 
(eBioscience) and anti-CD4 PE (eBioscience) or (2) anti-
CD18 FITC (BD), anti-CD3 APC (eBioscience) and anti-
CD8 PE (eBioscience). Percentages of T cells (gated on 
CD18+ and CD3+) expressing CD4 or CD8 were meas-
ured by flow cytometry (Additional file 1: Table S2, Fig-
ure  S1). All FACS data were acquired on a FACS Verse 
(BD) using BD FACSuite™ software (BD). Data were ana-
lyzed using FlowJo software version 10 (Tree Star, Ash-
land, OR, USA).

RNA extraction
Total RNA, including small RNA species such as miR-
NAs, was extracted from T cells isolated after PBMC 
stimulation using a miRNeasy® Mini Kit (Qiagen, Valen-
cia, CA, USA). The extracted RNA was treated with 
TURBO™ DNase (Life Technologies, Grand Island, NY, 
USA) to eliminate genomic DNA. RNA integrity and 
purity were evaluated using a Bioanalyzer 2100 (Agilent 
Technologies Genomics, Santa Clara, CA, USA). All 
RNA samples used in this work had a RIN > 7.

qPCR assays
qPCR assays were performed using an ABI Step One 
Plus Real-Time PCR System (Applied Biosystems, Aus-
tin, Texas, EUA). The 2−ΔΔCt method was used to cal-
culate mRNA or miRNA transcript levels (fold change). 
RT2 Profiler PCR Array Data Analysis software (SABio-
sciences, Frederick, MD, USA) was used for analysis. 
Three independent experiments were performed run-
ning in triplicates. For each sample, normalization was 
performed by subtraction of the median Cq values of 
treated and untreated samples for the normalization 
standards, that are specified in “miRNA profiling” sec-
tion for miRNA and “Individual gene expression assays” 
section for genes. The p-values were calculated based on 
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Student’s t test results of the replicate 2−ΔΔCt values for 
each gene in the control samples and treatment samples. 
GraphPad Prism software version 6 and R package were 
used to make figures.

miRNA profiling
miRNA profiling was performed using TaqMan Arrays 
MicroRNA customized plates according to the manu-
facturer’s instructions (Applied Biosystems); 32 miRNAs 
were used without pre-amplification (Additional file  1: 
Table S3). Approximately 600 ng of total RNA extracted 
from T cells was utilized for cDNA synthesis, which 
was accomplished using a TaqMan® MicroRNA Reverse 
Transcription Kit (Applied Biosystems). The miRNAs 
were then evaluated via qPCR using TaqMan® Universal 
Master Mix II (Applied Biosystems) following the manu-
facturer’s instructions. RNU48 small non-coding RNA 
(snRNA) was used as an internal control for data normal-
ization. miRNA data was deposited in GEO (Additional 
file 2).

Individual gene expression assays
Approximately 240  ng total RNA isolated from T cells 
following PBMC stimulation was utilized for cDNA syn-
thesis using an RT2 First Strand Kit (Qiagen). Briefly, 
individual gene expression was measured using RT2 
qPCR SYBRGreen/ROX MasterMix (Qiagen) following 
the manufacturer’s instructions. The following probes 
were used: FOXP3, GITR, TBX21, STAT4, RORγt, STAT3, 
and GATA3 (Additional file 1: Table S4). The housekeep-
ing gene B2M was chosen as an endogenous control.

Results
Specific miRNAs were differentially expressed in CD3+ 
T cells following stimulation with anti‑human CD3 
antibodies
To investigate how CD3 stimulation affected miRNA 
expression profiles, human PBMC were stimulated with 
anti-CD3 antibodies for 72 h. Then CD3+ cells were iso-
lated and miRNA expression analyzed by quantitative 
PCR (qPCR). All 31 common miRNAs that were tested 
exhibited statistically significant changes in the samples 
from at least one donor when comparing cells stimulated 
with OKT3 or FvFcR to unstimulated cells (Fig. 1).

The miRNA expression profiles displayed strong inter-
donor variability. As they were the least variable, the 
CD3+ T cell expression profiles of eight distinct miRNAs, 
miR-155, miR-21, miR-146a, miR-210, miR-17, miR-
590-5p, miR-106b and miR-301a, were further investi-
gated (Fig. 2 and Additional file 1: Table S5).

miR-155 was consistently overexpressed following both 
antibody treatments: OKT3 seemed to induce stronger 
expression than FvFcR (Fig. 2a). miR-21 exhibited higher 

expression in T cells from most donors after stimula-
tion with OKT3 and FvFcR antibodies compared to 
non-stimulated T cells (Fig.  2b). miR-31 was signifi-
cantly down-regulated in a few donors (p  <  0.05; Addi-
tional file  1: Figure  S2). Anti-CD3 antibodies increased 
miR-146a expression in most PBMC donors, but FvFcR 
showed more consistent stimulation (Fig.  2c). The miR-
210 expression profile was unique in exhibiting minimal 
variability between donors following FvFcR stimula-
tion. FvFcR stimulated miR-210 less robustly than OKT3 
(Fig. 2d). miR-17 was up-regulated in CD3+ T cells stim-
ulated with either OKT3 or FvFcR (Fig. 2e). miR-590-5p 
expression increased in T cells following stimulation 
with OKT3 and FvFcR (Fig.  2f ). All treatments induced 
up-regulation of miR-106b (Fig.  2g). OKT3 and FvFcR 
both up-regulated miR-301a expression in CD3+ T cells; 
OKT3 stimulation led to particularly strong expression 
(Fig.  2h). As indicated, there was a greater tendency 
toward up-regulated miRNA expression in stimulated 
versus unstimulated T cell subsets. Many of the evaluated 
miRNAs have been associated with the generation of 
Th17 and Treg populations as observed by other groups 
(Additional file 1: Table S3). Collectively, these data show 
that a limited number of miRNAs became differentially 
expressed in T cells following treatment with anti-human 
CD3 antibodies.

Anti‑human CD3 antibodies alter mRNA expression 
profiles in CD4+ T cells
Many of the miRNAs found to be differentially expressed 
have been associated with the generation of CD4+ T 
cells. To confirm the effects of anti-CD3 stimulation on 
T helper cell miRNA profiles, the expression patterns 
of genes considered typical markers of T helper cell dif-
ferentiation were analyzed (Fig.  3; Additional file  1: 
Table S4). The expression levels of TBX21, STAT4, RORγt 
and STAT3 were affected by stimulation with the anti-
human CD3 antibodies FvFcR and OKT3 (Fig. 3a, c).
TBX21 encodes T-bet, a transcription factor known to 

be involved in T helper cell commitment towards Th1 
differentiation and TCD8 differentiation. TBX21 mRNA 
expression was strongly induced after OKT3 stimulation 
(approximately an eightfold enhancement); recombinant 
FvFcR induced it to a lesser extent (Fig. 3a). In addition, 
the expression of STAT4, a gene that supports Th1 com-
mitment, was induced; this induction suggests a pro-
inflammatory response to anti-CD3 antibodies. Finally, 
antibody stimulation did not affect GATA3 expression, 
which corroborates that T cells undergo Th1 polarization 
upon anti-CD3 treatment (Fig. 3b).

T helper cell differentiation may also induce Th17 and 
Treg phenotypes. Figure  2c shows the marked increase 
in RORγt (RORC) and STAT3 expression that occurred 
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following OKT3 stimulation. FvFcR also stimulated 
RORγt expression but to a lesser extent. STAT3, a gene 
involved in Th17 cell signaling, was equivalently induced 
in all treatments (Fig.  3c). Additionally, the regulatory 
associated markers FOXP3 and GITR were induced fol-
lowing all treatments (Fig. 3d); FvFcR was more effective 
at inducing FOXP3, while OKT3 more robustly induced 
GITR. These data suggest that stimulation with FvFcR 
influences genes that are associated Treg and Th17 cell 
phenotype.

Discussion
In the present study, we characterized miRNA expression 
profiles in T cells following stimulation with anti-CD3 
antibodies. Both a mouse monoclonal antibody and an 
Fc-bearing humanized antibody fragment were tested, 
and both could modulate miRNA expression in CD3+ 
T cells. Many of the miRNAs that changed in our study 
are enriched in conventional and regulatory CD4+ T cell 

populations, as well as in CD8+ T cells, and many are 
reported to play roles in regulating of immune response.

miR-155 is a well-studied miRNA that operates as a 
co-regulator of gene expression in multiple cell types to 
modulate the immune response [26]. miR-155 regulates 
cell growth and affects T cell polarization [27] by induc-
ing a Th17/Treg bias in T helper cells [28]. Although 
activation by CD3/CD28 co-stimulation up-regulates 
miR-155 [29], it has also been shown that FOXP3 con-
trols miR-155 expression to maintain Treg proliferative 
activity [30]. Indeed, in  vitro and in  vivo experiments 
have shown that miR-155 deficiency reduces Treg popu-
lations in the thymus and periphery; however, Tregs from 
miR-155-deficient animals do not exhibit defects in sup-
pressive function [28, 31]. Our data revealed a strong 
induction of miR-155 after antibody treatment, further 
supporting that this treatment could lead to the establish-
ment of regulatory cells, a miR-155-sensitive population.

Fig. 1 miRNA expression profile in T cells. Cluster analysis of 31 differentially expressed miRNAs in CD3+ T cells collected from healthy donors 
(n = 4–5). miRNAs that were up- or down-regulated in CD3+ T cells after CD3 stimulation. miRNA species are represented by rows, while samples 
are represented in columns. For each miRNA, green represents high expression, and red represents low expression relative to the average expression 
across all samples. This experiment was performed 72 h post stimulation, and the results are expressed as fold changes relative to levels in untreated 
T cells
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Despite the role of miR-155 in Treg survival, this mol-
ecule is still classified as proinflammatory, as it precisely 
regulates the levels of its targets to promote the immune 
response. Conversely, miR-146a and miR-21 are nega-
tive feedback regulators that mute the immune response 
[32]. It has been demonstrated that miR-21 acts as a 
positive indirect regulator of FOXP3 expression; in con-
trast, miR-31 negatively regulates FOXP3 expression by 
binding directly to its target site in the 3′UTR of FOXP3 
mRNA. Comparing miRNA expression profiles between 
human naïve CD4+ T cells with Tregs, miR-31 was found 

to be down-regulated in Treg cells, while miR-21 were 
found to be significantly up-regulated in this population 
[32]. miR-21 expression was induced after both antibody 
treatments, while miR-31 was consistently repressed by 
OKT3 treatment, and FvFcR treatment led to a variable 
response.

Naïve CD4+ T cells are reported to express low levels of 
miR-146a while these levels are increased in Tregs [33]. 
Rudensky and collaborators [34] reported that miR-146a 
is highly expressed in Treg cells and is critical for their 
function. The ablation of miR-146a impairs Treg function 

Fig. 2 Quantitative analysis of changes in miRNA expression in CD3+ T cells following stimulation with anti-human CD3 antibody. qPCR was 
performed in triplicate 72 h post stimulation; the results are expressed as fold changes relative to levels in T cells (n = 5; p < 0.05). The presented 
miRNAs exhibited statistically significant changes in expression levels relative to untreated cells in 80% of the donors, for FvFcR treatment. RNU48 
snRNA was used as an internal control for data normalization. a miR-155, b miR-21, c miR-146a, d miR-210, e miR-17, f miR-590-5p, g miR-106b, h 
miR-301a
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[28]. Moreover, miR-146a was shown to inhibit Th1 dif-
ferentiation by interfering with STAT4 signaling [34, 35]. 
Recently, the high level of miR-146a in naïve T cells was 
shown to enhance the suppressive effect triggered by 
Tregs [25]. In our data, both evaluated anti-CD3 antibod-
ies induced miR-146a expression, but FvFcR stimulation 
seemed to produce a more homogenous response among 
donors. As such, FvFcR treatment may offer an impor-
tant pathway for obtaining antibody-induced immune 
suppression.

miR-210 appears to bind to two targeting sites in the 
FOXP3 mRNA 3′UTR to regulate human Treg differen-
tiation [36]. In the present study, miR-210 expression was 
less stimulated by FvFcR than OKT3; as such, the recom-
binant antibody had less of an effect on this negative reg-
ulator of FOXP3 expression relative to the mAb.

miR-301a inhibition in CD4+ T cells reduced IL-17 
secretion and the expression of Th17 marker genes, such 
as RORα, RORγt, and AhR; however, this inhibition did 
not affect TBX21 or FOXP3 expression. miR-301a expres-
sion was particularly robust in Th17 cells both in vivo and 
in  vitro. This strong expression suggests that miR-301a 
modulates Th17 development [37]. Furthermore, it has 
been reported that miR-301a inhibits PIAS3, a molecule 
known to interfere with the STAT3 signaling pathway [28, 
37]. Treating PBMCs with anti-CD3 antibodies led to a 

consistent increase in miR-301a levels among CD3+ T 
cells. This increase suggests a bias for Th17 polarization 
among naïve T helper cells.

Three of the up-regulated miRNA species (miR-106, 
miR-590-5p and miR-17) in the current study are also 
reported to be overexpressed in CD4+ T cells in multi-
ple sclerosis (MS) patients [38–41]. Moreover, miR-106b 
and miR-590-5p exhibit higher expression in Tregs from 
MS patients compared to healthy controls [38]. miR-
106b over-expression can silence two important effectors 
of the TGF-β signaling pathway: the cell cycle inhibitor 
CDKN1A and the pro-apoptotic gene BCL2L11 [39], 
and miR-590-5p and miR-17 have been reported to tar-
get TGFBRII, which also affects TGF-β signaling [38, 40]. 
Moreover, miR-17 deficiency reduces T-bet and IFN-γ 
expression and promotes differentiation of Foxp3+ Tregs 
[40]. Therefore, this miRNA possesses a unique mecha-
nism that reciprocally regulates Th1 and Treg genera-
tion [28, 38]. De Santis and collaborators suggested that 
disrupting the TGF-β signaling pathway, which is pivotal 
for Treg differentiation, would hamper immune suppres-
sive activity, yielding the autoimmunity observed in MS. 
These data do not support the hypothesis that anti-CD3 
stimulation would lead to Th17/Treg axis polarization, 
a process that relies on TGF-β signaling. However, we 
measured an entire CD3+ population, and it is possible 

Fig. 3 Effects of anti-CD3 stimulation on the expression of genes involved in CD4+ T cell differentiation. CD3+ T cells were isolated 72 h post stimu-
lation, and mRNA was analyzed by qPCR to determine the expression levels of a TBX21 and STAT4, b GATA3, c RORγt and STAT3, and d FOXP3 and 
GITR. The data were normalized to the expression levels of the same genes in CD3+ T cells from untreated cultures. Representative results from three 
independent experiments are shown (n = 5; p < 0.05). B2M was used as an internal control for data normalization
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that a fraction of this population expressed high levels of 
TGF-β-disrupting miRNAs and therefore differentiated 
into other types of effector cells (e.g., CD8+ or Th1 cells). 
Therefore, stimulation with anti-CD3 antibodies would 
affect a broad spectrum of differentiation pathways, 
including those responsible for producing effector and 
regulatory cells, and the balance between them would 
define the effective response. A more precise analysis of 
T cell subpopulations would offer a better definition of 
this balance.

In the current study, the miRNA expression changes 
produced following the stimulation of CD3+ T cells with 
anti-CD3 antibodies suggests that Th17/Treg polariza-
tion was associated with the induction of miR-146a, 
miR-21, and miR-155 expression; that together with miR-
301 up-regulation, this process would result in a Treg 
bias. Conversely, the miR-17, miR-106, and miR-590-5p 
expression data suggest the disrupture of the TGF-β 
signaling. Therefore, it is possible that two different 
populations can be induced. To test this hypothesis, we 
measured the expression profiles of seven marker genes 
corresponding to the following CD3+ CD4+ subpopula-
tions: Th1, Th2, Th17 and Treg. Th2 induction was not 
well represented because GATA3 was not reproducibly 
modulated by either anti-CD3 antibody among donors. 
TBX21 was primarily induced by OKT3 treatment, sug-
gesting a Th1 response; however, OKT3 treatment has 
not been reported to result in the induction of Th1 cells 
in other studies [6]. However, the induction of RORγt, 
STAT3, FOXP3 and GITR suggest a bias toward the 
Th17/Treg axis. The subtle increase in FOXP3 expres-
sion suggests the development of either CD4+ FOXP3+ 
or CD8+ FOXP3+ T cell populations, both of which are 
known suppressors of the immune response [42]. GITR 
expression is associated with the development of Tregs, 
even though GITR is also observed in CD8+ effector cells 
[43].

Conclusions
Overall, in the present study, we have delineated the 
effects of two different anti-CD3 antibodies on human 
T cell miRNA expression. Both antibodies induced simi-
lar responses and exhibited individual fluctuations in 
induction and repression levels. As has been previously 
suggested for OKT3 [5], FvFcR could also induce Treg 
differentiation, as it was shown to increase the expression 
of miRNAs known to be positive regulators of FOXP3 
expression. Further investigation is warranted to dissect 
the precise roles of individual differentially expressed 
microRNAs in determining T cell fate. Overall, devoid of 
any co-stimulus, anti-CD3 stimulation in vitro promotes 
a clear change in the expression of a variety of miR-
NAs, including those operating in immune regulatory 

pathways. Moreover, the FvFcR molecule appears to be a 
promising immunomodulatory agent for the treatment of 
autoimmune diseases and organ transplantation.
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