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Abstract: The goals of this study are to develop a high purity patented silk fibroin (SF) film and test
its suitability to be used as a slow-release delivery for insulin-like growth factor-1 (IGF-1). The release
rate of the SF film delivering IGF-1 followed zero-order kinetics as determined via the Ritger and
Peppas equation. The release rate constant was identified as 0.11, 0.23, and 0.09% h−1 at 37 ◦C for SF
films loaded with 0.65, 6.5, and 65 pmol IGF-1, respectively. More importantly, the IGF-1 activity was
preserved for more than 30 days when complexed with the SF film. We show that the IGF-1-loaded
SF films significantly accelerated wound healing in vitro (BALB/3T3) and in vivo (diabetic mice),
compared with wounds treated with free IGF-1 and an IGF-1-loaded hydrocolloid dressing. This was
evidenced by a six-fold increase in the granulation tissue area in the IGF-1-loaded SF film treatment
group compared to that of the PBS control group. Western blotting analysis also demonstrated
that IGF-1 receptor (IGF1R) phosphorylation in diabetic wounds increased more significantly in
the IGF-1-loaded SF films group than in other experimental groups. Our results suggest that IGF-1
sustained release from SF films promotes wound healing through continuously activating the IGF1R
pathway, leading to the enhancement of both wound re-epithelialization and granulation tissue
formation in diabetic mice. Collectively, these data indicate that SF films have considerable potential
to be used as a wound dressing material for long-term IGF-1 delivery for diabetic wound therapy.

Keywords: Bombyx mori L.; insulin-like growth factor-1 (IGF-1); silk fibroin; wound healing; diabetes

1. Introduction

The skin is a large organ that plays an essential role in maintaining homeostasis
and also protecting the body from microorganism invasion. Severe skin damage can
result in infections, loss of body temperature and fluid balance, and often death [1,2].
Chronic wounds accompanied by inflammation and delayed wound repair commonly
cause the disruption of the period of wound healing [3], which consumes great resources
of healthcare. More than 6.5 million chronic skin ulcer cases primarily caused by blood
pressure, venous stasis, or diabetes mellitus are reported annually in the United States, with
treatment costs estimated to exceed USD 20 billion [4,5]. Although a number of products
have been developed to improve chronic wound healing, no efficient therapy has been
applied so far [6].

Growth factors have been extensively studied for their efficacy in accelerating chronic
wound repair [7,8], with the majority of research focusing on epidermal growth factor,
fibroblast growth factors, platelet-derived growth factor, vascular endothelial growth factor,
and insulin-like growth factors. Many studies have revealed the potential of these growth
factors to improve wound closure, granulation tissue formation, and angiogenesis [9]. A
gel formulation of recombinant platelet-derived growth factor-BB (REGRANEX®) was
approved for treating diabetic ulcers in the United States and Europe [10]. Despite their
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effectiveness, many growth factors exhibit a relatively short half-life in vivo, presumably
due to enzymatic degradation in the wound bed [11,12]. To maintain an effective concen-
tration of growth factors, a formulation of the factors combined with a suitable delivery
vehicle, such as a liposome, micelle, dendrimer, or protein-based drug delivery system,
is suggested [13–15].

Insulin-like growth factor-1 (IGF-1) is a 7.6 kDa polypeptide with three intramolecular
disulfide bridges. IGF-1 has been approved by the FDA for the treatment of Growth Hor-
mone Insensitivity Syndromes [16]. In diabetic wounds, low expression of IGF-1 in the basal
layer and fibroblasts has been proposed to contribute to delayed healing [17]. In addition,
previous reports demonstrated that IGF-1 signaling improved the epithelialization and
vascularization of wounds [18,19]. Nevertheless, because of the short half-life (<15 min),
IGF-1 is usually given as a continuous infusion that limits its clinical usefulness [20].

Silk fibroin (SF) from the Bombyx mori L. silkworm is an FDA-approved polymer
characterized by its biocompatibility, biodegradability, and low immunogenicity [21,22].
Different forms of SF, including films, tubes, gels, particles, microneedles, and electrospun
nanofibers, have been used in the controlled release of growth factors [23–25]. Reportedly,
SF crystallinity and structure are crucial for the better control of the linearity of the growth
factor releasing rate [24]. The diffusion rate of the drugs in SF with a structure of porous
hydrogel networks is distinct from that of hydrophobic fibroin films [26,27]. Aside from
matrix porosity and hydrophobicity, the nature of cargo molecules, including their charge,
shape, and size, also affects a drug’s releasing rate [28]. Thus, the actual release rates of
different growth factors loaded into SF matrices need to be analyzed individually.

The slow release of IGF-1 from a freeze-dried porous SF scaffold has been demon-
strated in vitro. The total cumulative IGF-I release after 29 days was approximately 26%
of the initial loading, and the release model did not follow the zero-order kinetics [29].
Additionally, the beneficial effect of the slow-release effect in tissue engineering and muscle
therapy applications has also been demonstrated in previous studies [30–32]. Nevertheless,
the release kinetics of IGF-1 loaded at different dosages into an SF film, as well as the in vivo
biological potency of released IGF-1 on chronic diabetic wound healing, are unknown.
Therefore, the aim of this study was to determine the release kinetics and dosage effect of
IGF-1 loaded onto an SF film, which was performed with a novel patent pending procedure
(Figure 1), as well as to evaluate the healing effectiveness and gene expression of a diabetic
wound treated with either an IGF-1-loaded SF film or an IGF-1-loaded commercial dressing.
The results of the current study can assist in developing an appropriate growth factor
delivery vehicle, as well as a chronic wound dressing, both of which are currently lacking
in clinical application.
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Figure 1. Schematic representation of the stepwise procedure of insulin-like growth factor 1 (IGF-1)-
loaded silk fibroin film (IGF-1-loaded SF film) fabrication.

2. Results
2.1. In Vitro Release Studies

Hydrocolloid, owing to its high wound drainage absorption and moisture maintaining
abilities, is a common dressing material for wound repair [33]. The study used hydrocolloid
as a control to investigate the effectiveness of SF films on drug release and wound healing.
We determined the IGF-1 release rate from SF films or hydrocolloid dressings over a period
of more than 30 days. SF films were first impregnated with 0.65, 6.5, or 65 pmol IGF-1
in a final volume of 5 mL. In all cases, all of the IGF-1 was adsorbed onto the matrix as
determined by measuring residual IGF-1 in the solution using an ELISA kit. The IGF-
1 loaded films were then transferred into 5 mL of PBS to determine the release rate of
IGF-1. The hydrocolloid dressing exhibited a strong IGF-1 binding activity; less than 10%
of the bound IGF-1 was released after incubation in PBS for 34 days either at 4 ◦C or
37 ◦C. Cumulative IGF-1 release from SF films loaded with 0.65, 6.5, or 65 pmol samples
was found to be approximately 14%, 16%, and 28%, respectively, after 34 days at 4 ◦C
(Figure 2A, Figure S1A,C). The IGF-1 release rate at 37 ◦C was significantly faster than that
at 4 ◦C, showing a cumulative release of 93.2%, 88.9%, and 65.1% for SF films loaded with
0.65, 6.5, or 65 pmol IGF-1, respectively, at day 34 (Figure 2B, Figure S1B,D). Free 65 pmol
IGF-1 was only detected within 24 h, reflecting its short half-life.
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Figure 2. Release profiles of insulin-like growth factor 1 (IGF-1)-loaded silk fibroin film (IGF-1-loaded
SF film), IGF-1 loaded onto SF films or hydrocolloid dressing. (A) The cumulative release curve of
65 pmol IGF-1 (i) from 24 to 96 h, and (ii) 24 to 816 h at 4 ◦C. (B) The cumulative release curve of
65 pmol IGF-1 (i) from 24 to 96 h, and (ii) 24 to 816 h at 37 ◦C. (•) SF films loaded with IGF-1; (#)
Hydrocolloid loaded with IGF-1; (H) IGF-1 alone, * p < 0.05, ** p < 0.01, *** p < 0.001 in comparison
with IGF-1 alone treatments (n = 3, ± SEM) using a Dunnett’s t test.

The kinetic release profiles of SF films illustrated a zero-order release mechanism
either in the storage (4 ◦C) or in reaction environments (37 ◦C). The SF films loaded with
0.65 pmol IGF-1 displayed a release constant (K) of 0.03% h−1, release exponent (n) of 1.03,
and regression coefficient (R2) value of 0.92 between 48 and 816 h at 4 ◦C. The values of the
same parameters (K, n and R2) for the same time period for SF films loaded with 6.5 pmol
IGF-1 were (K = 0.05% h−1; n = 0.97, and R2 = 0.96) and with 65 pmol (K = 0.06% h−1;
n = 1.02, R2 = 0.88). The results also demonstrated that SF films loaded with 0.65 or 6.5 pmol
IGF-1 were almost completely released by the end of 816 h.

At 37 ◦C, SF films loaded with 0.65 pmol (K = 0.11% h−1; n = 1.21) and 6.5 pmol
(K = 0.23% h−1; n = 1.00) IGF-1 showed zero-order release mechanisms, with regression
coefficient (R2) values of 0.95 and 0.96, respectively, between 48 and 456 h. A zero-order
release mechanism was also found in SF films loaded with 65 pmol IGF-1 (K = 0.09% h−1;
n = 1.05; R2 = 0.98) between 48 and 816 h at 37 ◦C (Table 1). This study noted that the
complete release of 6.5 pmol adsorbed on the SF film could be achieved during the 30-day
period. Higher amounts of IGF-1 (65 pmol) loaded into SF films also maintained rapid
exponential release between 48 and 816 h at 37 ◦C, although this required a longer release
time (t 50 = 648 h for 50% drug release) for complete release than the films loaded with
a lower IGF-1 quantity. These results show that the complete drug release precisely for
wound healing was correlated with the amount of the payload in SF film.
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Table 1. Parameters obtained from Ritger and Peppas equation for IGF-1 release from SF films.

Loading Amount of
IGF-1 (pmol)

Temperature
(◦C)

K b

(% h−1)
n c R2 d Time e

(h)

0.65
4

0.03 1.03 0.92 48–816
6.5 0.05 0.97 0.96 48–816
65 0.06 1.02 0.88 48–816

0.65
37

0.11 1.21 0.95 48–456
6.5 0.23 1.00 0.96 48–456
65 0.09 1.05 0.98 48–816

a Ritger-Peppas equation was defined as follows: Mt/M∞ = Kt n; where Mt is the amount of IGF-1 released at
time t; M∞ is the total amount of IGF-1 released at infinite time; n is the release exponent. b,c K and n values
are the release and constant exponent, respectively, which are calculated using the Ritger-Peppas equation. d R2

values are linear regression coefficient values. e Time means the vector of the corresponding time value.

2.2. In Vitro and In Vivo Wound Healing Studies

The effects of IGF-1 alone, hydrocolloid IGF-1, and SF film–IGF-1 on scratch closure
and viability of BALB/3T3 fibroblasts in hyperglycemic media were evaluated. The scratch
closure assay was accelerated by approximately 25% and 37% in the presence of 65 pmol
IGF-1 alone or SF film IGF-1 treated for 48 h, respectively (Figure 3A,B). However, the cell
cytotoxicity and viability showed no difference with respect to IGF-1, hydrocolloid IGF-1,
or SF film IGF-1 treatments (Figure 3A,C).

Figure 3. Effects of IGF-1, hydrocolloid IGF-1, and SF film IGF-1 on BALB/3T3 fibroblast scratch
closure, cytotoxicity, and viability. (A) Scratch closure and cytotoxicity of BALB/3T3 monolayer
scratch closure in the presence of hyperglycemic medium at different times. Cells were stained
with LIVE/DEAD stain and examined under a fluorescence microscope. (B) Quantification of cell
scratch closure after different treatment at 48 h in hyperglycemic medium. (C) Cell viability in the
presence after different treatment at 72 h. Significant differences between the control (black bar) and
treatment groups were determined by Dunnett’s multiple comparison post hoc test. ** p < 0.01; n = 3;
mean ± SEM. (Scale bars = 500 µm).
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Using a diabetic mouse as a wound healing model, we further compared the effect of
IGF-1-loaded SF films and the hydrocolloid dressing on diabetic wound healing. In this
study, we used 8-week-old female leptin-receptor deficient db/db mice, characterized by
hyperglycemia and impaired wound healing, as a model for type II diabetes mellitus. The
wound area in all treatment conditions was similar, with more than 50% showing recovery
late in the post-wounding period, i.e., after 10 to 13 days of wound treatment. However,
compared to the mice which received the PBS treatment (negative control), the external
wound area was smaller in the IGF-1-loaded SF film treatment mice (Figure 4).

Figure 4. Time course analysis of diabetic wound healing in PBS (control), native insulin-like growth
factor 1 (IGF-1), a commercial dressing product (hydrocolloid IGF-1), and insulin-like growth factor
1-loaded silk fibroin film (SF film IGF-1) treatments. Images of the wound area from days 0 to 13
post-wounding (Scale bars = 5 mm).

To determine the degree of wound closure in diabetic mice, we removed the wound
tissue after 13 days of treatment and examined sections of the wound tissue using H&E
staining. Extracellular matrix composition in the wound bed was further evaluated using
Masson’s trichrome staining, and vessel density was confirmed using a CD31 immunohis-
tochemistry stain. As shown in Figure 5A–C, wound closure was faster with the application
of hydrocolloid IGF-1 or SF film IGF-1 treatments, compared to PBS or IGF-1 treatments
alone. Compared to hydrocolloid IGF-1 treatment, SF film IGF-1-treated wounds dis-
played relatively smooth surfaces, suggesting an enhancement of angiogenesis in the
diabetic wounds.
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Figure 5. Sections of regenerative tissue in the wound area following treatment with PBS (control),
native insulin-like growth factor 1 (IGF-1), a commercial dressing product (hydrocolloid IGF-1),
and insulin-like growth factor 1-loaded silk fibroin films (SF film IGF-1) 13 days post-wounding.
(A) Immunohistological sections of regenerative tissue were stained with an anti-human CD31
antibody. The presence of blood vessels is indicated by red arrows, (B) Hematoxylin and Eosin (H&E)
stain, and (C) Masson’s trichrome stain (black frame). (Scale bars = 1 mm).

As results have previously shown, the wound edge and epithelial gap in db/db mice
administered with IGF-1-loaded SF films were improved by 13.2% and 23.0%, respec-
tively, both of which were smaller than PBS control mice for the same skin repair period
(Figure 6A,B). Furthermore, IGF-1-loaded SF films displayed a significantly higher cell
proliferation activity, by approximately six times higher than the PBS control group in the
granulation tissue area (Figure 6C). The highest re-epithelization was shown in SF film
IGF-1 treatments (Figure 6D), while the epithelial tissue in the hydrocolloid IGF-1 group
was clearly thicker than the PBS control group (Figure 6E). For all treatments, no significant
differences were observed in the adipose tissue gap (Figure 6F).
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Figure 6. Analysis of tissue regeneration in diabetic wounds treated with PBS (control), native insulin-
like growth factor 1 (IGF-1), a commercial dressing product (hydrocolloid IGF-1), and insulin-like
growth factor 1-loaded silk fibroin films (SF film IGF-1). (A) Quantification of wound edge distance,
(B) epithelial gap, (C) granulation tissue area, (D) re-epithelialization, (E) epithelial tissue area, and
(F) adipose tissue gap following wound healing 13 days post-wounding. Significant differences
between PBS (black bar) and other treatments were determined using Dunnett’s multiple comparison
post hoc test. * p < 0.05, ** p < 0.01; n = 5; ±SEM.

We verified whether the IGF-1 released from SF films contributed to the stimulatory
effects shown on wound healing in db/db mice by analyzing the expression and phospho-
rylation levels of IGF1R and epidermal growth factor receptor (EGFR), which are involved
in the wound epithelialization-related signaling pathways (Figure 7A). Expression levels
of IGF1R were approximately the same in all treatments (Figure 7B), while a significant
enhancement (1.47 times) in the IGF1R phosphorylation level was observed following SF
film IGF-1 treatment when compared to the PBS control, native IGF-1, and IGF-1-loaded
hydrocolloid treatments (Figure 7C). In addition, no significant changes in EGFR expression
and phosphorylation were noted for any of the treatment groups (Figure 7D,E). These
results indicated that the promotion of wound recovery in db/db mice was related to the
enhancement of the IGF1R phosphorylation level in SF film IGF-1 treatment.
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Figure 7. Immunoblotting for insulin-like growth factor type 1 receptor (IGF1R) or epidermal
growth factor receptor (EGFR) and phosphorylated IGF1R or EGFR pathway from wound tissues
of diabetic mice following treatment with PBS (control), native insulin-like growth factor 1 (IGF-
1), a commercial dressing product (hydrocolloid IGF-1), and IGF-1-loaded SF film (SF film IGF-1)
treatments. (A) Representative Western blot of db/db mice treated with different treatments 13 days
post-wounding. (i) represents IGF-1 receptor (IGF1R) and phosphorylated IGF1R protein expression.
(ii) represents EGF receptor (EGFR) and phosphorylated EGFR protein expression. Actin was used
as a loading control. Quantification of (B) IGF1R protein expression; (C) phosphorylation of IGF1R;
(D) EGFR protein expression; and (E) phosphorylation of IGF1R. Significant differences between
control (PBS) and other treatments were determined using Dunnett’s multiple comparison post hoc
test. ** p < 0.01; n = 5; ±SEM.
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3. Discussion
3.1. Drug Delivery for Wound Healing

Wound healing is a dynamic physiological process consisting of several phases, in-
cluding: (i) coagulation and hemostasis, (ii) inflammation, (iii) proliferation, and (iv)
remodeling [34]. Growth factors play a major role in wound healing as they stimulate the
proliferation and migration of several cell types, as well as the production of the extracel-
lular matrix [35,36]. Nevertheless, certain conditions, such as diabetes, characterized by
poor microcirculation prohibit the effective delivery of growth factors for chronic wound
repair [37]. In addition, many growth factors exhibit a short half-life in vivo. Therefore, it
is generally believed that a constant supply of growth factors to the localized wound bed
via slow-release drug delivery would be beneficial in chronic wound therapy [38,39]. The
findings observed in this study are also strongly in support of this theory, as evidenced by
the greater diabetic wound healing due to the sustained release of the IGF-1 growth factor
in the IGF-I loaded SF films treatment group.

3.2. SF as a Drug Delivery Material

In the last two decades, SF has been proved to be an excellent material carrier for
the delivery of a variety of bioactive compounds including amino acids and growth
factors [40–42]. For instance, kindling epileptogenesis was controlled for one week using
an SF-based release system combined with adenosine augmentation therapies for refractory
epilepsy [41]. One important and potentially useful property of SF as a delivery matrix
relies on its capability in prolonging the half-life of the growth factor complexed with it. The
activity of human acidic fibroblast growth factor could be extended for more than 15 days
when delivered via a heparinized SF hydrogel, which can also facilitate the migration
of fibroblast cells and the healing of full-thickness skin excision in rats [42]. Similarly,
the half-life of nerve growth factor embedded with SF-based nerve conduits could be
prolonged for at least 3 weeks [43]. Insulin also exhibits approximately a twice longer
half-life in SF–insulin bioconjugate form than in its native soluble form [44]. However,
no significant difference was noted in wound closure among SF film, SF film loaded with
EGF/silver sulfadiazine, and hydrocolloid [45]. The current study demonstrates that the
SF films fabricated using the presented method exhibit a sustained release ability of IGF-1,
preserving its activity over than 30 days. Such properties will surely benefit chronic wound
healing, which commonly takes several months for complete recovery.

The growth factor release kinetics of SF films may depend on the composition of SF
structure, mixture, or drug type. It has been reported previously that SF films subjected
to air-drying and water vapor annealing transform their amorphous structure into a high
crystallinity beta-sheet content [46–48]. The increase in crystallinity in the silk polymer
matrix has been shown to be advantageous for specific drug loading [23,49]. According
to previous reports, it has been hypothesized that the binding of silk fibroin protein
and substrate is attributed to hydrophobic interactions as well as partial electrostatic
interactions [50,51]. For long-term IGF-1 release, we established a novel patented procedure
to improve the insolubility and biocompatibility of SF film by modulating its crystalline
structure. Besides several superior physical properties such as transparency and mechanical
strength, the SF films obtained by our method exhibit an excellent property in IGF-1
delivery—prolonging the IGF-1 half-life for more than 2000 times and showing a sustained
release for more than 30 days. More importantly, the IGF-1 protection and slow-release
activities are also reflected in the promotion of the wound healing in vivo.

3.3. Release Kinetics of IGF-1 from SF

In pharmacokinetic studies, the drug release mechanism can typically be evaluated
based on the exponent n. If n = 0.5, the release mechanism is considered Fickian diffusion;
if n = 1, the release mechanism belongs to Case-II release, with the drug release rate
corresponding to zero-order release kinetics [52]. For anomalous release behaviors between
Fickian and Case-II release, the n value is generally between 0.5 and 1 [28]. A zero-order
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release profile is typically preferred in drug delivery because the drug could be maintained
at a constant concentration and hence the frequency of drug administration and side effects
could be reduced [53]. It has been demonstrated that the drug release kinetics varies widely
and depends on factors such as the molecular weight, composition, hydrophobicity, and
ionization of the drug and its carrier [52]. As far as we are aware, there is no clinically
established range of IGF-1 for wound therapy. Therefore, we performed a pilot test first
(data not shown) and the results showed that the optimal range was between 6.5 pmol and
65 pmol. In this study, we further achieved a zero-order release kinetics of IGF-1 using SF
film for at least 19 days even when relatively low amounts of IGF-1 (0.65 and 6.5 pmol)
were used. Similar zero-order kinetics for SF-based delivery results was also noted in
previous studies [41,54]. The delivery of small molecular drugs such as adenosine has been
tested on the SF film using drying and crystallization processes. The release mechanism of
adenosine loaded into SF was close to zero-order kinetics for 14 days [55].

3.4. Drug Release Model of SF

When relatively low amounts of IGF-1 (0.65 and 6.5 pmol) were used to load into
SF films, approximately 90% and 75%, respectively, of IGF-1 were released exponentially
from SF films till 19 days at 37 ◦C before achieving a slow and stable diffusion rate. SF
films loaded with fluorescein-iso-thio-cyanate (FITC)-dextran with a 4 to 40 kDa molecular
weight also fitted the two-phase release profile, the exponential and diffusion-based model,
in an earlier report [50]. On the other hand, a higher amount of IGF-1 (65 pmol) loaded into
the SF film sustained the exponential release till the end of the study. For a scaffold of low
porosity such as the SF film manufactured in our study, it has been proposed that the drug
release commonly and primarily is based on the heterogeneous hydrolysis of the surface
domain, and other factors such as diffusion, polymer swelling and polymer degradation
play a secondary role [21,56]. Many factors during fibroin degumming, purification, and
film-forming may alter the characteristics of SF films, thereby affecting the drug loading
and drug release model predicted for SF films [57–60]. Thus, in addition to loading optimal
amounts of the drug payload, sustained exponential release of the drug may be prolonged
through an improved manufacturing procedure to control the agent’s dosage.

3.5. In Vitro and In Vivo Diabetic Wound Healing Studies

To evaluate the IGF-1 loaded with SF film in diabetic wound healing, we determined
the effect of IGF-1 alone, hydrocolloid IGF-1, and SF film IGF-1 in BALB/3T3 cells firstly.
Although, compared to the control treatment, the rate of cell scratch closure was enhanced
in IGF-1 and SF film IGF-1 treatments, the effect of wound healing reflected no significant
difference between IGF-1 and SF film IGF-1 in vitro short-term cell life. However, it is
somewhat satisfying to find that the long-term wound healing in diabetic mice, as well
as other internal wound parameters, including blood vessels, wound edge, granulation
tissue, and re-epithelialization, were significantly improved in the experimental group
treated with SF film loaded with IGF-1 compared to free IGF-1 or hydrocolloid loaded with
IGF-1. The finding is in good agreement with several earlier studies that also implicated
the promoting activity of SF in re-epithelialization, tissue formation, and regeneration of
corneal epidermal and chronic wound healing [6,61–63]. All these results strongly suggest
that SF film is a useful biomaterial in accelerating diabetic wound healing.

Moreover, IGF-1 is a well-known stimulator of keratinocyte growth and migration, key
properties for wound re-epithelialization [18,64]. In addition, IGF-1 facilitated the activation
of the PI3-kinase (PI3K)/Akt, a key player in the signaling of angiogenesis [19]. In the
current study, we also observed an increase in blood vessels in granulation tissue following
treatment with the IGF-1-loaded SF film. Angiogenesis was less evident in wounds treated
with free IGF-1, presumably because the growth factor was rapidly degraded in vivo [65],
thereby limiting its effect on wound repair.
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3.6. Molecular Mechanisms of Wound Healing by IGF-1-Loaded SF Films

The current study also analyzed the expression levels of IGF1R and EGFR, two major
players involved in the regulation of epidermal cell growth and migration [66]. Immuno-
histochemistry analysis of the wound sections revealed that SF film loaded with IGF-1 only
downregulated IGF1R phosphorylation levels, while EGFR phosphorylation and IGF1R
and EGFR expression levels were similar among all treatments. A number of previous stud-
ies have also demonstrated that in diabetic mice, both IGF1R and EGFR could be activated
even when insulin signaling was interrupted, and the activation of IGF1 and EGF pathways
led to the enhancement of keratinocyte migration [18,67,68]. Our study provides strong
evidence showing that IGF1R phosphorylation is enhanced by IGF-1, which is released
continuously from the SF film. This was followed by the down-regulation of IGF1R-related
signal transduction pathways [69], such as Shc, IRSs, PI3K, and Akt, eventually leading
to the acceleration of cell migration, proliferation, protein synthesis, and wound repair in
db/db mice (Figure 8).

Figure 8. Schematic representation of insulin-like growth factor 1 (IGF-1) triggering the insulin-like
growth factor type 1 receptor (IGF1R)-related signal transduction pathway. Activation of the IGF-1
receptor (IGF1R) triggers several signaling pathways. IGF1R, a tyrosine kinase, auto-phosphorylates
multiple cellular proteins, including members of the Shc, Rac, Ras/Raf, and IRS1/IRS2 families.
Considering phosphorylation, Shc was activated to regulate Rac and Ras/Raf. The Rac pathway is
important for cell migration, while the Ras/Raf pathway is critical for proliferative responses. IRSs
interact with signaling molecules, while activation of the PI3K and Akt pathways prevents apoptosis,
also triggering protein synthesis.

3.7. Wound Healing Effectiveness between Hydrocolloid and SF Films

Hydrocolloid is a common dressing material which forms a moist environment for
wound repair. Although hydrocolloid is a useful dressing in wound healing, it absorbs IGF-
1 strongly, resulting in very little IGF-1 release and less significant wound healing than using
IGF-1-loaded SF films. A similar growth factor release profile has been reported previously
for hydrocolloid [70], and therefore, it is not surprising to find that the hydrocolloid dressing
alone lacks a healing function in diabetic wounds both in experimental animals [71,72]
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and in diabetes patients [73,74]. The continued presence of critical IGF-1 concentrations
in the wound bed has been shown to stimulate wound repair significantly in diabetic
animal models [17,75]. A previous study also indicated that human mesenchymal stem
cell differentiation and tissue regeneration were enhanced through IGF-1 released from
an SF scaffold accompanied with the acceleration of wound repair [29]. Although IGF-1 is
thought to enhance cell proliferation primarily, the wounds of db/db mice were improved
during all wound phases using our dressing. Several earlier reports also showed that
silk fibroin could optimize platelet adhesion, aggregation, anti-inflammation, and scar
prevention [76–78]. Therefore, we propose that the IGF-1-loaded SF film is useful for all
wound healing phases.

4. Materials and Methods
4.1. Preparation of an SF Aqueous Solution

Silkworms (Bombyx mori L.) were reared in a temperature-controlled environment
(26–28 ◦C) in our institution (Taiwan Silkworm Germplasm, Miaoli District Agricultural
Research and Extension Station, Miaoli, Taiwan) for cocoon production. The SF degumming
protocol was modified from previously described procedures [79,80]. Briefly, cocoons were
boiled in deionized water for 3 h to remove sericin from raw silk. Next, degummed silk
was dried at 75 ◦C, and then dissolved in 9.3 mol/L lithium bromide (FERAK, Berlin,
Germany) at 60 ◦C for 6 h. The aqueous fibroin solution was dialyzed against deionized
water using a dialysis membrane (MWCO 6000–8000 Da, Spectra/Por, New Brunswick, NJ,
USA) for 48 h at room temperature.

4.2. Preparation of IGF-1-Loaded SF films

Fabrication of water-insoluble SF films was performed as previously described [46]
with minor modifications, and the novel patented procedure is illustrated in Figure 1. The
SF solution was cast onto a dish previously coated with polydimethylsiloxane (PDMS)
(Bio-cando, Taoyuan, Taiwan) and allowed to air dry. The film was then water-annealed in
a water vapor environment to enhance beta-sheet crystallinity. Water-insoluble SF films
and commercial 3M TM Tegaderm TM hydrocolloid wound dressings (hydrocolloid) (3M,
Maplewood, MN, USA) were cut into 10-mm diameter circles and then sterilized using UV
irradiation. The dried SF film was approximately 50–70 µm thick.

4.3. Release Kinetics of IGF-1-Loaded SF Films

IGF-1 used in this study was purchased from Sigma-Aldrich, St. Louis, MO, USA
(Cat. #SRP3069). The release kinetics of IGF-1-loaded SF films were determined using a
previously published procedure [81]. We chose 37 ◦C to simulate the condition of human
wounds and 4 ◦C to determine whether the temperature is suitable for storage of IGF-1-
loaded SF film for clinical uses. First, the dressings were incubated in 5 mL of IGF-1 of
different concentrations (0.65 pmol, 6.5 pmol, and 65 pmol) with gentle shaking at 4 ◦C
and 37 ◦C for 816 h (34 days). Binding of IGF-1 to SF films or hydrocolloid was determined
by measuring IGF-1 depletion from the solution using an IGF-1 DuoSet ELISA kit (R&D
Systems, Minneapolis, MN, USA). The IGF-1 loaded SF films and hydrocolloid dressing
were transferred to 5 mL of phosphate-buffered saline (PBS) and the cumulative IGF-1
release was then determined at different time points using ELISA.

The Ritger-Peppas equation, which is used to describe Fickian and non-Fickian release
behavior [52], was applied to the kinetic study to investigate the IGF-1 release mechanism
from SF films in this study. The equation 1 is as follows:

Mt /
M∞ = Kt n (1)

where Mt is the amount of IGF-1 released at time t; M∞ is the total amount of IGF-1 released
at infinite time; K is the release constant; n is the release exponent.
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4.4. In Vitro and In Vivo Wound-Healing Studies

Mouse BALB/3T3 fibroblasts were cultured in DMEM with 50 mM D-glucose and 10%
FBS (5% CO2/37 ◦C). The cells scratch closure was investigated by CytoSelect ™ Wound
Healing Insert Kit (Cell Biolabs, San Diego, CA, USA) according to the manufacturer’s
protocol. Wound closure was imaged post scratching using an inverted fluorescence
microscope (ECLIPSE Ts2-FL, Nikon, Tokyo, Japan). Cell cytotoxicity was calculated
by LIVE/DEAD™ Viability/Cytotoxicity Kit (Thermo Fisher Scientific, Waltham, MA,
USA) and examined under a fluorescence microscope. The cell viability was measured
with alamarBlue reagent (Thermo Fisher Scientific, Waltham, MA, USA) according to the
formula provided by manufacturer.

Murine wound healing model assays were approved by the Institutional Animal Care
and Use Committee of the National Taiwan University (IACUC Approval No: NTU108-
EL-00071). Six-week-old BKS.Cg-Dock7 m +/+ Lepr db/JNarI (db/db) female mice were
obtained from the National Laboratory Animal Center of Taiwan (Taipei, Taiwan). Mice
were housed in polycarbonate animal cages with hardwood bedding at 21 ± 1 ◦C and
12 h/12 h light/dark cycles and had free access to water and food. Prior to the experiment,
the plasma glucose level of each mouse was tested; those with a blood glucose level above
300 mg/dL were chosen for further analysis. Mice were anesthetized using isoflurane and
8 mm-diameter, full-thickness wounds were generated. Mice were separated into four
treatment groups; each wound received one of the following treatments: (A) 5 µL of PBS
(control group); (B) 5 µL PBS containing 65 pmol IGF-1; (C) a circular 10-mm-diameter
hydrocolloid dressing loaded with 65 pmol IGF-1 (hydrocolloid IGF-1); and (D) a circular
10-mm-diameter SF film containing 65 pmol IGF-1 (SF film IGF-1). Treatments were applied
directly to the wound bed and as a fixed layer were covered with a sterile 3M TM Tegaderm
TM transparent film (3M, Maplewood, MN, USA). Wound condition was measured and
recorded every 2–3 days. Mice were sacrificed and wound tissues were harvested for
further histology and protein analysis 13 days post-wounding.

4.5. Histological Analysis of Wound-Healing

For histological analysis, tissues were fixed in formalin, embedded with paraffin, sliced
into 5 µm sections, and stained using hematoxylin (3008-1, Muto Pure Chemicals, Tokyo,
Japan) and eosin (32042, Muto Pure Chemicals, Tokyo, Japan) (H&E). Some tissue sections
were deparaffinized and rehydrated prior to staining with CD31 antibody (GTX130274,
Genetex, Hsinchu, Taiwan) using an automated immunohistochemistry system (BOND-
MAX, Leica, Wetzlar, Germany). These were then visualized under a light microscope (IM-3,
OPTIKA, Ponteranica, Italy). Wound parameters including wound edge distance, epithelial
gap, granulation tissue area, re-epithelialization, epithelial tissue area, and adipose tissue
gap were calculated from five individual mice.

4.6. Immunoblotting Assay

Total proteins were extracted from the skin wound tissue of db/db mice using RIPA
lysis buffer (Cell Signaling, Danvers, MA, USA) containing an ethylenediaminetetraacetic
acid-free protease inhibitor cocktail (Roche Diagnostics, Rotkreuz, Switzerland). Protein
extracts were resolved on a 4–20% gradient sodium dodecyl sulfate (SDS)–polyacrylamide
gel (NuSep, Germantown, MD, USA) and transferred onto a nylon membrane. Membranes
were blocked for 1 h with 5% BSA in Tris buffer-saline (pH 7.6) containing 0.1% Tween-
20 (TBST), and then incubated with the following primary antibodies: anti-insulin-like
growth factor-1 receptor (IGF1R) antibody (#9750, Cell Signaling, Danvers, MA, USA), anti-
phosphorylation of IGF-1 receptor (pIGF1R) antibody (Cell Signaling, Danvers, MA, USA),
anti-epidermal growth factor receptor (EGFR) antibody (Genetex, Irvine, CA, USA), anti-
phosphorylation of epidermal growth factor receptor (pEGFR) antibody (Cell Signaling,
Danvers, MA, USA), and anti-actin antibody (Santa Cruz, Dallas, TX, USA) for 2 h at
20 ± 1 ◦C. After washing with TBST, membranes were incubated with a horseradish
peroxidase (HRP)-conjugated secondary antibody (Santa Cruz, Dallas, TX, USA) for 2 h
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at 20 ± 1 ◦C followed by membrane incubation in an enhanced chemiluminescent (ECL)
detection system (WBKLS0500, Merck Millipore, Burlington, MA, USA) for target antigen
visualization. Intensity of targeted protein bands was quantified and normalized to the
actin expression area using ImageJ 1.8.0v software (National Institute of Health, Bethesda,
MD, USA)

4.7. Statistical Analyses

Kinetic, in vitro, and in vivo studies were calculated with a minimum of n = 5 for each
treatment. Statistical analyses were performed using SAS-EG 7.1 software (SAS Enterprise
Guide, SAS Institute Inc., Cary, NC, USA). One-way ANOVA, followed by Dunnett’s
multiple comparison post hoc test, was used to compare statistically significant differences
(* p < 0.05, ** p < 0.01, and *** p < 0.001) among control and experimental samples. All error
bars represent the standard error of the mean (SEM).

5. Conclusions

In the current study, we have established a method to produce highly pure SF films,
which served as an ideal matrix for IGF-1 sustained release following zero-order phar-
macokinetics. We have also confirmed that the cell growth promoting activity of IGF-1
was preserved after being complexed with the SF films, thereby significantly prolonging
the half-life of IGF-1. We further demonstrated that the effectiveness of IGF-1-loaded
SF films in vitro and in vivo diabetic wound healing was likely related to the sustained
release of IGF-1 from the SF films. Finally, evidence was provided that the released IGF-1
triggered the down-regulation of IGF-1 receptor phosphorylation, thereby accelerating the
downstream wound repair process such as cell migration. Together, we believe that SF
films fabricated using the protocol presented in the current study are an excellent vehicle
for sustained drug delivery that will find important applications in wound healing as well
as other applications such as tissue regeneration and organ reconstruction.

6. Patents

Lin, M.-J. and Lu, M.-C. are coinventors of a patent (Taiwan patent pending number:
109138288) application pertaining to the SF film system disclosed in the manuscript.
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