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Abstract: The first reports of cardiac Na/K-ATPase signaling, published 20 years ago, have
opened several major fields of investigations into the cardioprotective action of low/subinotropic
concentrations of cardiotonic steroids (CTS). This review focuses on the protective cardiac
Na/K-ATPase-mediated signaling triggered by low concentrations of ouabain and other CTS, in the
context of the enduring debate over the use of CTS in the ischemic heart. Indeed, as basic and clinical
research continues to support effectiveness and feasibility of conditioning interventions against
ischemia/reperfusion injury in acute myocardial infarction (AMI), the mechanistic information
available to date suggests that unique features of CTS-based conditioning could be highly suitable,
alone /or as a combinatory approach.
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1. Introduction

Without a doubt, the prompt restoration of blood flow to reinstate the perfusion of the ischemic
myocardium has substantially improved the outcomes for patients hospitalized with acute myocardial
infarction (AMI) [1]. It is also clear that life-saving reperfusion therapy is double-edged, as it ineluctably
brings about the structural and functional damage of reperfusion injury to the myocardium [2]. With
an estimated potential to reduce the size of the infarct by up to 40%, the development of clinically
effective strategies to reduce reperfusion injury in AMI is one of the most-anticipated advances in
cardiovascular therapies for the current decade [3]. To date, there is no stronger protection against
reperfusion injury than the one afforded by adjunct conditioning treatment at reperfusion. As basic and
clinical research continues to support the effectiveness and feasibility of conditioning interventions,
this review covers insights into the protective cardiac Na/K-ATPase-mediated signaling triggered by
ouabain and other cardiotonic steroids (CTS), as well as its potential application in the context of the
enduring debate over the use of CTS in the ischemic heart.

2. Cardiac Pre- and Post-Conditioning against Ischemia/Reperfusion Injury

In 1986, Murry et al. first described the ability to precondition (PC) the heart to protect against
infarction following ischemia/reperfusion injury (I/R). In dogs, the seminal study showed that
a sequence of few very brief ischemic episodes induced by coronary occlusion, interspersed among
brief periods of reperfusion, limited the cardiac damage induced by a subsequent prolonged ischemic
insult. Strikingly, the infarct size was substantially smaller in the dogs that were exposed to the short
periods of ischemia, than in the controls. The authors coined the term ischemic preconditioning (IPC)
to describe this phenomenon [4]. Given its invasive nature and the need for intervention prior to
the ischemic event, IPC’s limited clinical application was recognized early on. However, pre-clinical
and clinical research has since shown that IPC-like protection can be obtained through ischemic
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post-conditioning (IPost) (applied at the time of reperfusion) and/or remote ischemic conditioning
(RIC) (applied non-invasively to a limb during or after myocardial ischemia) [5].

3. Pharmacologically-Induced Cardiac Protection

With the characterization of the cellular mechanisms involved in IPC, the concept of
pharmacological PC took form [6]. Indeed, although PC was initially described as a response of
the myocardium to ischemia, it soon became apparent that a similar phenotype could be elicited by
other stimuli. Pharmacological strategies to activate IPC-like protective signal transduction pathways,
while avoiding the vascular and myocardial injury that could result from coronary artery occlusion,
were widely seen as less harmful, and thus more clinically suitable than the IPC-based strategies.
A number of pharmacological agents, including agonists of G protein-coupled receptor (GPCR)s
(adenosine A1 or A3, bradykinin B2, α1-adrenergic, muscarinic M2, angiotensin AT1, and endothelin,
δ1-opioid), nitric oxide (NO) donors, phosphodiesterase inhibitors, and various noxious stimuli (such
as endotoxin derivatives, various cytokines, and reactive oxygen species), have been found to elicit an
IPC-like protection (reviewed in the literature [7]). Figure 1 summarizes the main signaling cascades
that have been involved to date, including the eNOS/PKG, reperfusion injury salvage kinase (RISK) [8],
and the survivor factor enhancement (SAFE) pathways, which ultimately result in the opening of
the mitoK-ATP channel (mKATP) and inhibition of the mitochondrial permeability transition pore
(mPT) [9].
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Figure 1. Major cardiac conditioning signaling pathways. The activation of cardioprotective
signaling RISK, eNOS/PKG, and SAFE pathways by conditioning triggers is represented (modified
from the literature [10]). BAD—Bcl-2-associated death promoter; Bax—Bcl-2-associated X protein;
Bcl2—B-cell lymphoma 2; eNOS—endothelial nitric oxide synthase; FOXO-1—forkhead box protein
O1; G—guanylyl cyclase; GPCR—G protein-coupled receptors; GSK3β—glycogen synthase kinase
3 beta; JAK—Janus kinase; mKATP—mitochondrial potassium ATP channel; mPT—mitochondrial
permeability transition pore; PI3K-IB—phosphoinositide 3-kinase class IB; PKG—protein kinade G;
PKCε—protein kinase C epsilon; RISK—reperfusion injury salvage kinase; SAFE—survivor activating
factor enhancement; SERCA—sarco/endoplasmic reticulum Ca2+-ATPase; STAT3—signal transducer
and activator of transcription 3; TNF-α—tumor necrosis factor alpha.
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4. Enduring Challenges and Current Goals for Clinical Application of Conditioning

Although a variety of ischemia- and drug-based conditioning strategies have been tested,
the results of the clinical studies for improving the patient outcomes have been largely disappointing.
Beyond the need to refine the design of experimental and clinical studies [11], a now well-recognized
core issue faced by basic scientists and clinicians alike is the influence of confounding risk
factors. Indeed, frequent comorbidities such as diabetes or hypercholesterolemia, as well as
co-medications [12] differentially alter the key elements of the cardioprotective signaling pathways
(Figure 1), and consequently, the efficacy of a given tested PC intervention. As an approach to overcome
this limitation, combination therapies targeting multiple non-redundant pathways are increasingly
being explored [5]. In this context, the unique properties of the CTS signaling described in the following
section represent a potential safe approach to consider in the protection against cardiac I/R injury.

5. Pre/Postconditioning with Cardiotonic Steroid through Cardiac Na/K-ATPase Signaling

CTS (digitalis in particular) have been used to treat heart failure for hundreds of years [13,14],
long before the late Nobel Laureate Jens C. Skou uncovered their molecular target as the
Na/K-ATPase [15–17]. Na/K-ATPase is the membrane-spanning enzyme complex that uses the
energy of ATP hydrolysis for the coupled active transport of Na+ and K+ across the plasmalemma of
mammalian cells [18–20]. CTS induce moderate inotropy by inhibiting sarcolemmal Na/K-ATPase,
which raises the intracellular Na+ and Ca2+ through the Na+/Ca2+-exchanger, and subsequently
increases myocardial contractility [21,22]. Alteration of cardiac Na/K-ATPase has long been recognized
as a key aspect of I/R pathophysiology [23,24], which contributes to cardiomyocyte demise through
mechanisms that go far beyond a simple disruption of Na+ and Ca2+ homeostasis secondary to
ATP depletion, and remains incompletely understood [25–31]. Clinically, interest in CTS for the
management of acute myocardial infarction sparked early in modern cardiology, before molecular
knowledge of Na/K-ATPase function in health and I/R became available [32]. Somewhat surprisingly,
in the context of the molecular mechanism described above, experimental and clinical reports still
suggested beneficial effects of an “appropriate and judicious” use of the CTS digitalis in patients
with failing myocardium associated with acute myocardial infarction. There were also concerns over
increased sensitivity to inotropic and toxic effects, and under the principle of “primum non nocere”,
the prevalent message in the clinical arena has persisted as “there is no role for the prophylactic use of
digitalis in the uncomplicated myocardial infarction” [33].

Unsurprisingly, given such inauspicious pharmacological and clinical circumstances, the CTS
pre/postconditioning hypothesis was not formulated until the 20 year-old discovery of Na/K-ATPase
signaling, recognized in this special issue, came about. Indeed, it is the discovery of elements of the
molecular signature of the CTS-induced signaling through the cardiac Na/K-ATPase that revealed
striking similarities with those of the ischemic and pharmacological PC, and prompted further
investigation. Specifically, by early 2000, it had become clear that exposure to the CTS ouabain
triggers Src, protein kinase C epsilon (PKCε), ERK, mKATP, and mitochondrial reactive oxygen
species (ROS) production in the cardiac tissue [34–36]. Collectively, these represented a hallmark
of the RISK pathway, which is common to most pharmacological preconditioners known at the time
(Figure 1). Two studies specifically tested the hypothesis that exposure to the CTS ouabain could
trigger preconditioning, and uncovered the first key characteristics in Langendorff-perfused rat heart
preparations. In Pierre et al. [37], transient exposure to a subinotropic concentration of ouabain and
wash-out prior to ischemia/reperfusion induced a structural and functional protection comparable
to that observed with IPC in this model. By analogy to IPC, this phenomenon was termed Ouabain
PreConditioning (OPC). Pharmacological inhibition further revealed that OPC requires both Src and
PKCε activities, and that Src is required for PKCε activation. In Pasdois et al. [38], an alternate protocol
consisting of a continuous exposure to increasing concentrations of ouabain also triggered OPC.
Mechanistically, the study demonstrated the requirement for mKATP-opening and ROS production,
and it also revealed that OPC is independent of protein kinase G (PKG) and guanylyl cyclase (GC)
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activation, contrary to bradykinin-induced PC. This independence from PKG/GC was of particular
interest, not only because it was the first indication that a unique mechanism of protection could set
CTS apart from other pharmacological triggers of PC, but also because it indicated that CTS-induced
PC signaling and inotropy relied on distinct mechanisms. Hence, although mKATP-opening and ROS
production are required for both OPC and positive inotropy, GC and PKG are required only for the
latter. Collectively, these two studies also revealed that ouabain inotropy and OPC have distinct
dose-dependence curves, and illustrated that although inotropy stops when ouabain is removed, OPC
protection occurs even after ouabain is withdrawn, consistent with the general model of persistence of
cardioprotective signaling cascades observed after washout of their triggers. Subsequently, D’Urso et
al. successfully triggered CTS PC using the FDA-approved digoxin [39], indicating potentials in the
clinical setting. Additionally, Morgan et al. [40] reported that CTS-induced PC protection could be
achieved in the rabbit heart, a model that recapitulates human myocardial physiology, vulnerability
to ischemic injury, and CTS pharmacology better than the rat or mouse heart [35,40–44]. The lower
ouabain concentration (nM range) [40] correlated with the higher ouabain affinity of the Na/K-ATPase
α1 isoform in the rabbit species compared to the rat, suggesting a key role of α1 in CTS PC signaling.
As summarized in Figure 2, OPC signaling includes an intramitochondrial signaling pathway, common
to most if not all forms of PC [45–47]. It involves at least two mitochondrial PKCε in the sequence
that leads to a mKATP-opening, production of ROS, and inhibition of mPT. Remarkably, activation of
the Na/K-ATPase cardioprotective signaling pathway by OPC protects the myocardial Na/K-ATPase
enzyme function itself against I/R [29,48], a feature that was also noted in IPC [49]. Several aspects
of OPC signaling are unique, and contrast with IPC and GPCR-based forms of pharmacological
preconditioning (Figure 1). Firstly, as mentioned earlier, it is a cGMP-independent pathway, in contrast
to numerous major forms of cardioprotection [50]. Secondly, it is mediated by PI3K-IA (rather than
PI3K-IB), in parallel rather than upstream from the PKCε activation [51]. The reliance on PI3K-IA
rather than IB in the pre-ischemic phase (as observed for IPC or adenosine) is a rare occurrence in
known pharmacological PC, and suggests that OPC could trigger “insulin-like” protective effects
related to the substrate utilization or cell survival. Studies have also shown that the PI3K-IA activation
is highly protective at reperfusion [52]. Finally, and perhaps even more surprisingly (yet consistent
with independence from the cGMP pathway) is the lack of requirement for Akt activation in OPC [51].
Potentially, these unique mechanistic features could make a CTS-based approach very suitable, alone
or in combination, for PC in patients whose disease and/or treatment may have altered cGMP, PI3K-IB,
and/or Akt pathways. Therefore, we recently tested a more clinically applicable CTS-based protocol
by comparing very low doses of ouabain and digoxin’s protective effects when given as a bolus at
reperfusion, following 40 min of zero flow ischemia in Langendorff-perfused mouse heart preparation.
The results showed that Na/K-ATPase cardioprotective signaling activation, increased cell survival,
and improved functional recovery as effective as those obtained with IPostC can be obtained using
digoxin [53].
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Figure 2. The ouabain preconditioning signaling pathway. Na/K-ATPase/Src activation precedes
PKCε activation and translocation. An intramitochondrial pathway involves PKCε activation (PKCε1)
and mKATP channel opening as a functional complex to trigger an increase in K+-uptake in the
mitochondrial matrix. The mKATP-dependent matrix alkalinization is crucial in intramitochondrial
signaling, leading to ROS production, which activates the second PKCε, PKCε2. PKCε2 inhibits
the mitochondrial permeability transition pore(mPT) in a phosphorylation-dependent reaction.
Furthermore, PKCε1 sustains the open state of mKATP channel through mKATP-dependent ROS
activation. In addition to this mitochondrial cardioprotective signaling, ouabain-induced PI3K-IA
activation is required for protection by OPC. The inhibition of either PKCε or PI3K-IA blunts the
OPC-induced protection. mKATP—mitochondrial potassium ATP channel; mPT—mitochondrial
permeability transition pore; NKA—Na/K-ATPase; OUA—ouabain; PKCε—protein kinase C epsilon
type; PLC-γ—phospholipase C gamma; PI3K-IA—phosphoinositide 3-kinase class IA; ROS—reactive
oxygen species; Src—proto-oncogene tyrosine-protein kinase.

6. Prospect and Future Directions

The first reports of cardiac Na/K-ATPase signaling [54–56], 20 years ago, have opened several
major fields of investigation into the cardioprotective action of CTS drugs given at low doses,
particularly in hypertrophy [57,58], as well as PC, as reviewed here. The mechanistic information
available on PC suggests distinct features of CTS-based PC that could make this modality clinically
relevant, alone or as a combinatory approach. There are also a number of remaining gaps and questions
in our current knowledge of the pathway and its connection to other modalities of PC. For instance,
the role of the key players of cell metabolism/survival Bcl2/Bax, ERK1/2, and GSK3-β, which are
fixtures of PC signaling (Figure 1) and have been shown to be modulated by CTS/Na/K-ATPase
signaling [54,59–61], remain to be tested on CTS-based PC.

As studies continue to explore the mechanism and efficacy of CTS conditioning, in vivo
investigations in pre-clinical rodent and non-rodent models of AMI will be critical. Indeed,
important aspects of the complex pathophysiology of I/R injury, such as sterile inflammation and
cardiac/vascular remodeling, cannot be adequately evaluated ex vivo. Fundamentally, and given the
proposed role of the Na/K-ATPase non ion-pumping function in cardiac myocyte survival after I/R
injury [29], those models could also redefine the role of Na/K-ATPase signaling and endogenous CTS
in the pathophysiology of I/R injury. Indeed, a role for endogenous CTS as hormones with distinct
but related modulatory effects on cardiovascular homeostasis has been suggested in AMI and other
physiological and pathophysiological conditions, such as pregnancy, exercise, salt-loading, or heart
failure) [62–66], and could include a PC-based effect. In the context of I/R injury, the CTS release from
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the rat myocardium has been observed ex vivo within a short (15 min) ischemia [67], suggesting that
the ischemia-induced release of CTS may occur during IPC. Ouabain, and potentially other CTS, could
therefore be added to the list of paracrine/autocrine factors that are released during preconditioning
ischemia and trigger protection by binding to their respective receptors. Some of the most promising
cardioprotective candidate drugs to date, opioid and cannabinoid receptor agonists [68,69] or adenosine
receptor agonists [70], belong to this category.
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