
biomolecules

Review

Essential Oils and Isolated Terpenes in Nanosystems
Designed for Topical Administration: A Review

Sheila P. de Matos 1, Helder F. Teixeira 1, Ádley A. N. de Lima 2, Valdir F. Veiga-Junior 3 and
Letícia S. Koester 1,*

1 Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do
Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, Brazil; sheilaporto@outlook.com (S.P.d.M.);
helder.teixeira@ufrgs.br (H.F.T.)

2 Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmácia, Universidade Federal
do Rio Grande do Norte, Av. General Cordeiro de Farias, s/n, Petrópolis, Natal 59012-570, Brazil;
adleyantonini@yahoo.com.br

3 Departamento de Engenharia Química, Instituto Militar de Engenharia, Praça Gen. Tibúrcio, 80,
Praia Vermelha, Urca, Rio de Janeiro 22290-270, Brazil; valdir.veiga@gmail.com

* Correspondence: leticia.koester@ufrgs.br; Tel.: +55-51-3308-5278

Received: 8 March 2019; Accepted: 2 April 2019; Published: 5 April 2019
����������
�������

Abstract: Essential oils are natural products with a complex composition. Terpenes are the most
common class of chemical compounds present in essential oils. Terpenes and the essential
oils containing them are widely used and investigated by their pharmacological properties
and permeation-enhancing ability. However, many terpenes and essential oils are sensitive to
environmental conditions, undergoing volatilization and chemical degradation. In order to overcome
the chemical instability of some isolated terpenes and essential oils, the encapsulation of these
compounds in nanostructured systems (polymeric, lipidic, or molecular complexes) has been
employed. In addition, nanoencapsulation can be of interest for pharmaceutical applications due to
its capacity to improve the bioavailability and allow the controlled release of drugs. Topical drug
administration is a convenient and non-invasive administration route for both local and systemic
drug delivery. The present review focuses on describing the current status of research concerning
nanostructured delivery systems containing isolated terpenes and/or essential oils designed for topical
administration and on discussing the use of terpenes and essential oils either for their biological
activities or as permeation enhancers in pharmaceutic formulations.
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1. Introduction

Essential oils (EO) are natural products extracted by hydrodistillation from plant materials,
composed by small, volatile, and fairly hydrophobic molecules [1–3]. The functions of EO in plant
organisms seem to be related to environmental interactions and protection of the plant against predators
and pathogens [1,4,5]. In the industry, essential oils are materials of great interest with a wide range of
possible applications in the nutritional, agricultural, cosmetic, and pharmaceutical fields [6,7], due to
their broad spectra of biological activities such as antimicrobial, repellent, analgesic, anti-inflammatory
activity, and many others [1,2]. Essential oils can be extracted from plant matrices using different
techniques classified as classical/conventional (that use water distillation by heat as a means to extract
the whole volatile material) and innovative/advanced (which focus on the improvement of selectivity
in extraction efficiency by reducing extraction time, use of energy, solvent, and CO2 emissions) [1].

Terpenes and terpenoids (the oxygenated derivatives of terpenes [2]) are the chemical compounds
representing the majority of molecules in essential oil composition [8]. This class of molecules is
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characterized by the combination of isoprene units (C5H8). Terpenes can be classified according
to the number of isoprene units in their structure (e.g., hemiterpenes are formed by one isoprene
unit, monoterpenes are formed by two isoprene units, sesquiterpenes by three isoprene units, and
diterpene formed by four units) [2,8]. Smaller terpenes, up to three isoprene units, are highly volatile,
and the volatility decreases with an increased number of isoprene units [9]. Many biological activities
of terpenes and terpenoids are described in the literature, being this class of molecules a valuable
source of therapeutic agents with pharmaceutical applications, such as anti-inflammatory [10], wound
healing [11], antineoplastic applications [12–14]. In addition, some compounds of the class are
widely investigated and reported as penetration enhancers for percutaneous drug delivery, being
used as excipients in the preparation of nanostructured systems [7,8,15]. Smaller terpenes are
usually thermolabile and susceptible to volatilization and degradation, mainly by oxidation and
isomerization [6,16].

The topical administration of drugs consists in the localized administration of formulations to
an organism, comprising dermal and mucosal administrations (e.g., ocular, vaginal, nasal, and rectal
routes). Among those, the most widely employed is the cutaneous route, which may be attributed to
the easiness of access compared to other topic routes [17]. When applied to the skin, a drug delivery
system can be considered dermal (when the targeting site of the drug is the skin) or transdermal
(when the drug needs to pass through skin layers in order to reach its target); for mucosal tissue
administration, delivery can be mucosal and transmucosal [18]. Many issues concerning these delivery
routes are described in the literature, such as the resistance to diffusion through the skin and mucosae
when aiming towards transdermal or transmucosal delivery and the reduced contact of the formulation
with mucosal tissues due to mucus and, thus, reduced drug bioavailability [19,20].

Encapsulation of essential oils in micro or nanometric systems is an interesting strategy to provide
better stability to the volatile compounds and protect them against environmental factors that may cause
chemical degradation [2,6]. In addition, the encapsulation in nanometric systems may improve the
bioavailability and bioefficacy of formulations as a result of cellular absorption and provide controlled
release of bioactive compounds [3,21]. Special nanostructured systems have been designed intending
topical administration as approaches to overcome the drawbacks inherent to these administration
routes, such as mucoadhesive systems that prolong the contact with mucosae and systems that favor
the passage of the drug trough skin or mucosal tissue layers [20,22]. Molecular encapsulation through
complexation with cyclodextrins is another strategy employed to improve the stability of essential oil
components, avoid volatilization (and, consequently, prolonging contact,) and enhance permeation of
the bioactive molecules [23].

In recent decades, the interest in nanotechnological approaches and use of natural products have
raised great attention in the search and development of drug delivery systems. The present review
intends to assess the panorama of research using nanostructured delivery systems containing essential
oils and/or their isolated terpenes/terpenoids as bioactive compounds and/or excipients for topical
administration routes.

2. Literature Survey

A literature survey was carried out in three different databases: Embase, Scopus, and Pubmed.
Initially, all results found until 31 December 2018 were considered, without limiting the search period
before this date. The search terms used were a combination of words related to nanostructured
systems “AND” terpenes/essential oils “AND” topical administration route. All classes of terpenes
were included, not only low-volatile terpenes, as well as all topical administration routes, which
comprise cutaneous and mucosal administration. Database search lines can be found in Supplementary
Materials, Table S1.

The number of results obtained using Scopus were 87, those from Embase were 365, and those
from PubMed were 64. Among those results, only research articles in English were considered for data
screening. Also, duplicates were disregarded. In addition, reference lists of papers were screened to
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detect research papers which did not appear in the database research but might fulfill the acceptance
criteria (Figure 1). Afterwards, the papers were screened and selected if meeting the following
acceptance criteria:

• Original research data.
• Use of essential oil containing terpenes and/or isolated terpenes in nanostructured systems

or cyclodextrins.
• Formulations for topical administration.
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Finally, 82 papers were selected for further data extraction. Studies were sorted by year of
publication in order to visualize the evolution of research in this field over the years (Figure 2). The first
report dated from 1989 and was by Saettone et al. [24], who studied the complexation of the diterpene
forskolin with cyclodextrin for ocular administration. The number of publications has gradually grown
over the years, indicating an increasing interest in the topic.
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Figure 2. Annual distribution of publications.

Data concerning the essential oil or terpene used, encapsulation system, nanosystem preparation
technique, administration route of formulation, and use of EO/terpene as bioactive compounds or
excipients were extracted from the selected papers and compiled in Tables 1 and 2 in order to ease the
access to the extracted data, which are further discussed in the following sections of this review.

3. Discussion

3.1. Topical Administration Routes

Topical drug administration can be described as the localized application of a pharmaceutical
dosage form and comprises both dermal and mucosal administration [19,20]. In Figure 3, the different
sites of administration for nanosystems containing isolated terpenes and/or EO are shown. It can be
noticed that among the study formulations containing nanoencapsulated EO and/or terpenes, dermal
and transdermal administration represent nearly 90% of the administration routes, which can be
attributed to the non-invasiveness, convenience, and painless qualities of this type of administration.

Dermal administration of nanostructured systems containing terpenes and EO is, in general,
mainly used as a treatment for conditions localized on the skin surface, such as for wound healing, and
to vehiculate anti-inflammatory, antimicrobial, and repellent agents. On the other hand, transdermal
delivery is employed in cases where the bioactive compound needs to reach deeper layers of the
skin or even the systemic circulation, such as for anesthetic, antihypertensive, and antidiabetic drugs
(Tables 1 and 2).

Mucosal administration (ocular, nasal, oral, vaginal) still represents a challenging route due to the
presence of mucus, lacrimal fluids, and saliva, which can impair the bioavailability of the bioactive
compound [19]. However, it is possible to foresee the development of mucoadhesive formulations as
means to overcome these limitations.
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Table 1. Publications found in the literature concerning the encapsulation of isolated terpenes in nanostructured systems intended for topical administration.

Year Terpene System Administration
Route Biological Activity Terpene Role in the

Nanosystem

[25] 2018 Limonene, cineole,
fenchone, and citral Invasomes Cutaneous Anti-acne Excipient

[26] 2018 Ursolic acid Solid lipid nanoparticles Cutaneous Antiarthritic Bioactive
[27] 2018 Limonene Nanovesicles Transdermal Antineoplastic Excipient
[28] 2018 Paeoniflorin Ethosomes Transdermal Antiarthritic Bioactive
[29] 2018 Rebaudioside A Ultra-small micelles Ocular NA Excipient
[30] 2018 Farnesol Nanoparticles Oral Antibiofilm Bioactive
[31] 2018 Eucaliptol Nanoemulsion Transfollicular NA Excipient
[32] 2018 Menthol Nanoparticles Transdermal Osteoporosis treatment Excipient
[33] 2018 Tripterine Phytosomes Oral Antineoplastic Bioactive
[34] 2018 Ursolic acid and anethole Liposomes Nasal Antineoplastic Bioactive and excipient
[10] 2018 Thymol Solid lipid nanoparticles Cutaneous Anti-inflammatory Bioactive
[35] 2018 Docetaxel Polymeric nanoparticles Nasal Antineoplastic Bioactive
[36] 2018 Forskolin Nanostructures lipid carriers Transdermal Photoprotector Bioactive
[37] 2017 Citral and limonene Transferosomes and liposomes Transdermal Antiarthritic Excipient
[38] 2017 Paeoniflorin Glycerosomes Transdermal Anti-inflammatory Bioactive and Excipient
[39] 2017 Limonene Transinvasomes Transdermal NA Excipient
[40] 2017 Limonene PEGylated liposomes Transdermal Alzheimer’s treatment Excipient
[41] 2017 Triptolide Nanoemulsion Percutaneous Anti-inflammatory and analgesic Bioactive
[42] 2017 β-citronellene Invasomes Transdermal Hypertension treatment Excipient
[43] 2017 α-bisabolol Nanocapsules Ocular Antinociceptive Bioactive
[11] 2017 Hyperforin Hydroxypropyl-β-cyclodextrin Cutaneous Wound healing Bioactive
[44] 2016 Cineole and limonene Penetration enhancer vehicle Transdermal Antifungal Excipient
[45] 2016 β-citronellene Invasomes Transdermal Hypertension treatment Excipient
[46] 2016 Squalene Solid nanoemulsion Transdermal Immunization Excipient
[14] 2016 Paclitaxel Solid Lipid Nanoparticles Cutaneous Antineoplastic Bioactive
[47] 2016 Madecassoside Liposomes Cutaneous Wound healing Bioactive
[48] 2016 Asiaticoside Nanofibers Cutaneous Wound healing Bioactive
[49] 2016 Triterpenoids of Ganoderma l. Nanogel Cutaneous Frostbite treatment Bioactive
[50] 2016 Safranal Nanoemulsion Nasal Cerebral ischemia treatment Bioactive
[51] 2015 Ursolic acid Niosomal gel Transdermal Antiarthritic Bioactive
[52] 2015 Farnesol Polymeric nanoparticles Oral Antibiofilm Bioactive
[53] 2015 Ursolic acid and oleanoic acid Nanoemulsion Cutaneous Anti-inflammatory Bioactive
[13] 2015 Docetaxel Nanofibers Cutaneous Antineoplastic Bioactive
[54] 2014 Limonene Nanoemulsion Transdermal NA Excipient
[55] 2014 Limoneno PEGilated liposomes Transdermal NA Excipient
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Table 1. Cont.

Year Terpene System Administration
Route Biological Activity Terpene Role in the

Nanosystem

[56] 2014 Limonene and 1,8-cineole Nanoemulsion and solid lipid nanoparticles
and nanostructures lipid carriers Cutaneous Cutaneous lesions treatment Excipient

[12] 2014 Paclitaxel Solid lipid nanoparticles and
Nanostructures lipid carriers Cutaneous Hyperkeratosis treatment Bioactive

[57] 2013 Betulin Nanoemulsion Cutaneous Antineoplastic Bioactive
[58] 2013 Limonene Nanoemulsion Transdermal Analgesic Excipient
[59] 2013 Astragaloside IV Solid lipid nanoparticles Cutaneous Wound healing Bioactive
[60] 2013 Limonene Liposomes Transdermal NA Excipient
[61] 2013 Lupane Liposomes Cutaneous Leishmanicidal Bioactive

[62] 2013 Hurpezine A Solid lipid nanoparticles, Nanostructures
lipid carriers and Microemulsion Transdermal Alzheimer’s treatment Bioactive

[63] 2012 Tripterine Nanostructures lipid carriers Cutaneous Antineoplastic Bioactive
[64] 2012 Asiaticoside Liposomes Transdermal Stimulation of collagen synthesis Bioactive
[65] 2010 Triptolide Ethosomes Transdermal Anti-inflammatory Bioactive
[66] 2010 Squalene Nanostructures lipid carriers Cutaneous Psoriasis treatment Excipient
[67] 2009 Cineole Penetration enhancer vehicle Transdermal Alopecia treatment Excipient

[68–70] 2009, 2008 Limonene, citral and cineole Invasomes Transdermal Photosensitization Excipient
[71] 2005 Triptolide Solid lipid nanoparticles Cutaneous Anti-inflammatory Bioactive
[72] 2003 Sericoside derivates of β- and γ-cyclodextrins Cutaneous Anti-inflammatory Bioactive
[73] 2003 Triptolide Solid lipid nanoparticles Cutaneous Anti-inflammatory Bioactive

[24] 1989 Forskolin β- and γ-cyclodextrins Ocular Treatment of intraocular
hypertension Bioactive

NA: not applicable.
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Table 2. Publications found in the literature concerning the encapsulation of essential oils, fixed oils, and plant extract containing terpenes in nanostructured systems
intended for topical administration.

Year Essential Oil/Fixed Oil/Plant
Extract System Administration

Route Biological Activity Essential Oil/Fixed Oil/Plant
Extract Role in the System

[74] 2018 Lemon EO Nanoemulsion Cutaneous Hyperpigmentation treatment Excipient
[75] 2018 Clove EO and sweet fennel EO Nanoemulsion Cutaneous Autoimmune dermatoses Excipient
[76] 2018 Clove EO and sweet fennel EO Nanoemulsion Cutaneous Autoimmune dermatoses Excipient
[77] 2018 Mentha EO Nanogel Vaginal Antifungal Bioactive
[78] 2018 Nigella Sativa EO Nanoemulsions Cutaneous Anti-inflammatory Bioactive
[79] 2017 Clove EO and Sweet Fennel EO Nanoemulsion Transdermal Autoimmune dermatoses Excipient
[80] 2017 Cymbopogon Flexuous EO Nanocapsules Cutaneous Antimicrobial Bioactive
[81] 2017 Rosemary EO Lipid Nanoparticles Cutaneous Skin hydration Bioactive
[82] 2017 Eucaliptus globulosus EO Nanosized-microemulsion Cutaneous Repellent Bioactive
[83] 2017 Syzygium aromaticum EO Nanoemulsion Cutaneous Wound healing and antidermatophytic Bioactive
[84] 2016 Tea Tree Oil Nanoemulsion Cutaneous Antimicrobial Bioactive
[85] 2016 Centella asiatica extract Hydroxypropyl-β-cyclodextrin Cutaneous Wound healing Bioactive
[86] 2016 Lippia sidoides EO Nanogel Oral Periodontitis treatment Bioactive
[87] 2015 Foeniculum vulgare EO Nanoemulsion Transdermal Antidiabetic Bioactive
[88] 2015 Lemongrass oil Nanosponges Cutaneous Antifungal Bioactive
[89] 2015 Copaifera multijuga EO Nanoemulsion Percutaneous Anti-inflammatory Bioactive
[90] 2015 Santolina insularis EO Penetration enhancing vehicle Percutaneous Antimicrobial Bioactive and excipient
[91] 2015 Melaleuca alternifolia EO Nanoemulsion and Nanocapsules Cutaneous Wound healing and antidermatotophytic Bioactive
[92] 2014 Eucalyptus oil Nanoemulsion Cutaneous Antibacterial and Wound healing Bioactive
[93] 2014 Plai oil Hydroxypropyl-β-cyclodextrin and Nanofibers Cutaneous Anti-inflammatory Bioactive
[94] 2013 Stenachaenium megapotamicum EO Nanoemulsion Cutaneous Antidermatophytic Bioactive
[95] 2013 Anethum graveolens EO Liposomes Cutaneous Antifungal Bioactive
[96] 2013 M. alternifolia EO Nanoemulsion and nanocapsules Ungueal Onychomycosis treatment Bioactive
[97] 2012 C. multijuga EO Nanoemulsion Percutaneous Anti-inflammatory Bioactive
[98] 2012 Turmeric oil Nanoemulsion Cutaneous Psoriasis treatment Bioactive
[99] 2009 Citronella oil Nanoemulsion Cutaneous Repellent Bioactive
[100] 2007 Artemisia arborescens EO Solid Lipid Nanoparticles Cutaneous Antiviral Bioactive
[101] 2004 Viton oil Liposomes Cutaneous Anti-inflammatory Bioactive
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Figure 3. Topical administration routes of nanoencapsulated essential oils (EO) containing terpenes
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3.2. Role of Essential Oil and/or Terpenes in the Formulations

In order to understand the applications of EO containing terpenes and/or isolated terpenes
encapsulated in nanosystems intended for topical administration, the studies were divided between
those in which EO/terpenes were used as excipient and those in which they were used as bioactive
compounds. Of 82 studies, 56 employed terpenes/EO as bioactive ingredients in formulations, whereas
29 reported terpenes/EO as excipients in formulations (Figure 4). Zhang et al. [38] reported both bioactive
(anti-inflammatory) and penetration-enhancing activities of the terpene Paeoniflorin encapsulated in
glycerosomes. Also, Castangia et al. [90] described the preparation of permeation-enhancing vehicles
containing Santolina insularis EO as an antimicrobial and permeation enhancer for percutaneous
drug delivery.
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Many biological and pharmacological activities of EO and terpenes are well described in the
literature, and the interest in their use as bioactive ingredients in pharmaceutical formulations has been
rising recently, alongside with the seek for natural products as alternatives for drug development [1,5].

In general, the use of terpenes as excipients aims to increase the permeation of the active
compound through skin layers, since terpenes are extensively cited in the literature as permeation
enhancers [7,15,102]. The application of terpenes as excipients is further discussed in Section 3.2.2.

3.2.1. Nanostructured Systems Used in the Encapsulation of Terpenes and Essential Oils as
Bioactive Ingredients

The therapeutic potential of terpenes and EO containing terpenes is well known. Biological
activities such as bactericidal, fungicidal, antioxidant, virucidal, and antineoplastic activities are
well recognized [3,5,103]. There is a number of good reviews in the literature that list the variety
of nanostructured systems and preparation techniques employed in the encapsulation of EO in
nanostructures systems [1,2,104], but none focused on terpenes. Among the studies listed in Tables 1
and 2, the most widely investigated biological activities upon nanoencapsulation of essential oils
and isolated terpenes were the anti-inflammatory activity of essential oils and oil resins containing
terpenes, such as plai oil [93], Copaifera multijuga oil [89,97], Nigella sativa EO [78], and of the isolated
terpenes triptolide [41,65,71,73], sericoside [72], thymol [10] and oleanoic and ursolic acids [53],
as well as the wound healing properties of Syzygium aromaticum EO [83], Melaleuca alternifolia EO [91],
triterpenes from Centella asiatica extract [85], madecassoside [105], asiaticoside [48], astragaloside
IV [59], and hyperforin [11]. Also, the nanoencapsulation of the well-established taxane antineoplastic
drugs paclitaxel [14] and docetaxel [13,35] were studied for topical administration.

The systems can be divided according to their composition of polymers and lipids [21].
Polymer-based systems can be constituted by natural, synthetic, and semisynthetic polymers and
comprise systems such as nanocapsules (NC), nanoparticles (NP), nanofibers (NF), and nanogels
(NG). On the other hand, the lipid-based systems, namely, nanoemulsions (NE), liposomes (LS), solid
lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and vesicular systems (VS) which
comprehend ethosomes, phytosomes, niosomes, glycerosomes, and invasomes (IV) [106], are formed
by lipids [104]. In addition, molecular complexation of terpenes with cyclodextrins is reported in the
literature as a strategy for essential oil and natural products nanoencapsulation [2,107].

Encapsulation in nanometric systems is widely described in the literature as an approach to
overcome many disadvantages concerning essential oils by providing protection against environmental
factors that can cause chemical degradation and avoiding volatilization of EO components. In addition,
nanoencapsulation can improve the bioavailability, allow controlled drug release, and enable the
passage of the bioactive compounds through biological barriers [21]. Patel et al. [62] compared the
cutaneous permeation of the sesquiterpene Hurpezine A from transdermal gels after encapsulation
in three different systems, i.e., microemulsion (ME), SLN, and NLC, and the in vivo activity in an
experimental mice model of induced amnesia. The ME formulation presented the highest cumulative
permeated amounts, followed by NLC and SLN. The in vivo experiments presented no significant
difference between the three formulations, but positive outcomes when compared to the negative
control. In other study of comparison between different nanostructured systems, Flores et al. [96]
investigated nanocapsule suspensions and nanoemulsions containing tea tree oil against in in vitro
onychomycosis models. Although both nanometric systems presented better antifungal activity
compared to the coarse emulsion containing tea tree oil, the nanocapsule formulation was more
effective against the microorganism. This may be attributed to the polymer barrier that prevents the
volatilization of bioactive compounds as well as the capacity of the aqueous suspension to hydrate the
tissue and therefore enhance the penetration of nanostructures.

Also, the complexation with cyclodextrins can be an interesting alternative, since it is reported
to provide protection against environmental factors, improve stability, avoid volatilization of EO
components, improve oral bioavailability, and reduce mucosal irritation [23]. In addition, cyclodextrins
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are described as safe options to enhance the permeation of molecules through the skin and
mucosae [2,15,108]. The complexation of essential oils and isolated terpenes with cyclodextrins
has been reported in the literature and reviewed [23,109,110]; however, the majority of investigations
concerning complexes between cyclodextrins and essential oils or isolated terpenes for pharmaceutical
applications are limited to oral administration, with few studies focusing on topical administration,
and no reviews found in the literature covering this subject specifically. Rode et al. [72] studied the
influence of cyclodextrin complexation on the percutaneous penetration in pig skin of the triterpenoid
sericoside from a Terminalia sericea extract. The formulation containing the sericoside from the extract
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Figure 5. Nanostructured systems used in the encapsulation of essential oils containing terpenes
and isolated terpenes as bioactive compounds for topical formulations. LS, liposomes, VS, vesicular
systems, SLN, solid lipid nanoparticles, NLC, nanostructured lipid carriers, NE, nanoemulsions,
NC, nanocapsules.

Although various preparation techniques of nanostructured systems are extensively described
in the literature [1,2,104], it is important to pay attention to the preparation technique in terms on its
influence on EO/terpene stability, because of their sensitivity to heat and pressure. In this context,
the quantification of chemical markers of EO or terpenes is essential, especially in cases where they
play a role as bioactive compounds, in order to ensure the integrity of EO/terpene content in the final
formulation and, thus, the safety and efficacy of the final product [104].

3.2.2. Terpenes as Excipients in Formulations for Topical Administration

Transdermal drug delivery represents a convenient route of administration for systemic action due
to its non-invasive characteristic [102,111]. However, it is limited by the ability of the drug to permeate
through the skin layers, especially the stratum corneum (SC). The use of penetration enhancers is a
promising strategy to broaden the range of drugs eligible for transdermal delivery [112].

Permeation enhancers are used as excipients in formulations and are capable of facilitating the
passage of a drug through the skin. Besides their biological activities, essential oils and isolated
terpenes have been described as promising permeation enhancers for transdermal drug delivery. They
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can enhance the passage of drugs through the skin by interacting with stratum corneum lipids and
modifying the solubility characteristics of these lipids, facilitating drug partitioning towards deeper
layers of the skin [7,8,15,102]. Furthermore, terpenes are considered safer than other permeation
enhancers from a toxicological point of view, with some terpenes being included in the list of
Generally Recognized as Safe (GRAS) compounds from the US FDA (United States Food and Drug
Administration) [8].

The nanostructured systems in which terpenes are used as excipients are illustrated in Figure 6.
The majority of systems are based on vesicular structures (LS, I,V and permeation-enhancing vehicles
(PEV)), with the invasomes representing 27% of the nanostructured systems reported, followed by
liposomes and nanoemulsions (20%).Biomolecules 2019, 9, 138 12 of 19 
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Invasomes (also found in the literature as invasosomes) are special drug delivery systems that
contain terpenes and are the most recurrent among the formulations of nanosystems using terpenes as
excipients (Figure 6). They are, by definition, vesicular systems consisting of terpenes, ethanol, and
phospholipids as fundamental raw materials and present elasticity and deformability, which favors
penetration across skin layers, and thus they work as penetration-enhancing vehicles [113]. According
to the data presented in Tables 1 and 2, the terpenes used in the formulation of invasomes are limonene,
cineole, fenchone, citral, and beta-citronellene; all of them are monoterpenes or monoterpenoids
(Figure 7).
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Kamran et al. [45] studied the preparation of invasomes using beta-citronellene as a permeation
enhancer for transdermal delivery of the antihypertensive olmesartan and observed an increase in the
bioavailability of olmesartan from invasomes in Wistar rats compared to the control. Incorporation of
isradipine, also an antihypertensive agent, in invasomes containing beta-citronellene was investigated
by Qadri et al. [42], who showed a decrease of 20% of blood pressure in rats. The permeation of
rhodamine B invasomes through rat skin was evaluated by confocal laser spectroscopy, and fluorescence
was detected at a depth of 171.18 mm in the skin. A series of studies focused on the encapsulation of
temoporfin in invasomes, aiming to improve its penetration through the skin using several different
proportions of cineole, citral, and d-limonene. The findings indicated that the optimal amount of
terpenes in formulations should be 1% (v/v), and the formulation containing 1% of cineole alone
led to higher permeation of the drug to deeper layers of the skin compared to mixtures of the three
terpenes in varied proportions and limonene and citral alone [68–70]. El-Nabarawi et al. [25] prepared
dapsone-loaded invasomes for acne treatment, containing different terpenes (limonene, cineole, citral,
or fenchone) in varied concentrations in a full factorial design study and compared drug deposition
in vivo of optimized formulations with dapsone solution, finding a 2.5-fold increase in dapsone
deposition with the invasomes formulation.

3.3. Safety of Essential Oils and Terpenes in Topical Administration

One important concern is the safety of the use of essential oils and terpenes in topical formulations.
Although a number of essential oils and terpenes are considered GRAS [8], few studies investigated the
safety of these compounds in topical application. Lalko and Api [114] investigated the skin irritancy
of essential oils and their isolated compounds, concluding that, in many cases, there is a potential
induction of sensibilization upon exposure to these compounds. Some terpenes, as described in
previous sections of this review, are used as permeation enhancers in drug delivery systems. They are
considered non-toxic, nonirritant, and, therefore, a safe option for permeation enhancement [115].

3.4. Sustainability

In recent decades, the efforts to reduce the environmental impact of chemical compounds and
develop green chemistry have been growing. Terpenes and essential oils comprise a renewable source
of chemical compounds and have been already described in the literature as “greener” alternatives to
pesticides [116] and solvents [117]. Concerning the preparation of nanostructured systems, essential
oils and terpenes can be used as more sustainable additives, being able to substitute organic solvents in
the preparation of nanocapsules [118] and in the synthesis of metallic nanoparticles [119]. Also, effort
has been made for the development of essential oil extraction techniques with no or less solvent and
energy use without quality loss [120]. When observing the 12 principles of Green Chemistry [121],
it is possible to see that the use of terpenes and essential oils may have some positive effects, since,
as aforementioned, they are renewable supplies and present low toxicity [8]. Furthermore, in the
development of new formulations containing essential oils and terpenes, the 12 principles (prevention,
atom economy, less hazardous chemical synthesis, designing safer chemicals, safer solvents and
auxiliaries, design for energy efficient, use of renewable feedstocks, reduce derivatives, catalysis,
design for degradation, real-time analysis for pollution prevention, and inherently safer chemistry
for accident prevention) should be respected, since, besides reducing the environmental impact of
chemicals, they can also lead to lower costs of production [122], which can balance out investments
made in the development and implementation of sustainable alternatives.

4. Concluding Remarks

The interest in the development of nanostructured systems containing essential oils and terpenes
designed for topical administration routes has been rising in recent years. The majority of the
formulations employ EO and/or terpenes as active ingredients encapsulated in nanostructured systems
as means to improve the physicochemical properties and/or achieve greater bioavailability and
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controlled release of drugs. On the other hand, a part of the studies also shows the growing interest
in using terpenes as permeation-enhancer excipients in transdermal delivery systems, a promising
strategy for efficient and noninvasive drug delivery to the skin deeper layers.

Terpenes and essential oils present a sustainable alternative as raw materials in the pharmaceutical
field and thus a valuable source, giving the growing importance of “greener” chemistry. Many
of them are considered GRAS; however, there is a lack of information concerning their safety in
topical administration.
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