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Abstract: Acute liver injury (ALI) is a severe disorder resulting from excessive hepatocyte cell death,
and frequently caused by acetaminophen intoxication. Clinical management of ALI progression is
hampered by the dearth of blood biomarkers available. In this study, a bioinformatics workflow
was developed to screen omics databases and identify potential biomarkers for hepatocyte cell
death. Then, discovery proteomics was harnessed to select from among these candidates those
that were specifically detected in the blood of acetaminophen-induced ALI patients. Among these
candidates, the isoenzyme alcohol dehydrogenase 1B (ADH1B) was massively leaked into the blood.
To evaluate ADH1B, we developed a targeted proteomics assay and quantified ADH1B in serum
samples collected at different times from 17 patients admitted for acetaminophen-induced ALI. Serum
ADH1B concentrations increased markedly during the acute phase of the disease, and dropped to
undetectable levels during recovery. In contrast to alanine aminotransferase activity, the rapid
drop in circulating ADH1B concentrations was followed by an improvement in the international
normalized ratio (INR) within 10–48 h, and was associated with favorable outcomes. In conclusion,
the combination of omics data exploration and proteomics revealed ADH1B as a new blood biomarker
candidate that could be useful for the monitoring of acetaminophen-induced ALI.

Keywords: bioinformatics; proteomics; mass spectrometry; liver; blood; biomarker; acetaminophen

1. Introduction

Acetaminophen is a commonly used analgesic and antipyretic drug that induces liver
toxicity when used above therapeutic levels. Due to its ease of access, acetaminophen
is frequently used in intentional suicide attempts. Acute acetaminophen overdose is the
leading cause of acute liver injury (ALI) in the USA and Northern Europe [1]. ALI is a
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sudden hepatic dysfunction occurring in patients without pre-existing liver disease; it
is defined as a coagulopathy with an international normalized ratio (INR) exceeding 1.5.
Acute liver failure (ALF) is a more severe condition than ALI, characterized by hepatic
encephalopathy with alteration of mental status. ALF can lead to multiorgan failure, and
may have a fatal outcome unless appropriate medical management is implemented [2].
Emergency liver transplantation (LT) is the only effective treatment for ALF patients who
meet criteria indicative of a poor prognosis.

The models most widely used to predict outcomes for patients with ALF and select
those in need of LT are the King’s College criteria (KCC), the Clichy criteria, and the Model
for End-Stage Liver Disease (MELD). Among these models, the KCC have the highest
specificity [3,4]. However, these criteria are not entirely satisfactory when used to classify
patients with late-stage ALF, as they have a limited sensitivity. As a consequence, a certain
number of patients not meeting the criteria fail to survive [5]. Parameters allowing earlier
prediction of progression toward ALF are thus needed to guide medical practitioners in
their decision to perform LT as early as possible, in particular during the ALI stage [6].

One of the pathophysiological features of acetaminophen-induced ALI/ALF is the
production of N-acetyl-p-benzoquinone imine (NAPQI)—a toxic metabolite triggering
glutathione depletion and hepatocyte necrosis. This phenomenon is associated with the
release of inflammatory mediators and intracellular proteins in the blood, which can serve
as biomarkers of disease progression [7]. Circulating levels of aspartate (AST) and alanine
(ALT) aminotransferases are commonly used as cytolysis biomarkers in acute liver diseases,
but the increase in AST and ALT activities is known not to be predictive of ALI/ALF
progression [8,9]. In the search for alternative circulating biomarkers, a few promising
candidates—such as cytokeratin-18 (CK-18), high-mobility group protein B1 (HMGB1),
and Gc-globulin—have been identified in preclinical studies, and are currently being
clinically assessed either separately or in combination, along with analysis of composite
scores [10–12].

In this study, we hypothesized that acetaminophen-induced ALI may be associated
with hepatocyte necrosis, followed by leakage of intracellular proteins into the blood,
which could be specific indicators of liver damage. Based on this assumption, we used
a knowledge-based approach to select potential liver injury candidate biomarkers from
available omics information. For this, we implemented a strategy based on bioinfor-
matics tools, and developed a specific selection workflow available via a Galaxy-based
instance [13]. Then, we used mass spectrometry (MS)-based discovery proteomics to com-
pare the serum proteomes from acetaminophen-induced ALI patients and healthy donors,
and verify the specific leakage of intracellular proteins into the blood. Among the proteins
that were significantly increased in the serum of ALI patients, seven were common to
the bioinformatics-based selection, including alcohol dehydrogenase 1B (ADH1B), which
was detected in high abundance. A total of seven ADH isoenzymes are expressed in the
liver [14]. Their specific detection is challenging, as these proteins have a high degree
of protein sequence identity, with numerous genetic polymorphisms and overlapping
expression patterns. To specifically evaluate ADH1B as a blood biomarker candidate, we
used liquid chromatography–selected reaction monitoring (LC–SRM) analysis combined
with an isotopically labeled protein standard to specifically detect and reliably quantify
ADH1B in serum samples [15]. We then assessed the relevance of ADH1B in tracking
acetaminophen-induced ALI/ALF progression in a longitudinal study of serum samples
collected from a cohort of 17 patients.

2. Results
2.1. In Silico Selection of Candidate Biomarkers of Hepatocyte Cell Death

We first closely examined the biological and biochemical characteristics of the cell
death biomarkers (also known as cytolysis biomarkers) currently used in medical biology.
Most biomarkers are cytoplasmic proteins with a tissue-predominant expression profile
and a molecular weight (MW) of less than 85 kDa. Using these features as selection criteria,
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we mined public databases to extract proteins that could constitute biomarker candidates
for liver injury from the liver proteome. Candidate biomarkers for hepatocyte cell death
were selected using tools from ProteoRE—a freely accessible Galaxy-based platform (https:
//www.proteore.org). ProteoRE can be used to implement selection strategies to discover
biomarkers of tissue leakage and cancer [13,16]. The tools and workflow implemented for
this study are fully documented and available, meaning that others can reuse them (see the
“Materials and Methods” section). Candidates were selected following successive steps,
as described in Figure 1a. A workflow diagram also shows the ProteoRE tools used and
the order in which they were applied in this study (Supplementary Figure S1). First, we
established a list of proteins predominantly expressed in the liver, and more specifically
in hepatocytes. To produce this list, we combined data from the Human Protein Atlas
(HPA), which includes tissue and cellular expression profiles for human proteins based on
transcriptomic and immunohistochemical analyses [14]. This double selection was made
using the HPA classification of protein-coding genes, with regard to their tissue-restricted
expression (based on the three categories “tissue enriched”, “group enriched”, or “tissue
enhanced”) [17]. Next, using curated annotations from neXtProt [18], we filtered this list to
only retain cytoplasmic proteins with no transmembrane domains and a MW of less than
85 kDa. The “diseases” information extracted from neXtProt was then used to filter out
candidates annotated as being associated with diseases other than liver injury. This step
helped to exclude non-specific candidates from the final list. Finally, as lack of detectability
in biological fluids is a major challenge during biomarker development, we searched for
indications that the candidates would be detectable in plasma using MS-based techniques.
To do so, MS-based proteomics datasets downloaded from the PeptideAtlas database were
mined to check whether these proteins had previously been detected by LC–MS/MS, and
to glean information on the total number of peptide observations in plasma [19] (Figure 1a).
Candidates not reported as previously being detected by MS in plasma, or those with a low
number of peptide observations, were eliminated. The final list of biomarker candidates
for liver injury consisted of 13 proteins (Supplementary Table S1).

2.2. Verification of Candidate Biomarker Leakage in the Blood of Acetaminophen-Induced
ALI Patients

To verify the blood leakage of hepatocyte intracellular proteins during acetaminophen-
induced liver injury, we compared the serum proteomes of three ALI patients admitted
for acute acetaminophen intoxication and three healthy donors, using label-free quanti-
tative MS-based proteomics. For this unbiased characterization and comparison, serum
samples from three acetaminophen-induced ALI patients with ALT serum concentrations
>2500 U/L were collected during the early phase of the disease. Serum samples were pre-
pared using an adapted MED–FASP protocol [20], and were analyzed via nano-LC–MS/MS
(Figure 1b). Only proteins detected in the three replicates of one condition were considered.
This strategy allowed the reliable quantification of 375 unique proteins in the analyzed
serum samples (Supplementary Table S2). The differentially abundant proteins in the sera
of ALI patients and healthy donors were sorted out by combining a log2 (fold change) ≥ 1
or ≤−1, and a limma test p-value < 0.0068, allowing us to reach a Benjamini–Hochberg
FDR < 1%. Upon applying these parameters, 138 of the 375 unique proteins were identified
as being differentially abundant between ALI patients and healthy volunteers. Of these
proteins, 105 were significantly more abundant in the sera of acetaminophen-induced
ALI patients, among which 7 were shared with the list of biomarker candidates selected
using the Galaxy-based bioinformatics workflow (Table 1). As intracellular hepatocyte
components, these seven proteins can be considered as tissue leakage biomarkers when
detected in the blood. In this study, we further evaluated ADH1B, which displayed the
most extensive leakage in the blood of acetaminophen-induced ALI patients (Figure 1b).

https://www.proteore.org
https://www.proteore.org
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(a) Principle and selection criteria to select biomarker candidates for hepatocyte cell death poten-
tially detectable in plasma. (b) Label-free quantitative proteomics analysis of serum samples from 
acetaminophen-induced ALI patients and healthy donors to verify the leakage of biomarker candi-
dates into the blood. 
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Figure 1. Bioinformatics selection and proteomics discovery of liver injury biomarker candidates:
(a) Principle and selection criteria to select biomarker candidates for hepatocyte cell death poten-
tially detectable in plasma. (b) Label-free quantitative proteomics analysis of serum samples from
acetaminophen-induced ALI patients and healthy donors to verify the leakage of biomarker candi-
dates into the blood.

Table 1. Biomarker candidates for hepatocyte cell death selected using the bioinformatics workflow
that are significantly increased in serum samples from acetaminophen-induced ALI patients (n = 3).

UniProt ID Protein Name Log2 (Fold Change) p-Value

P00325 Alcohol dehydrogenase 1B 10.3 4.5 × 10−10

P08319 Alcohol dehydrogenase 4 9.9 5.9 × 10−10

P00352 Retinal dehydrogenase 1 9.5 1.1 × 10−09

P04406 Glyceraldehyde-3-phosphate
dehydrogenase 7.3 3.2 × 10−08

P24298 Alanine aminotransferase 1 5.7 8.5 × 10−07

P78417 Glutathione S-transferase omega 1 5.7 1.4 × 10−07

Q3LXA3 Triokinase and FMN cyclase 4.6 1.8 × 10−05

2.3. Development and Evaluation of ADH1B Targeted Proteomics Assay

To evaluate ADH1B as a new liver injury biomarker candidate, we developed a tar-
geted proteomics assay enabling accurate quantification of ADH1B in serum samples. As
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ADH1B was barely detected in the three serum samples from healthy donors using MED–
FASP preparation and discovery proteomics, we decided to introduce a protein depletion
step before proteomics analysis in order to improve detection sensitivity in these samples.
To develop the targeted proteomics assay, serum samples were spiked with recombinant
ADH1B, depleted, and digested before LC–SRM analysis to select surrogate peptides with
high detectability in the serum matrix, in order to determine the best transitions for each
surrogate peptide and to schedule acquisition (Supplementary Table S3). For each peptide
detected, sequence uniqueness was verified via BLAST search against the UniProt database.
Among the four peptides detected, only one was found to be truly specific to ADH1B isoen-
zymes (peptide AAVLWEVK) (Supplementary Figure S2). We also took genetic variation
into account, and searched for non-synonymous single-nucleotide polymorphisms [21].
Thankfully, the peptide AAVLWEVK was shared between the three variants of ADH1B
associated with genetic polymorphisms—namely, ADH1B*1, ADH1B*2, and ADH1B*3—
and, consequently, can be used for patients from any population [22]. To quantify ADH1B,
we synthesized and used a PSAQ standard, which is a full-length isotopically labeled
version of the target analyte. The choice of a PSAQ standard was essential to accurately
quantify ADH1B, as sample prefractionation and proteolysis processes can lead to analyte
losses [15,23]. The final LC–SRM assay involved spiking samples with ADH1B PSAQ
standard, the depletion of abundant proteins, protein digestion, and LC–SRM analysis
(Figure 2a,b).

As recommended by the bioanalytical and proteomics communities [24–26], we as-
sessed the analytical performance characteristics of ADH1B via targeted proteomics assay
(Table 2, Supplementary Figure S3). Firstly, the assay was assessed for matrix effects and
interferences. The impact of the blood sampling procedure (plasma or serum specimens)
and interfering biological substances (hemoglobin, triglycerides, and bilirubin) was evalu-
ated in parallel experiments, where a controlled mix of recombinant ADH1B and labeled
ADH1B were spiked into the different biological samples. The concentrations of ADH1B
measured in the individual samples (n = 2 full technical replicates per sample) differed
by no more than 14% compared to the initial mix, except for hemolytic samples, in which
pre-analytical interference was more important (24%).

Linearity, accuracy, LLOD, LLOQ, and technical precision were determined from
a calibration curve using six non-zero standards between 1 and 384 µg/mL (n = 3 or 4
full technical replicates per calibration point) (Figure 2c, Supplementary Figure S3). The
ADH1B signature peptide AAVLWEVK provided excellent analytical performance, with
an accuracy (trueness) of 120% and perfect linearity (R2 = 1) over the whole measurement
range. LLOD and LLOQ were determined from the calibration curve using the calibration
plot method [27], and were estimated at 2 µg/mL and 6 µg/mL, respectively. Technical
precision at the LLOQ was 8%.

Assay repeatability and reproducibility were assessed using a “disease” pool (n = 20
pooled serum samples from ALI patients) and a “healthy” pool (n = 20 pooled serum
samples from healthy donors), which were spiked with a defined quantity of labeled
ADH1B. Then, the endogenous concentrations of ADH1B were measured in five technical
replicates of both pools analyzed on the same day, and five technical replicates analyzed on
five successive days. Based on the “disease” pool results, the intraday and interday assay
variability was 3.2% and 4.2% respectively (Table 2, Supplementary Figure S3). ADH1B
was undetectable in the “healthy” pool.
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Figure 2. Targeted proteomics assay to quantify ADH1B in serum or plasma samples: (a) Different
steps of the analytical workflow. (b) Extracted ion chromatogram obtained after serum depletion,
digestion, and analysis by scheduled LC–SRM. Four peptides generated by ADH1B proteolysis were
monitored. Only the specific peptide for ADH1B isoenzymes (peptide AAVLWEVK) was considered
for ADH1B quantification. (c) ADH1B calibration curve.
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Table 2. Analytical performance of ADH1B targeted proteomics assay.

Performance Parameter Result

Matrix effects and interferences (bias)
Pool of plasma from five healthy donors −10.0%
Pool of serum from six healthy donors −14.0%

Hemolytic serum (hemoglobin 500 mg/dL) −24.0%
Lipemic serum (triglycerides 200 mg/dL) −14.0%
Lipemic serum (triglycerides 500 mg/dL) 0.0%

Serum with medium bilirubin (82 µmol/L) −14.0%
Serum with high bilirubin (326 µmol/L) −10.0%

Calibration curve
Range of tested concentrations 1 to 384 µg/mL

Accuracy (trueness) 120.0%
Linearity (R2) 1.00

LLOD 2 µg/mL
LLOQ 6 µg/mL

Technical precision at LLOQ (CV, n = 3) 8.0%

Repeatability and reproducibility
Intraday (CV, n = 5) 3.2%
Interday (CV, n = 5) 4.2%

Sample handling stability (bias)
Sample storage for 4 h at room temperature −2.2%

Sample storage 24 h at 4 ◦C 1.8%
Two freeze–thaw cycles 1.0%

Frozen sample storage (−20 ◦C) for 30 days 1.4%

Analyte stability (bias)
3 months at −80 ◦C (n = 2 samples from ALI patients) 19.8%

Peptide stability (bias)
Sample storage for 4 h at room temperature 3.7%

Sample storage 24 h at 4 ◦C 3.7%
Two freeze–thaw cycles 0.0%

Frozen sample storage (−80 ◦C) for >30 days 7.4%

Sample handling stability was also assessed using the “disease” pool. For these assays,
the pooled sample was divided into several aliquots that were spiked with a defined
quantity of labeled ADH1B before biochemical processing. The peptide digests obtained
were analyzed under a range of conditions (n = 2 full technical replicates per condition):
(1) after storing samples at room temperature (21 ◦C) for 4 h, (2) after storage at 4 ◦C for
24 h, (3) after two freeze–thaw cycles, and (4) after frozen storage for 30 days at −20 ◦C.
Endogenous concentrations of ADH1B were estimated in the different replicates, and the
differences (%) between each condition and immediate analysis were determined. In these
stressed storage conditions, these experiments indicated that ADH1B quantification varied
by no more than 2.2% (Table 2, Supplementary Figure S3). Analyte stability was estimated
at 19.8% by measuring ADH1B in two clinical samples before and after storage at −80 ◦C
for 3 months.

Finally, the stability of the signature peptide AAVLWEVK after sample digestion was
specifically assessed using a double-labeled peptide as standard, with a different mass
from the one generated by the labeled ADH1B standard. The stability was assessed under
four different storage conditions (n = 3 full technical replicates per condition): (1) after
sample storage at room temperature (21 ◦C) for 4 h, (2) after storage at 4 ◦C for 24 h
(autosampler stability), (3) after two freeze–thaw cycles, and (4) after frozen storage at
−80 ◦C for >30 days. The results of these experiments demonstrate that the AAVLWEVK
peptide was stable (CV < 10%) under these conditions (Table 2, Supplementary Figure S3).
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2.4. Blood Leakage Pattern of ADH1B in Acetaminophen-Induced ALI

Once the analytical pipeline had been optimized, we characterized the ADH1B serum
profile over the course of acetaminophen-induced ALI/ALF. For these assays, we recruited
a cohort of 17 patients hospitalized for acetaminophen-induced ALI. Diagnosis of ALI was
based on the absence of pre-existing liver disease, evidence of acetaminophen ingestion,
absence of encephalopathy, an INR of 2.0 or greater, and elevated ALT. All patients were
treated with N-acetylcysteine (NAC) until they recovered spontaneously or received an
LT. Fourteen patients recovered spontaneously, five progressed to ALF with evidence of
hepatic encephalopathy, and three underwent LT (Supplementary Table S4). ADH1B levels
were quantified in serum samples collected both at the time of patient admission and as
their ALI progressed, when blood sampling was required for medical management of the
patients. The time-course for serum ADH1B concentrations was compared to the profile
for standard biological indicators of liver dysfunction, including INR and ALT activity
(Figure 3a, Supplementary Table S4, Supplementary Figure S4). To determine physiological
levels of ADH1B, serum samples from seven healthy donors were also analyzed.
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Figure 3. Time-dependent changes in liver injury biomarkers in five patients with acetaminophen-
induced ALI/ALF. In these five patients who recovered spontaneously, ADH1B serum concentration
started to decrease before the INR decreased. (a) Biological profiles for ALI/ALF patients who
recovered spontaneously. ADH1B serum concentration was determined via quantitative LC–SRM.
The INR indicates coagulation defects. Serum ALT activity is also indicated for comparison. Data
points were connected using a smoothed line. (b) Interval between the earliest drop in ADH1B serum
concentration after peaking and the decrease in the INR.



Int. J. Mol. Sci. 2021, 22, 11071 9 of 17

ADH1B was undetectable in sera from healthy donors (Supplementary Table S4).
In contrast, significant levels of all of the biomarkers monitored were detected in most
samples from patients with acetaminophen-induced ALI (Figure 3a, Supplementary Table
S4, Supplementary Figure S4). On admission, ADH1B concentrations in patient samples
ranged from 2 to 204 µg/mL. Levels of ADH1B increased as the disease progressed, along
with INR, bilirubin, and aminotransferases. Unlike ALT activity, serum ADH1B dropped to
undetectable levels during the recovery period, indicating that ADH1B is a specific marker
of liver cytolysis. During the acute phase of ALI, the serum concentrations of ADH1B
were of the same order of magnitude as concentrations of major serum proteins such as
transferrin and IgA (≈100 µg/mL) [28]. Circulating levels of ADH1B varied extensively,
and were synchronized with INR scores in nine patients (patients 1–7, 10, and 17) who
spontaneously recovered (Supplementary Figure S4). In the other five patients (patients 8,
9, 12, 13, 15) who spontaneously recovered, analysis of closely spaced timepoints revealed
that the ADH1B serum concentration started to decrease long before the INR decreased
(between 10 and 48 h), in reflection of the onset of liver recovery (Figure 3b). This result
shows that, at least in some patients, ADH1B is an earlier indicator of ALI recovery than
the standard biological parameters. Along this line, four patients (patients 1, 6, 15, and
17) had KCC with MELD scores >40, which are considered to reflect a poor prognosis
unless LT is performed, but nevertheless survived without transplantation. Interestingly,
in these patients, the decrease in ADH1B serum levels associated with INR improvement
correspondingly indicated favorable outcomes.

In two patients (patients 11 and 16) who developed ALF and underwent LT, the
dramatic scores for the standard biological parameters (INR, bilirubin, and creatinine)
were indicative of severe liver failure and associated with low concentrations of ADH1B
from the time of hospital admission (patient 11), or after the cytolytic episode (patient 16)
(Figure 4). Since ADH1B specifically reflects hepatocyte cytolysis, this profile suggests
a massive loss of hepatocytes, resulting in reduced biomarker leakage at the end stages
(depleted pool of ADH1B) compared to the early stages of ALF.
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induced ALI/ALF who received a liver transplant. Biological profiles of ALI/ALF patients before
liver transplantation. ADH1B serum concentration was determined via quantitative LC–SRM. The
INR is reported as an indicator of coagulation defects. Serum ALT activity is also indicated for
comparison. Data points were connected using a smoothed line.
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In summary, ADH1B is a potential biomarker of liver injury, specifically leaked into the
blood flow following hepatocyte cytolysis. ADH1B can be used to monitor the evolution of
acetaminophen-induced ALI. In patients who recover spontaneously, an ADH1B assay can
detect the onset of recovery when the INR starts to drop, or even earlier.

2.5. Blood Leakage Pattern of ADH1B in Non-Acetaminophen-Induced ALI

To verify the specificity of ADH1B as a marker for acetaminophen-induced ALI, we
investigated the time-course of ADH1B serum levels in patients with non-acetaminophen-
induced ALI (n = 5). Several types of ALI were considered, including drug-induced
ALI, autoimmune hepatitis, and herpes simplex virus (HSV)-induced hepatitis (Figure 5,
Supplementary Table S4). ADH1B could not be detected in any of the serum samples
collected from the two patients with autoimmune hepatitis before LT, although serum
transaminases were elevated and the INR was >2.5 (Figure 5, Supplementary Table S4).
With drug-induced ALI and HSV-induced hepatitis, circulating ADH1B was detected at
very low levels (below LLOQ) at the earliest timepoints of the disease. ADH1B could
be quantified at 12.6 µg/mL in a single serum sample from patient 19 (drug-induced +
alcohol-related ALI) at hospital admission. Even though more extensive sampling would
be necessary to draw firm conclusions, massive ADH1B leakage into the blood appears to
be specifically correlated with acetaminophen-induced ALI/ALF.
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Figure 5. Time-dependent changes in liver injury biomarkers in patients with non-acetaminophen-
induced ALI/ALF. ADH1B serum concentration was determined via quantitative LC–SRM. ALI/ALF
etiology is indicated on each graph. The INR is reported as an indicator of coagulation defects. Serum
ALT activity is also indicated for comparison. Data points were connected using a smoothed line.
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3. Discussion

Multiomics integration, trans-omics, and artificial intelligence methods hold consider-
able potential in medicine to explore massive omics data and deliver new biomarker candi-
dates and drug targets [29–31]. Along this line, recent studies have exploited proteomic
maps to select tissue-specific proteins as biomarker candidates. In 2012, Prassas et al. [32]
combined data deposited in transcriptomics and proteomics databases to identify proteins
with tissue-specific expression that could be relevant biomarkers secreted in cancers. In
the field of hepatology, Qin et al. [33] recently selected a panel of 66 human proteins
based solely on their liver expression profiles. The levels of 23 of these proteins were
demonstrated to increase in 14 serum samples from patients with acetaminophen overdose,
but the potential clinical value of these proteins was not further explored. In this study,
we applied a similar initial hypothesis, and selected 13 proteins from omics databases as
potential highly specific candidate biomarkers to monitor acetaminophen-induced ALI pro-
gression. Label-free quantitative MS-based proteomics was used to refine the selection and
identify intracellular proteins specifically released into the blood as a result of hepatocyte
necrosis and liver damage. Extensive leakage of ADH1B into the circulation was evidenced,
motivating the further study of ADH1B serum concentrations in acetaminophen-induced
ALI patients using targeted quantitative proteomics.

In accordance with our hypothesis and the label-free proteomics results, longitudinal
monitoring of patients with acetaminophen-induced liver injury confirmed extensive
leakage of ADH1B into the circulation during the acute phase of the disease. Patients
who spontaneously recovered had a time-course of ADH1B serum concentrations that
closely mirrored their clinical status and, unlike ALT enzymatic activity, ADH1B serum
levels rapidly returned to baseline during liver regeneration. Furthermore, likely because
it has a very short half-life in blood, the ADH1B concentration rapidly and markedly
decreased following the end of hepatocyte cytolysis. Thanks to close biological monitoring,
we also found that the decrease in circulating ADH1B levels preceded recovery of liver
function in 5 out of 14 cases of spontaneous recovery. The interval between the drop
in ADH1B levels and the INR decrease was between 10 and 48 h. From these data,
ADH1B appears to be a biomarker of hepatocellular injury that can be used to monitor
acetaminophen-induced ALI/ALF progression. In particular, the rapid drop in ADH1B
serum concentrations, followed by a subsequent decrease in the INR, appears to be an early
indicator of spontaneous ALI resolution.

Recently, Dear et al. [34] investigated the potential of new mechanistic biomarkers—
including mir-122, HMGB1, CK-18, and glutamate dehydrogenase (GLDH)—to stratify
patients at risk of liver injury into two large cohorts of patients with paracetamol overdose
and various clinical presentations. Among these biomarkers, HMGB1 (which reflects
hepatocyte necrosis and immune cell activation) was able to predict an increase in INR
of over 1.5 at hospital admission. From these results, HMGB1 is expected to provide
useful information to identify patients at risk of ALF and death. Another recent study by
Nuzzo et al. [35] also revealed that the plasma levels of procalcitonin on admission may be
an early independent predictor of liver injury. In this context, combinations of mechanistic
biomarkers such as ADH1B, HMGB1, and functional biomarkers such as INR may improve
the prediction of acetaminophen-induced ALI evolution, as well as patient stratification
and management. Along this line, ADH4—which was also selected using our methodology
(Table 1)—could also be considered as a potential liver injury biomarker.

In conclusion, in this study we established a link between large-scale omics data
(proteomics, transcriptomics), bioinformatics, and MS-based proteomics to deliver a new
biomarker candidate for hepatology and clinical toxicology. Specifically, a dedicated
bioinformatics workflow was developed to extract mechanistic biomarker candidates
from public “omics” databases. Then, discovery and targeted proteomics analyses were
sequentially used to identify and quantify ADH1B in serum samples from patients with
acetaminophen-induced ALI. This isoenzyme, rarely accessible via immunoassays, was
revealed as being useful to monitor the progression of acetaminophen-induced ALI/ALF.
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Our results also emphasize the potential of combining ADH1B and INR measurements to
better assess the progression of acetaminophen-induced ALI/ALF.

4. Materials and Methods
4.1. Bioinformatics Selection of Candidate Biomarkers

The tools implemented and used in this study are part of the freely accessible Pro-
teoRE platform (https://www.proteore.org)—a Galaxy-based platform dedicated to the
functional analysis and exploration of biomedical-research-related proteomics data. The
ProteoRE tools used in this study were the following: “Data manipulation and visu-
alization” section: “ID Converter (Human, Mouse, Rat)”, “Filter by keywords and/or
numerical value”, and “Venn diagram (JVenn)”; “Get features/annotation” section: “Build
tissue-specific expression dataset (Human Protein Atlas)(no input required)”, “Add expres-
sion data (RNAseq or Immuno-assays) (Human Protein Atlas)”, “Get expression profiles
by (normal or tumor) tissue/cell type (Human Protein Atlas)”, “Add protein features
(neXtProt)”, and “Get MS/MS observations in tissue/fluid (Peptide Atlas)”. For ease of
use, detailed user documentation is provided at the bottom of the central panel of the
Galaxy interface upon tool selection. This documentation describes what the tool does, the
input it requires, the parameters to be tuned, and the output it produces. Data sources are
listed along with their release date, when applicable. The computational outputs—history,
workflow, and tools—used and produced in this study have been published and shared
via ProteoRE to allow for review and to make them available for reuse. These resources
are available in the shared section (menu “Shared data” from the navigation bar on the
main panel) on the ProteoRE website (registered users only). The history and workflow
for this study can also be examined and imported by accessing the following links: http:
//www.proteore.org/u/yvdb/h/liverinjurybiomarkersselectionpailleuxetal (name: “Liv-
erInjury_Biomarkers_Selection_Pailleux_et_al”) and http://www.proteore.org/u/yvdb/
w/workflow-constructed-from-history-pailleuxetalliverinjurybiomarkersselection (name:
“Workflow ‘LiverInjury_Biomarkers_Selection’ Pailleux_et_al”. The workflow can be
reused by clicking the “import workflow” button (upper-right corner of the “About this
Workflow” panel). The public resources exploited (content and release information) were
the following: human tissue expression profiles for transcripts and proteins based on RNA
sequencing analysis and immunohistochemistry, respectively, downloaded from the Hu-
man Protein Atlas (HPA) (https://www.proteinatlas.org/about/download; version 20.1)
and Ensembl (version 92.38). Protein annotations were retrieved from neXtProt (release
May 2019) using the REST application programming interface (https://api.nextprot.org/).
Proteomics builds (i.e., collections of peptides identified in samples from a particular
subproteome generated by PeptideAtlas (https://db.systemsbiology.net/sbeams/cgi/
PeptideAtlas/buildInfo)) were retrieved via the PeptideAtlas query interface. Information
on the human plasma proteome build used in this study (release date April 2017) can be
found here: https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/buildDetails?atlas_
build_id=465.

4.2. Human Blood Samples

Patients with ALI/ALF were recruited at the Intensive Care Unit (ICU) of the Hep-
atobiliary Center at Paul Brousse Hospital (France, Villejuif). Blood samples were col-
lected from 22 patients admitted for acetaminophen-induced ALI/ALF (n = 17) and non-
acetaminophen-induced ALI/ALF (n = 5) (Supplementary Table S4). Blood samples were
analyzed immediately at the clinical chemistry laboratory to determine biological parame-
ters of hepatic insufficiency, including alanine and aspartate aminotransferase (activated
ALT and AST photometric assays, Abbott, Rungis, France), INR, and prothrombin time
(STA-Neoplastine CI PLUS test, Ref. 00667, Diagnostica Stago, Asnières sur Seine, France).
All patients tested negative for hepatitis viruses (HAV, HBV, HCV). Clinical data collected
included age, gender, sampling time, and outcome on day 21 post-admission (Supple-
mentary Table S4). Blood samples were collected at the time of admission to the ICU,

https://www.proteore.org
http://www.proteore.org/u/yvdb/h/liverinjurybiomarkersselectionpailleuxetal
http://www.proteore.org/u/yvdb/h/liverinjurybiomarkersselectionpailleuxetal
http://www.proteore.org/u/yvdb/w/workflow-constructed-from-history-pailleuxetalliverinjurybiomarkersselection
http://www.proteore.org/u/yvdb/w/workflow-constructed-from-history-pailleuxetalliverinjurybiomarkersselection
https://www.proteinatlas.org/about/download
https://api.nextprot.org/
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/buildInfo
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/buildInfo
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/buildDetails?atlas_build_id=465
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/buildDetails?atlas_build_id=465


Int. J. Mol. Sci. 2021, 22, 11071 13 of 17

and several times per day for several consecutive days until clinical improvement, full
recovery, or LT. For proteomics analyses, blood samples were collected in non-treated tubes
(BD Biosciences, Le Pont de Claix, France), and serum was isolated by centrifugation at
1000 g for 15 min in the 30 min following collection. Aliquots of serum supernatants were
immediately frozen at −80 ◦C before shipping to the proteomics laboratory in dry ice. After
receipt in the proteomics laboratory, samples were thawed and aliquoted (50 µL) before
storage at −80 ◦C. The French Blood Service (EFS) provided anonymous serum samples
from healthy donors (n = 20) with no history of acetaminophen-induced hepatotoxicity.

4.3. ADH1B Recombinant Protein and Quantification Standard

Unlabeled recombinant ADH1B protein was purchased from Abcam, Cambridge,
UK (reference ab116934). The protein standard for absolute quantification (PSAQ) for
ADH1B was synthesized using a cell-free protein expression system in the presence of
[13C6, 15N2] L-lysine and [13C6, 15N4] L-arginine (Euriso-top, Saint-Aubin, France), as
previously described [36,37]. The ADH1B PSAQ standard was checked for purity (>95%,
SDS-PAGE) and isotope incorporation via LC–SRM (>99%), before quantification by amino
acid analysis [38]. Purified ADH1B PSAQ standard was formulated in phosphate-buffered
saline, and was aliquoted in single-use low-binding microtubes (Eppendorf, Montesson,
France) to avoid freeze–thaw cycles. Aliquots were stored at −80 ◦C.

4.4. Preparation of Serum Samples for Discovery Proteomics Analysis

Serum samples were digested using multiple-enzyme digestion–filter-aided sam-
ple preparation (MED–FASP) [20], with slight variations to the protocol as previously
described [39]. Briefly, each serum sample (3 µL) was loaded on a 10 kDa cutoff ultrafil-
tration device (Amicon). Proteins were denatured and reduced on the device in 4 M urea,
25 mM NH4HCO3, and 20 mM TCEP. The sample was washed with 4 M urea and 25 mM
NH4HCO3 before performing alkylation in 4 M urea, 25 mM NH4HCO3, and 55 mM
iodoacetamide. After two additional washing steps, the sample volume was reduced to
50 µL, and proteins were digested for 2 h at 37 ◦C using trypsin/LysC mix (Promega) at a
protein/enzyme ratio of 1:20 (w/w). The urea concentration was reduced below 1 M, and
digestion was allowed to proceed for 5 h at 37 ◦C. Proteolytic peptides were recovered by
adding 100 µL of 25 mM NH4HCO3 to the filter and centrifuging for 15 min at 12,000× g
and 4 ◦C. The peptide digest was purified on C18 Macro SpinColumns (Harvard Apparatus,
Les Ulis, France), and 5 µg aliquots of each sample were dried by vacuum centrifugation.

4.5. MS-Based Discovery Proteomic Analyses

Dried peptide digests were solubilized in 20 µL of 5% acetonitrile, 0.1% trifluoroacetic
acid, containing 0.5 UI/µL of HRM-iRT. Then, 2 µL (equivalent to ≈500 ng protein) of
this solution was analyzed via nano-LC–MS/MS (Ultimate 3000 nano RSLC and Q Ex-
active HF equipped with Nanospray Flex Ion Source, Thermo Fisher Scientific, Les Ulis,
France). Peptides were sampled on an Acclaim™ PepMap™ 100 C18 300 µm × 5 mm
precolumn (Thermo Fisher Scientific) and separated on a ReproSil-Pur 120 C18-AQ, 1.9 µm,
75 µm × 25 cm column (Dr. Maisch GmbH). The nano-LC method consisted of a 60 min
multilinear gradient ranging from 4% to 50% solvent B (80% acetonitrile, 20% water, 0.1%
formic acid) at a flow rate of 300 nL/min, with the column oven at 35 ◦C. The column
was then washed with 90% solvent B for 15 min and, finally, re-equilibrated with 4%
solvent A (2% acetonitrile, 98% water, 0.1% formic acid) for 15 min. MS and MS/MS data
were acquired using Xcalibur (Thermo Fisher Scientific). A data-dependent top-20 MS
acquisition method was launched with the Q Exactive HF in positive mode. The nanospray
voltage was set to 2 kV, the ion transfer capillary temperature to 270 ◦C, and the S-Lens
RF amplitude to 55%. Survey full-scan MS spectra (m/z = 400–1600) were acquired in the
Orbitrap at a resolution of 60,000 after the accumulation of 106 ions (maximum filling time:
200 ms). The 20 most intense ions (excluding z = 1 and unassigned charge states) from
the survey scan were fragmented using HCD with a normalized collision energy of 30, a
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resolution of 15,000, and an AGC target of 105 ions (max injection time: 50 ms). Dynamic
exclusion was set to 30 s, the intensity threshold to trigger MS/MS to 2 × 104, and the
default charge state to 2.

4.6. Discovery Proteomics Data Processing

Peptides and proteins were identified using Mascot (version 2.7.0.1) via concomitant
searches against the UniProt database (Homo sapiens taxonomy, downloaded in May 2021)
and a homemade database of frequently observed non-human contaminants. Trypsin/P
was chosen as the enzyme, and two missed cleavages were allowed. Precursor and frag-
ment mass error tolerances were set at 10 and 20 ppm, respectively. Peptide modifications
allowed during the search were carbamidomethyl (C, fixed), acetyl (protein N-term, vari-
able), and oxidation (M, variable). The Proline software [40] was then used to filter the
results: conservation of rank 1 peptides; peptide length ≥ 6 amino acids; peptide score ≥ 25;
ability to reach a false discovery rate of peptide-spectrum match identifications < 1%, as
calculated based on peptide-spectrum match scores by employing the reverse database
strategy. Proline was then used to combine all validated PSMs into a single final mapping
list of proteins. Only proteins with at least one specific peptide were kept. MS1 label-free
quantification of the identified protein groups based on razor and specific peptides was
finally performed with Proline.

Statistical analyses were performed using ProStaR [41]. Proteins identified in the re-
verse and contaminant databases, proteins identified by MS/MS in less than two replicates
of one condition, and proteins for which fewer than 3 abundance values were available in a
single condition were removed from the list. After log2 transformation, abundance values
were normalized by VSN (variance-stabilizing normalization) before imputing missing
values (SLSA algorithm for partially observed values in the condition, and detQuantile
algorithm for totally absent values in the condition); statistical testing was performed
using a limma-moderated t-test. Differentially recovered proteins were sorted out using
a log2 (fold change) cutoff of 1 and a p-value threshold (on the remaining proteins) that
guarantees a Benjamini–Hochberg FDR <1%.

4.7. Preparation of Serum Samples for Targeted Proteomics Analysis

Serum samples (14 µL) were spiked with defined amounts of ADH1B PSAQ standard
(3 µg/mL), and then incubated for 1 h at 4 ◦C with gentle mixing. Spiked samples were
depleted of the six most abundant proteins (albumin, transferrin, IgG, IgA, haptoglobin,
and antitrypsin) using a human Multiple Affinity Removal System (MARS) spin cartridge
(Agilent Technologies), in accordance with the manufacturer’s instructions. Depleted
samples were concentrated to 50 µL, and the buffer was exchanged for 4 M urea and
50 mM NH4HCO3 using a 3000 Da cutoff ultrafiltration device (Merck Millipore, Guyan-
court, France). The resulting concentrates were submitted to in-solution digestion at 37 ◦C
using an EndolysC/trypsin mix (Promega, Charbonnières-les-Bains, France) at an en-
zyme/protein ratio of 1:30 (w/w). After incubation for 3 h, samples were diluted (4×), and
digestion was allowed to proceed overnight at 37 ◦C. Digestion was stopped by adding
0.1% formic acid. Samples were purified on C18 Macro SpinColumns (Harvard Apparatus)
and dried by vacuum centrifugation. Digests were resolubilized in 15 µL of 2% acetonitrile,
0.1% formic acid. A sample volume of 6 µL was injected into the LC system.

4.8. LC–SRM Analysis

Targeted proteomics analyses were performed in SRM mode on a QTRAP 6500 mass
spectrometer (AB Sciex, Darmstadt, Germany) (400–1000 m/z range) equipped with a
TurboV source and controlled by Analyst software (version 1.6.1, AB Sciex). The instrument
was coupled to an Ultimate 3000 LC chromatography system (Thermo Fisher Scientific).
Chromatography was performed using a two-solvent system (solvent A (2% acetonitrile,
0.1% formic acid); solvent B (80% acetonitrile, 0.1% formic acid)). Peptide digests were
concentrated on a 1 × 15 mm C18 PepMap precolumn (Thermo Fisher Scientific) before
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separation on a Kinetex XB-C18 column (2.1 × 100 mm, 1.7 µm, 100 Å; Phenomenex, Le
Pecq, France). Separation was performed over 40 min by applying a gradient from 3%
to 35% B in 30 min, and from 35% to 90% B in 10 min, at a flow rate of 50 µL/min. The
tryptic peptides monitored and the parameters for LC–SRM acquisitions are presented
in Supplementary Table S3. A calibration sample was used before LC–SRM analysis of
samples from ALI patients to verify quantification performance. Clinical samples were
analyzed in batches, in an unblinded fashion, with each batch corresponding to the serum
samples obtained from a single patient. Quality controls to check instrument performance
and to adjust retention time windows were implemented before each batch of samples.
Sample vials and injection plates were maintained at 4 ◦C in the autosampler, and storage
in the autosampler never exceeded 24 h (maximum 13 samples for patient 15). Absence of
carryover was checked using a blank injection after each serum sample.

4.9. Analysis of LC-SRM Data

LC–SRM data were analyzed using Skyline software (version 19.1.0.193) [42]. The
signature peptide AAVLWEVK was used to quantify ADH1B. Other peptides generated by
ADH1B proteolysis were also monitored, but they were not taken into account for ADH1B
quantification in clinical samples, as they are shared between several protein isoforms (Sup-
plementary Figure S2). Each version (unlabeled/labeled) of the peptide AAVLWEVK was
monitored using three transitions (Supplementary Table S3). All transitions were inspected
(signal-to-noise ratio, asymmetric peak due to interference, co-elution . . . ) and integration
boundaries were manually adjusted before peak area measurements. Unlabeled/labeled
peak area ratio was calculated for the most intense transition (quantifier transition), and
this ratio was used to calculate ADH1B concentration.

5. Patent

The results and biomarker candidates reported in this article are protected by patent
WO2017/121974 Process for in vitro diagnosis of hepatic disorders.
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