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Abstract
Background: Modelling the time-related behaviour of biological systems is essential for
understanding their dynamic responses to perturbations. In metabolic profiling studies, the
sampling rate and number of sampling points are often restricted due to experimental and biological
constraints.

Results: A supervised multivariate modelling approach with the objective to model the time-
related variation in the data for short and sparsely sampled time-series is described. A set of
piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing
changes between successive time points. The individual OPLS models are linear, but the piecewise
combination of several models accommodates modelling and prediction of changes which are non-
linear with respect to the time course. We demonstrate the method on both simulated and
metabolic profiling data, illustrating how time related changes are successfully modelled and
predicted.

Conclusion: The proposed method is effective for modelling and prediction of short and
multivariate time series data. A key advantage of the method is model transparency, allowing easy
interpretation of time-related variation in the data. The method provides a competitive
complement to commonly applied multivariate methods such as OPLS and Principal Component
Analysis (PCA) for modelling and analysis of short time-series data.
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Background
Metabolic profiling, (also referred to as metabonomics [1]
or metabolomics [2]) is a rapidly developing field in
which the levels of hundreds to thousands of low molec-
ular weight metabolites are simultaneously profiled in
biofluids, cells and tissues. The methodology is well-
established for characterizing disease states, toxicity and
differences in physiological condition [1,3-7,7-10] and
for extracting metabolite patterns associated with these
conditions. In many experiments the biological system is
followed over time, generating a multivariate metabolic
time course. For example, staging of a disease process may
be more important than merely determining its presence
or absence. The ability to accurately define and predict
disease stage also has obvious application in assessment
of response to therapeutic intervention. Ideally such time-
series data should be well sampled in the time domain
and have an adequate statistical experimental design,
which is an essential component for the outcome of the
study and quality of data [11]. However, for practical rea-
sons collection of an optimal dataset is not always possi-
ble.

In the case of multivariate time-series data with low sam-
ple rate, many classical statistical methods are not appro-
priate for analysis and characterization of the time related
variance due to the low number of time-points and in
some cases inability to handle multivariate data. Principal
Component Analysis (PCA) [12] has previously been
applied for the analysis of time-series data in metabo-
nomics [13-17], allowing visualization of the main time-
related patterns of variation. PCA has the objective of
describing the main variance in the data in a low-dimen-
sional subspace spanned by a few linear components.
Since PCA does not explicitly model time-related varia-
tion, it does not provide an optimal representation of
time-related data. In addition, the PCA model usually has
more than one PCA component, making subtle changes
described by multiple components hard to interpret. Par-
tial Least Squares (PLS) regression [18] with the time as
regressand has also been used for analysis of time-series
metabonomic data [19,14,15,20], but the assumption of
a linear relation between descriptor variables and time is
valid only under some specific circumstances, but not in
the general case. The PARAFAC model [21,22] provides a
generalisation of PCA to data matrices of higher dimen-
sion. In this case, the three-way structure of the data con-
sists of [Animal × Time × Variables]. The reason why 3-
way methods are not used in this study is because the
NMR spectral profile (over all animals) do not preserve
neither the rank, nor the spectral profile over all time
points, which violates the 3-way method assumption of
tri-linearity. Smilde et al. [23] described a generalization
of the ANOVA approach to the multivariate case for data
generated from an experimental design, labelled as

ANOVA-Simultaneous Component Analysis (ASCA),
with application to time-series data. However, in ASCA
the time related effects are assumed to be linear in relation
to time, which is rarely a valid assumption, neither does
the ASCA method providing a predictive model. For short
and univariate time-series, piecewise linear modelling
methods can be used to describe progression over a time-
series, which is similar in some aspects to the method pro-
posed here for the multivariate case. Other statistical
methods applied for the analysis and modelling of time-
series data in omics biology include Clustering [24],
Dynamic Bayesian Networks [25] and Batch Statistical
Process Control [14,26,27]. Applications of time-series
analysis have been described by Trygg and Lundstedt [11]
in a review of chemometric techniques applied in metab-
onomics, and some of the current issues with regard to
analysis of time-series gene expression data were reviewed
by Bar-Joseph [28].

Here a new method for piecewise multivariate modelling
of time-series spectroscopically generated metabolic data
is proposed, which can be used for characterization and
modelling of short (less than 20 time points) and sparsely
sampled (sampling frequency is low relative the time-
scale of the events studied) time-series data of high
dimension. The method is well suited for analysis of spec-
tral metabolite profiles where variables are intrinsically
multicolinear, but is also generally applicable to other
types of omics data. The suggested method also provides
descriptive information, enables visualization and estab-
lishes a predictive model based on time-related variance,
putting focus on effects seen between local time-points.
The proposed method is based on multivariate piecewise
models, where each sub-model describes changes occur-
ring between neighbouring time points in a series of time
frames over the time course, here the piecewise model is
an Orthogonal Projections to Latent Structures [29]
(OPLS) model. Overall, the set of sub-models describe the
time-related changes over the full time also encompassing
the modelling of non-linear changes in relation to time.
Visualization of the piecewise multivariate model can be
accomplished by investigation of sub-models separately,
cumulatively over all time frames and as a time-trajectory.
One can interpret the local changes as the rate of meta-
bolic change in the time course. This aspect of explicitly
investigating the multivariate characteristics of change,
together with the magnitude of change over time in a bio-
logical system, has not been explored previously to the
knowledge of the authors. In addition we show how this
approach can be used for prediction of the time-point
along a time-series, based upon measured metabolic pro-
files. Prediction of time-point by the model could be used
for monitoring disease stage over time as well as for eval-
uation of the efficacy of an intervention, e.g. by assessing
change in predicted disease stage after an intervention.
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The paper is organized as follows. A brief introduction to
the OPLS method is given, followed by a detailed descrip-
tion of then proposed piecewise multivariate modelling
of sequential data. Finally the method is demonstrated on
both simulated data and metabolic profiling data and
results are compared to results from PCA analysis as well
as linear OPLS regression modelling.

Results
Algorithm
With the objective of describing the time-related variance
in the data, a set of multivariate piecewise models is esti-
mated, describing the transitions between metabolic
states in neighbouring time points, using the OPLS algo-
rithm. Each model establishes a function for the transition
between two time points will be called a sub-model in the
following sections. A distinction is made between the
piecewise approach, consisting of a set of OPLS sub-mod-
els, and the OPLS regression approach where the descrip-
tor matrix is regressed against the time using all time
points in a common model, thus, assuming a linear rela-
tionship between the data and time. Let the matrix X [N ×
K] (for N observations and K descriptor variables) repre-
sent the matrix of descriptor variables, where each obser-
vation, e.g. a metabolic profile, is a row-vector of X. The
data vector for time-point i for individual n is denoted by
xn,i. Y is the response matrix [N × M] (for N observations
and M response variables). T represents the total number
of time-points, resulting in T-1 sub-models. Throughout
the paper matrices are represented by bold uppercase let-
ter, vectors bold lower-case, scalars are represented as ital-
ics, p(·) represents a probability density and tr(·) is the
trace function.

PLS and OPLS methods
Partial Least Squares regression (PLS) [18] has been used
successfully for estimation of multivariate regression and
discriminant models in many applications, especially in
cases when descriptor variables are multicollinear and
noisy, and when the number of variables exceeds the
number of observations, which is common for e.g. spec-
troscopic and other omics data. For data with systematic
variation, which is orthogonal to the regressand, the
number of PLS components required for an optimal pre-
dictive model normally exceeds the rank of the Y-matrix.
In such cases, the Orthogonal Projections to Latent Struc-
tures (OPLS) method [29], which has an integrated
Orthogonal Signal Correction filter [30-33] specifically
designed for PLS, will benefit the analysis. This allows the
estimation of an optimal model (in the predictive sense)
with a single predictive component for the single Y-varia-
ble case, contrary to the PLS model which may have sev-
eral components if structured Y-orthogonal noise is
present in data. This property of the OPLS algorithm,
guaranteeing a single predictive component for the single

Y-variable case, is utilized in the method described here. It
confers an advantage compared to other similar multivar-
iate projection methods, in terms of clearer interpretation
of the model and enabling a straightforward extension to
the piecewise model described here. The simplicity of
interpretation is due to the separate modelling of corre-
lated components and Y-orthogonal components in the
OPLS model.

Estimation of piecewise sub-models
Estimation of a multivariate sub-model between time
point i and i+1 can be treated as a discriminant analysis
problem between two time points, describing the time (Y)
as a function of the descriptor matrix (X). Let the Xi [Ni ×
K] matrix consist of training data from time t = i and t =
i+1 with Ni observations, and let the Yi [Ni × 1] matrix to
be a dummy matrix of zeros and ones, indicating which
observation belongs to time point t = i and t = i+1 respec-
tively.

The OPLS algorithm decomposes Xi into a predictive
weight vector, wp,i [K × 1], describing the direction in the
K-dimensional space between the two time points (i and
i+1), and a predictive score vector, tp,i [Ni × 1], represent-
ing the orthogonal projection of X onto wp,i (Equation 1).
If Y-orthogonal variance is present in the data, the optimal
predictive PLS model would include more than one PLS
component, which in the OPLS model is equivalent to the
estimation of additional Y-orthogonal components in
addition to the predictive component in the model (Equa-
tion 1). This results in the guarantee of a single predictive
component wp,i, describing the discriminative (locally
time related) direction in Xi, and Ao Y-orthogonal compo-
nents with loading matrix Po,i [K × Ao] and score matrix
To,i [Ni × Ao], describing the systematic Y-orthogonal vari-
ation present in the data, if any.

Xi = tp,i wT
p,i + To,i PT

o,i + Ei (1)

The Y-orthogonal variance may be analyzed further, either
separately or together with the X residuals (Ei) to under-
stand the variance patterns present in the data that are not
time-related, which may provide information of system-
atic instrumentation errors or biological variation not
directly related to time but which may still be of value.

In Equation 1, wp,i may be interpreted as the direction of
change in the 'metabolic space' in the local time frame,
describing the transition between two neighbouring time
points, i and i+1. wp,i may also be interpreted as an
approximation to the derivative of the time dependent
function of the metabolic state. wp,i only describes a direc-
tion but does not contain any information quantifying
the magnitude of the change in each time frame. An intu-
itive measurement of the magnitude of change would be
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the Euclidean norm of the predictive score vector ||tp,i||.
However the Euclidean norm may be affected by even
moderate outliers and is therefore not an optimal choice.
Instead we use the median distance in the score space as
the metric for the magnitude of change (Equation 2).

di = |median(tp,i) - median(tp,i+1)| (2)

wdist,i = wp,i di (3)

wdist,i is then defined as wp,i weighted by a scalar (di) defin-
ing the magnitude of the change in the local time frame i
(Equation 3), thus incorporating the information about
the direction as well as magnitude of change. wdist will be
referred to as the magnitude weights and may be used as
a way of describing and visualizing the profile of time-
related change in any given sub-model. wdist is also com-
parable in magnitude between the different sub-models,
contrary to wp, which is scaled to unit norm.

Interpretation of time related changes in model
By applying elementary vector algebra we also define the
cumulative wdist, wdist,cum, which represents the total time
related changes as described by the sub-models between t
= 1 and t = T (Equation 4). This provides useful informa-
tion for interpretation and visualization of the time
related changes described by the sub-models over the
whole time-series.

wdist,cum,i = wdist,t=1 + wdist,t=2 + ... + wdist,t=i, t = 1...i
(4)

wdist,cum provides information on the overall change from
a given reference point (e.g. t = 1). This enables us to not
only track the changes in the local time frames, but also to
depict the accumulated change over the time course.
wdist,cum may prove to be useful for investigations of sys-
tems where there is a change occurring from a homeo-
static state or when studying the recovery over time after a
perturbation to establish whether the system returns
either to the biological state prior to the perturbation, or
alternatively, to a new state. A return back to the original
biological state would in result in a wdist.cum vector close to
a vector of zeros. For visualization purposes, and to sum-
marize the changes described by wdist.cum vectors, PCA
may be applied on the Wdist,cum matrix to visualize the
major patterns of time-related variation in a low dimen-
sional subspace, describing the main changes in the time-
series. The low dimensional representation of the time
points provides an overview of the relationship and simi-
larity between the temporal states, or stages, rather than
maximizing the amount of modelled variation in the orig-
inal data, hence providing a less noisy visualization of the
time-related variation in the data compared to a conven-
tional PCA trajectory.

Prediction of time point
Time predictions for new observations are carried out in
two steps. First the sub-model that best fits the new obser-
vation is established and within this sub-model a more
detailed time prediction is then made. The decision of
which sub-mode fits best the test-set observation is deter-
mined by two likelihoods. The first is pT2(tp,test|mi), the
likelihood for a test-set observation (represented by the
predicted score, tp,test) to fit to the sub-model (with set of
parameters mi), based on the score (tp), where the likeli-
hood is based upon Hotellings T2 statistic estimated from
the training data. The second is based upon analysis of the
model residual vector (e). Using the distribution of the
residuals from the training set we can calculate the Q-sta-
tistics [34], or alternatively DmodX [35], which shows
similar characteristics. The Q-statistic (Equation 5), is
based upon the sums of squares of the residuals, which is
used to estimate the likelihood pQ(e|mi) for the test-set
observation based on the Q-statistic from the training
data. Q-statistics for residual analysis were described by
Jackson [36,37]. Equations 5–8 describe how the parame-
ter c, which follows an approximate N(0,1) distribution,
can be calculated [36,37], leading us to the calculation of
PQ(e|mi) (Equation 9). In Equation 5 etest represents the
residual vector for a test-set observation. In equation 6, ΣEi
is the covariance matrix of Ei, which is the residual matrix
for the training data for sub-model i. In equation 9 c' rep-
resents an instance of c as calculated in Equation 8 for a
specific test-set observation.

Qtest = etest
Tetest (5)

pQ(etest|mi) = p(c<=c'), c~N(0,1) (9)

Here pQ(e|mi) and pT2(tp|mi) are treated as independent,
which should be acceptable in most cases of application.
The joint probability for the new observation to belong to
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a given sub-model is then calculated as described in Equa-
tion 10 and Equation 11.

p(mi|x) = z-1p(mi) pQ(e|mi) pT2(tp|mi) (10)

Equation 10 provides selection criterion for selecting the
sub-model with the best fit, which is used for the predic-
tion (Equation 13). The prior probability of each sub-
model, p(mi), in Equation 10 can be used to if there are

known prior probabilities for each sub-model, or other-

wise assigned uniformly for all sub-models. Time ( ) is
predicted as described in Equation 12 and 13, where
Xpred.new is the prediction set X matrix after Y-orthogonal

variation has been removed, Xpred is the prediction set

matrix, Tpred.o is the Y-orthogonal scores matrix calculated

from Xpred, Ptraining.o represents the matrix of Y-orthogonal

loadings derived from the training X matrix, yoffset,i is

equal to time point i and Bi is the matrix of OPLS predic-

tive coefficients for the selected sub-model i.

Testing
The simulated data set
To illustrate some of the properties of piecewise multivar-
iate modelling approach a tractable example based on
simulated data was used, which has both linear and non-
linear time-related variation present. A spectral-like data
set with 200 spectral variables, 11 time points, and 100
replicates for each time point was simulated using a bilin-
ear model. The data contain two time dependent compo-
nents, one non-linearly (u1) and one linearly (u2) related
to time (Figure 1A) in addition to a constant component
(u3) which contain only random variation, described in
Equation 14. Each one of these three components is
related to a specific spectral profile (p1, p2, p3) (Figure
1B). Random variation (ε ~ N(0,0.1)) was added to the
time dependent latent variables for each time point and
each observation.

PRINCIPAL COMPONENT ANALYSIS
Results from PCA analysis of the simulated data is shown
in Figure 2A–C visualized as a PCA trajectory plot, where
the centroids in the score space are calculated for each
time-point and then connect to form the trajectory (Figure
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(A) The variation over time for the two time dependent latent variables in the simulated data set, and a variable independent of timeFigure 1
(A) The variation over time for the two time dependent latent variables in the simulated data set, and a variable independent of 
time. (B) Loading profile for the latent variables in the simulated data set.
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2A) (data was mean-centred prior to analysis). The load-
ing plots for component one and two (Figure 2B and 2C)
show that the two sources of variation in the simulated
data are slightly confounded between the two PCA com-
ponents.

OPLS REGRESSION
We investigate the same data set using the OPLS regres-
sion approach and regress the simulated spectral data
against time, using one predictive component. Figure 3A
shows OPLS predictive weights, indicating the predictive
(Y-related) variation that is described by the OPLS model.
As expected, only the leftmost peak in the spectral profile
is given any weight in the model, while the time related,
but non-linear component, is not present (compare with
Figure 1). Predictions of a test-set (an independently
drawn sample from the same distribution and with the
same number of observations as the simulated training
data set) using the OPLS model give a Root-Mean-Square
Error of Prediction (RMSEP) of 9.7% (Figure 3B).

PIECEWISE MULTIVARIATE MODELLING
In the piecewise model, the cumulative magnitude
weights Wdist,cum illustrate the cumulative change in the
system over the time-series (Figure 4A). Figure 4B illus-
trates the relative magnitude of change (di) in each sub-
model, allowing the magnitude of change in each sub-
model to be established. Deviations from the expected
symmetrical magnitude of change profile (Figure 4B) for
the simulated data set are a direct effect of the Gaussian
noise present in the data set. It can be seen that di approx-
imately traces the gradient of the non-linear time-related
component (Figure 1A) as expected. For the time-point
predictions, the probability of sub-model membership
was calculated for each of the test-set observations. The

probabilities for all time points from one time-series is
shown as an example in Figure 4C. The lack of symmetry
seen in Figure 4C is because each sub-model (x-axis) rep-
resents a model between two neighbouring time-points.
Therefore, an observation (y-axis) has the potential to fit
fairly well into both of the adjacent sub-models, or one of
them. The time predictions (RMSEP = 6.5%) based on the
best fitting sub-model are displayed in Figure 4D in the
form of a boxplot, indicating successful predictions. The
larger prediction errors observed for time-points 4–8 (Fig-
ure 4D), compared to earlier and later time-points, are
due to lower signal to noise level for these time-points.
This is an effect of the time related component U2 (Figure
1A), which has a lower amount of time-related change
over these time-points, while the noise level remains con-
stant over the time course. The RMSEP is similar to the
OPLS regression model, which is expected in this case
since there is one latent variable in the simulated data that
is linearly related to time. Crucially, the linear OPLS
regression only models the linearly related time variation
in the spectral profile, while the piecewise model shows
both the linear and non-linear time-related variation in
the data. This provides a model demonstrating a more
complete representation of the time-related variation,
enabling a more comprehensive interpretation.

The mercury II chloride data set
To test the method on real data, we used data from a renal
toxicity study using mercury II chloride to induce a proxi-
mal tubular damage [38] in the rat. This is a 1H NMR
based metabonomic study of rat urine with data from
seven time points (pre-dose, 0 h, 8 h, 24 h, 48 h, 72 h, 96
h) and including ten animals in total. Prior to analysis the
data were pre-processed using standard methods. First the
spectra were interpolated to a common chemical shift

Simulated data set visualized as a PCA-trajectoryFigure 2
Simulated data set visualized as a PCA-trajectory. (A) PCA scores trajectory plot of component 1 and 2. (B) PCA loading com-
ponent 1. (C) PCA loading component 2.
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scale using cubic spline interpolation. The region corre-
sponding to water and urea resonances (δ 4.5 – 6) was
excluded from each spectrum and the spectral intensity
was subsequently integrated over adjacent δ 0.04 ppm
width bins. Each spectrum was normalized to the total
sum of 100 units to reduce the overall dilution effect due
to inter animal variability in urine excretion rates. A typi-
cal integrated NMR spectrum after pre-processing is
shown in Figure 5. After 48 hours five animals were sacri-
ficed, rendering N = 5 animals to be left in the study after
48 h.

PRINCIPAL COMPONENT ANALYSIS
Results from PCA analysis of the HgCl2 data is shown in
Figure 6A–C visualized as a PCA trajectory plot, where the
centroids in the score space are calculated for each time-
point and then connect to form the trajectory (Figure 6A).
Figure 6B and Figure 6C show the loadings for each one of
the two PCA components calculated. In many instances
the pattern of change between time points is a combina-
tion of variation in more than one PCA component, mak-
ing it hard to interpret the unique pattern of change over
different regions of the time-series, especially when these
changes may be subtle.

OPLS REGRESSION
The HgCl2 data set was analyzed by linear OPLS regression
against the time using one predictive component and one
time-orthogonal component (based on cross-validation).
Interpretation of the predictive component from the
OPLS regression model against the time provides infor-
mation about variance linearly related to time (Figure
7A). The predictive performance of the model was evalu-
ated by cross-validation, where all time-points from one
animal at a time were left out from the model estimation
and used as a test-set, to evaluate time-predictions (Figure
7B). The Root-Mean-Square Error of Cross-Validation
(RMSECV) was 22.9%.

PIECEWISE MULTIVARIATE MODELLING
Figure 8 shows the magnitude weights (Wdist) (8A) and
the cumulative magnitude weights (Wdist.cum) (8B),
describing the metabolic changes over the time-series. The
magnitude weights (Wdist) carry information about profile
(direction) and magnitude of the changes in each local
time frame. The cumulative magnitude weights (Wdist.cum)
represent the accumulated metabolic state. Inspection of
the magnitude of change in each piecewise model pro-
vides further information about the degree of change at
different parts of the time-course (Figure 8C). Here we can

OPLS regression modelling of the simulated data set (linear regression against time)Figure 3
OPLS regression modelling of the simulated data set (linear regression against time). (A) OPLS predictive weights (Wp), indi-
cating the parts of the descriptor data that are modelled. (B) Time predictions results for the test-set plotted against the true 
time represented as a boxplot.
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see that the largest magnitude of change is occurring in
time frame three (8–24 h).

The predicted time based on cross-validation, as described
in the previous section, plotted against the true time point
for each animal in the study is shown in Figure 9A

(RMSECV = 23.2%), showing a different pattern of predic-
tion results compared to the OPLS time regression model
(Figure 7B). We note that the predictions are less variable
in the early time points compared to the OPLS regression
approach. However, in the latter part of the time-course
the OPLS regression model performs quite similarly to the

Modelling and prediction of the simulated data setFigure 4
Modelling and prediction of the simulated data set. (A) Cumulative magnitude weights (Wdist.cum) for each sub-model. (B) Dis-
tance between time points in each sub-model (di) (C) Probabilities for one observation over all time points to belong to each 
sub-model (in prediction). (D) Predicted time for each observation in the test-set plotted against the true time represented as 
a boxplot.

200150100500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

Sub Model

T
im

e 
po

in
t f

or
 o

bs
er

va
tio

n 

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11

2
4

6
8

10

1
2

3
4

5
6

7
8

9
10

11

1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e 
m

ag
ni

tu
de

 o
f c

ha
ng

e 
(d

i)
P

re
di

ct
ed

 T
im

e 

True Time 

Sub Model (i)Spectral Variable

T1-T2

T2-T3

T3-T4

T5-T6

T6-T7

T7-T8

T8-T9

T9-T10

T10-T11

T4-T5

A B

C D
Page 8 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:105 http://www.biomedcentral.com/1471-2105/9/105
piecewise approach, indicating that there is some varia-
tion in the metabolite profiling data linearly related to
time. For the time points up to 48 h the predictions are rel-
atively good, but as the observation decrease from n = 10
to n = 5 after 48 h, the model becomes less reliable as evi-
denced by the poorer predictions. However, important
information can still be extracted, for example animal 18
(Figure 7B) is clearly a non-responder, which was con-
firmed by histopathology data, showing no renal damage,
and clinical chemistry data, showing osmolality and glu-
cose levels in the same range as control animals, indicat-
ing a negligible effect of the toxin on this animal. Figure
9B shows the probabilities for all time-points of animal
16 for fitting each sub-model, as an example of how sub-
models are chosen.

To provide an overview of the time-related changes, PCA
was used to visualize Wdist.cum as a trajectory (Figure 9C).
The main information provided by this plot is for assess-
ment of whether the perturbed system has returned to its
starting point, and to provide a visualization of the overall
time-events. In Figure 9C we can see a trend towards the
metabolite profile returning to a state close to that prior to
the administration of HgCl2. However, over the study
duration the recovery was not complete, which may either
be due to presence of irreversible injury inflicted by the
toxin or that the time span over which the study was car-
ried out was too short to allow observation of a full recov-
ery.

Implementation
A R package [39]  implementing the method described is
available upon request from the corresponding author. 

Discussion
We have presented a framework for analysis of short time-
series multivariate data, typical of post-genomic (omic)
biology, using piecewise multivariate modelling and we
demonstrated the method on metabolic profiling data.
However, this approach is applicable to other types of
omics data as well. The proposed method facilitates a
transparent model allowing straightforward interpreta-
tion of time related variation in the data over the time
course. Prediction of the time-point for a new sample is
possible. The method has applications in areas such as
monitoring and prediction of disease progression or the
effects of a perturbation over time, allowing for evaluation
of different types of interventions. The piecewise
approach makes no assumption of linear relationship
between the data and time and is therefore ideal for the
analysis of non-linear time-related events in a biological
system, as exemplified in the analysis of the simulated and
the exemplar HgCl2 nephrotoxic data sets.

In comparison to PCA, the proposed method provides a
more detailed picture of the time-related events including
small and local changes in the time domain. In addition,
the predictive properties of the proposed method can be
utilised for prediction of different stages of time-depend-
ent biological events, such as disease or a toxic perturba-
tion studied over time. In comparison to linear
multivariate regression methods (e.g. PLS and OPLS),
using the time as a response variable, the piecewise multi-
variate approach also models non-linear time related var-
iation. This renders a model framework describing
additional time-related variation with the potential to
improve prediction and interpretation if non-linear varia-
tion is dominant, in this way providing a complement to
both PCA and OPLS regression against time. PCA pro-
vides an overview of the main variation in the data, while
OPLS regression against time models monotonic increas-
ing or decreasing signals over the time course. The piece-
wise OPLS approach provides detailed information of
time related effects seen locally over the time-course as
well as non-linear time-related variation.

The proposed method does not exploit autocorrelation
structures in the time-series and does not providing a tool
for forecasting, as do methods like Auto-Regressive Mov-
ing Average (ARMA) [40]. One reason why ARMA cannot
be applied successfully to the type of data described here
is the restricted number of time-points available. Non-lin-
ear modelling approaches, e.g. Artificial Neural Networks
or kernel based regression methods such as Kernel PLS
[41], have properties that in some cases provide models

Typical integrated 1H NMR spectrum from the HgCl2 data setFigure 5
Typical integrated 1H NMR spectrum from the HgCl2 data 
set.
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with better prediction results, however, these models are
often hard or impossible to interpret in relation to the
descriptor variables. For example, in the case of the mer-
cury II chloride data set, a Kernel PLS model provided
only a marginally better prediction result, with a RMSECV
value of 20.0% (using a Gaussian kernel function with
sigma = 0.016 and three Kernel PLS components), com-
pared to the piecewise multivariate model. However, in

many biological applications of predictive modelling it is
essential to have access to transparent models that allow
interpretation, rendering the proposed method beneficial
compared to less transparent alternatives. Another possi-
ble limitation of the proposed method is to handle time-
series samples that are severely unsynchronized, e.g. high
variability in response time between animals after a per-
turbation.

Mercury II chloride toxicity data visualized by PCAFigure 6
Mercury II chloride toxicity data visualized by PCA. (A) PCA score trajectory plot in component one and two. (B) PCA loading 
component 1. (C) PCA loading component 2.
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A new perspective on the time dynamic data was achieved
by placing the focus on the analysis and comparison of
data based on the changes over the time-series, i.e. the
derivative of the time dependent function. This approach
provides new insights into the dynamics of the biological
system, which may otherwise have been overlooked. The
method could also provide the basis for fast and large-
scale comparison of biological responses studied over
time due to different types of perturbations. This can be

accomplished by means of comparison of the piecewise
weights between sub-models, which can be seen as a mul-
tivariate representation of the time-dependent events tak-
ing place in the biological system.

The common case of data sampled in a synchronized fash-
ion has mainly been discussed in this paper. The method
could easily be modified to handle cases where individu-
als in the training set are not sampled at the same time

Mercury II chloride toxicity data set modelled by piecewise multivariate modellingFigure 8
Mercury II chloride toxicity data set modelled by piecewise multivariate modelling. (A) Magnitude weights (Wdist) for each sub-
model, describing the differential time related changes in the NMR spectra. (B) Cumulative magnitude weights (Wdist.cum), 
showing the accumulated changes over the time course. (C) Magnitude of change (di) for each sub-model over the time-
course.
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points, but where the sampling time is known. In this case
the sub-model will be a regression model instead of a dis-
criminant model. In such cases, the boundaries of the
local time frames will be chosen so that they are suffi-
ciently local and overlapping in the time domain. If
changes between subsequent time points are very small
and noisy, while the number of time-points is not limit-
ing, the same approach can be applied by treating some
neighbouring time points together in a common time-
frame when estimating sub-models.

Conclusion
Given short time-series data of high dimensionality, the
proposed multivariate piecewise approach provides more
detailed information compared to other commonly
applied multivariate methods for analysis of post-
genomic data. The temporal resolution for interpretation
of the model is enhanced in the sense that it is easier to
conclude which changes occur over time and when they
occur, improving the interpretation of the data and pro-
viding a tool for the understanding of the biological sys-
tem. The method also allows time predictions, which is an
important feature in many biological and clinical applica-
tions, where time may represent e.g. disease stage and
interventions are evaluated in relation to the disease stage.
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