
Heliyon 8 (2022) e09252
Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon
Research article
A multi-layer perceptron-based approach for early detection of BSR disease
in oil palm trees using hyperspectral images

Chee Cheong Lee a,*, Voon Chet Koo a, Tien Sze Lim a, Yang Ping Lee b, Haryati Abidin b

a Faculty of Engineering and Technology, Multimedia University, 75450 Bukit Beruang, Melaka, Malaysia
b FGV R&D Sdn. Bhd., 50350 Kuala Lumpur, Malaysia
A R T I C L E I N F O

Keywords:
Computer vision
Machine learning
Multilayer perceptron
Hyperspectral image
Basel stem rot disease
Vegetation index
* Corresponding author.
E-mail address: ccheonglee@gmail.com (C.C. Le

https://doi.org/10.1016/j.heliyon.2022.e09252
Received 22 September 2021; Received in revised
2405-8440/© 2022 Published by Elsevier Ltd. This
A B S T R A C T

Basal Stem Rot (BSR) disease caused by Ganoderma boninense is identified as the biggest threat in oil palm in-
dustry in Malaysia, resulting in significant yield losses. Effective BSR disease detection is important for plantation
management to ensure stable palm oil production. Existing method is done by experience personnel, via visual
inspection it is very time consuming. Rapid development of unmanned aerial vehicle (UAV) and machine learning
has the potential to address this issue with higher efficiency. This paper proposed a new framework to automate
BSR disease detection with UAV images to improve time efficiency and automate detection process. The proposed
method has two steps, first hyperspectral image (HSI) pre-processing, followed by artificial neural network dis-
ease detection. Multilayer-Perceptron model is introduced to learn spectral features from different infection
stages. The model is trained with ground truth collected by trained surveyors. The HSI sample size consists of 2
healthy trees, 5 Stage A (mild infection), 5 Stage B (moderate infection), and 3 Stage C (severe infection). Per-
formance is examined with support vector machine (SVM), 1 dimensional convolutional network (1D CNN), and
several vegetation indices, namely Normalized Difference Vegetation Index (NDVI), Normalized Difference Red
Edge (NDRE), Optimised Soil-Adjusted Vegetation Index (OSAVI), and Merris Terrestrial Chlorophyll Index
(MTCI). All machine learning algorithms can segregate infection stages, MLP modal had a highest overall accuracy
86.67%, compared to SVM and 1D CNN at 66.67% and 73.33%. Whereas for vegetation index, it can only detect
Stage C tree, and not able to differentiate between Healthy, Stage A and Stage B tree. In term of computational
cost, MLP modal had balance performance with moderate training time, but faster inference time. It demonstrates
effectiveness on BSR disease detection, even at early infection stage.
1. Introduction

BSR disease is a major disease in Malaysia oil palm industry. It causes
yield reduction of 0.04 t/ha for 10 years planting and 4.34 t/ha for 22
years planting. From survey conducted by Mohd Shukri I. et al., covering
area of 37351.81ha of oil palm, BSR disease affected 9.2% of the survey
area [1]. It is crucial for plantation management to detect BSR disease
especially at its early stage and know the area of infection. Treatment can
be done to infected plant to retain its economic value and prevent it from
infecting others. Tree healthiness can be categorized into four levels,
healthy (healthy palm, no Ganoderma fruiting bodies), Stage A (mild
infection, has Ganoderma fruiting bodies, but leaves look healthy), Stage
B (moderate infection, has Ganoderma fruiting bodies, leaves show
unhealthy/yellowish), Stage C (severe infection, dead trees with Gano-
derma fruiting bodies).
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Ground evaluation of the disease is done with visual inspection.
Inspector finds the symptoms to identify infected plants, such as few
unopened new fronds, green fronds wilts and hanging downwards,
yellowish fronds, small canopy, and existing of basidiomata on the
trunks. The localization is done simultaneously, inspector marks location
of infected plants with global position system (GPS) device. The process
is labour intensive and time consuming [2]. This often cause the rein-
spection interval is very long and make it difficult for real time detection
in large plantation area.

The symptoms of BSR disease are decay of the bottom of the stem
from where basidiocarps emerge. Stem rotting limits the uptake of water
and nutrients to the fronds and causing chlorosis [3]. Chlorophyll is
essential in photosynthesis, which allows plants to convert light energy to
chemical energy. Healthier plants have higher level of chlorophyll, and it
reflects more green light and Near Infrared, absorb more red light. Some
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Table 1. Summary of different ML Methods in BSR Disease Detection.

Sensor Type Machine Learning Technique Accuracy Disease Severity Separation Reference

Laser Scanner Kernel Naïve Bayes 85% Yes [21]

Synthetic Aperture Radar Multilayer Perceptron 95.65% No [22]

Spectroradiometer PLS-DA 94% Yes [4]

Spectroradiometer Artificial Neural Network 83%–100% Yes [8]

Hyperspectral Imaging Support Vector Machine 93%–100% Yes [7]

Spectroradiometer K-Nearest Neighbor 97% Yes [32]

Spectrometer Linear Discriminant Analysis 90% Yes [33]

Multispectral Imaging Neural Net 41.3% Yes [34]

Dielectric Spectroscopy Support Vector Machine 74.77% Yes [35]

Thermal Imaging Random Forest 73.9%–90.2% No [36]

Figure 1. (a) Study Area on Malaysia Map. (b) Location of Study Area in Melaka. (c) Ground truth marked by expert in RGB Images.
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of these non-visible lights can be captured using hyperspectral sensors
such as spectrometer and hyperspectral camera. In recent years, drone
hyperspectral imaging becomes popular in detecting BSR disease due to
its capability in non-destructive detection at large scale, as well as
Table 2. HSI sample and label.

Site Healthy Stage A

1 N/A N/A

2 N/A S2-1A, S2-2A

3 S3–4H S3-2A

4 S4–5H S4-2A, S4-3A

15 N/A N/A

Note: The label S3–4H is referring to Site 3, Plant Number 4 (Healthy). N/A means s
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flexibility in mounting different sensors [4]. Hyperspectral or spectror-
adiometer is usually mounted on a structure like scaffoldings to capture
data. With rapid development of unmanned aerial vehicle (UAV),
hyperspectral sensor can be integrated into UAV to enable large area
Stage B Stage C

N/A S1–1C, S1–2C

S2–3B N/A

S3–1B, S3–3B N/A

S4–1B, S4–4B N/A

N/A S15–1C

ample not available.
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Figure 2. (a) Training data – G; (b) training data – B; (c) training data – A; (d) training data – B; (e) training data – H.

Table 3. Datasets distribution.

Classes Description Train Validation

A Stage A- Early Infection 990 300

B Stage B – Mild Infection 1045 300

G Stage C – Late Stage/Ground 992 300

H Healthy 1312 500
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monitoring, and it is more practical in field work. Compared to spec-
troradiometer, UAV mounted hyperspectral sensor can capture both
spatial and spectral information. Existing studies show large scale
detection is possible. AISA airborne hyperspectral imaging spectrometer
is used in investigation of six vegetation indices and four red-edge
techniques to detect BSR disease. These techniques could produce
Figure 3. Block Diagram
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accuracy ranging from 73% to 84% [9]. Izzuddin M.A et. al [12] has
conducted similar vegetation indices and red-edge technique illustrates a
different result. The overall accuracy of evaluated six vegetation indices
are between 30% to 40%. Instead, continuum removal gives promising
result in detecting early stage of disease. The research suggests more
analysis should be conducted and validated to establish the methods’
robustness.

Machine learning, especially convolutional neural network, or its
variety has emerged as state-of-art method in image classification [24,
25] and object detection [26] in recent years. Spectral information is
important in classification task in HSI. However, not all bands are critical
in performing this task, some bands consist more important information
than the others. Extracting spectral information manually is not feasible.
There are some traditional machine learning algorithms in extracting
useful information from spectral bands, such as principal component
analysis [27], independent component discriminant analysis [28], and
of proposed method.
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Figure 4. (a) Before image alignment. (b) After image alignment.

Figure 5. MNF output (a) component 2; (b) component 34; (c) component 70.

Figure 6. (a) Before denoise (b) after denoise.

Table 4. Proposed MLP network architecture.

No Layer Type Activation Function Size

1 Fully Connected Sigmoid 392

2 Fully Connected (dropout 0.3) Sigmoid 392

3 Fully Connected Softmax 4

C.C. Lee et al. Heliyon 8 (2022) e09252
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linear discriminant analysis [29]. However, these methods are simple
linear processing and may not be suitable to handle complex feature in
spectral bands [30]. Artificial neural network is introduced to address
above problem. Wei Hu et al [37] proposed 1D CNN to extract spectral
features from HSI. Overall accuracy is better than support vector algo-
rithm. Y. Chen et al [38], J. M. Haut et al [39] and X. Yang et al [40] also
evaluated effectiveness of CNN in HSI classification. In addition,
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Table 5. List of vegetation indices.

Vegetation Indices Equation

Normalised Difference Vegetation Index (NDVI) NDVI ¼ NIR � RED
NIRþ RED

(6)
where:
NIR ¼ 800nm
Red ¼ 660nm

Normalised Difference Red Edge (NDRE)
NDRE ¼ NIR � RED Edge

NIR þ Red Edge
(7)

where:
NIR ¼ 800nm
Red Edge ¼ 720nm

Optimized Soil Adjusted Vegetation Index
(OSAVI)

OSAVI ¼ ð1 þ YÞ* ðR800� R670Þ
ðR800þ R670þ YÞ

(8)
where:
Y ¼ 0.16
R800 ¼ 800nm
R670 ¼ 670nm

Merris Terrestrial Chlorophyll Index (MTCI) MTCI ¼ R850 � R730
R730þ R675

(9)
where:
R850 ¼ 850nm
R730 ¼ 730nm
R675 ¼ 675nm

Table 6. Plant infection stage classification condition.

Dataset Healthy Stage A Stage B Stage C

A, B, G, H >70% H A > B B > A >50% C

B, G, H >60% H H/B � 0.5 H/B < 0.5 >40% C
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classification accuracy can be improved by extracting spatial feature from
HSI. A 3D CNN is used to extract spatial-spectral information effectively.
Y. Li et al [31] has implemented 3D CNN in classification task and ach-
ieve high accuracy in different dataset. Few other research also evaluated
the efficiency of deep neural network in hyperspectral image classifica-
tion [13, 14, 15]. It is proven deep neural network is effective in learning
and extracting spectral-spatial feature and achieve very good result in
scene classification.

Aside from scene classification, some research also implemented
machine learning in plant disease detection. Xin Zhang et al [16]
Figure 7. Example classification
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establish a deep convolution neural network method to automate crop
disease detection using UAV hyperspectral images. The propose Deep
CNN uses multiple Inception-Resnet [17, 18] layers to extract features
from both spatial and spectral domain for yellow rust detection. The
result shows overall detection accuracy of 85%, which is higher than
conventional machine learning technique, random forest-based classifier
[19] with 77% overall accuracy. Qiao Pan et al [20] proposes another
Deep CNN, pyramid scene parsing network semantic segmentationmodel
for wheat yellow rust disease detection and achieve 94% accuracy. This
suggests the effectiveness of deep neural network in plant disease
detection.

Some existing studies have also utilized machine learning in BSR
disease detection in oil palm tree as summarized in Table 1. Nur A. Husin
et al [21] employed Terrestrial Laser Scanning (TLS) data and machine
learning to classify healthiness level of oil palm tree. TLS scans each tree
at hour different locations and generates five tree features as input to
machine learning algorithm. This method can detect early infection and
best accuracy is achieved by Kernel Naïve Bayes method, with overall
accuracy 85%. Izrahayu et al [22] study shows the MLP in backscatter
variable from synthetic aperture radar (SAR) image can differentiate
infected and healthy tree. Camille C. D. Lelong et. al. [4], measure plant's
canopy with field spectroradiometer and scaffoldings. Partial Least
Square Discriminant Analysis (PLS-DA) method can classify plants into
four labels of disease severity with 94% accuracy. Parisa Ahmadi et al [8]
improve the method by implementing Artificial Neural Network on raw,
first, and second derivative spectroradiometer dataset. It shows satis-
factory result with 83.3% and 100% accuracy to detect healthy and
infected plants. Aiman Nabilah Noor Azmi et al [7] used visible near
infrared (NIR) Hyperspectral images for BSR disease detection. It shows
there is significant difference in NIR spectrum. 35 bands are used as
support vector machine input for classification, and it achieves excellent
result. There are also other studies [32, 33, 34, 35, 36] has shown
effectiveness machine learning techniques in BSR disease detection.
Spectrometer, thermal sensor, spectroradiometer, laser scanner and
dielectric spectroscopy requires on site measurement tree by tree. Thus,
they are impractical for large scale plantations. Multispectral and
hyperspectral can be used with UAV and Satellite to capture large scale
plantation image. However multispectral camera does not yield a
convincing result, and [7] is conducted under closed environment. SAR
image can provide large scale detection ability, nevertheless, it is not
capable to detect early infection.

In this paper, a Multilayer Perception neural network (MLP) method
is proposed to perform BSR disease detection from high resolution UAV
hyperspectral images (HSI). Image pre-processing is done to improve
image quality that captured under open environment. MLP is designed to
map and pixel composition.
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Figure 8. Training performance for each iteration (ABGH) (a) Model Loss (b) Model Accuracy.

Figure 9. Detection result (ABGH) S3–4H. 87.78% H, 0.28% a, 3.60% B, 8.36% G.

Figure 10. Detection result (ABGH) S3-2A. 0.46% H, 87.55% a, 1.12% B, 10.88% G.
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Figure 11. Detection result (ABGH) S3–3B. 4.44% H, 0.67% a, 80.99% B, 13.90% G.

Figure 12. Detection result (ABGH) S1–1C. 0.37% H, 0.32% a, 45.69% B, 53.62% G.
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use to learn spectral information for detection. The proposedmethods are
tested at experimental oil palm plantation site. Performance from MLP is
compared with several vegetation indices. This paper is organized as
below: section 2 describes datasets, section 3 explains the methods and
experimental setup, section 4 illustrates result and discussion, and
finally, conclusion in section 5.

2. Datasets

2.1. Study Area

In this work, HSI sample is collected at 2.4460672 N, 102.4009867
E, Melaka, Malaysia, consists of 5 sites. Location is illustrated in
Figure 1. Expert was following the team and mark plant health as
ground truth. Plants are categorized as stage A, B, C and Healthy ac-
cording to expert evaluation. UAV is deployed to capture red, green,
blue (RGB) image and HSI. RGB image is used for marking the ground
truth. Hyperspectral camera mounted on same UAV acquired HSI, which
covers near-infrared to ultra-violet bands from 510nm–900nm. Spectral
resolution is 1nm and data output of 392 bands. Raw data were
recorded with 1024 � 1024-pixel resolution. There is total 15 HSI
collected, label of each tree is tabulated in Table 2.
7

2.2. Data collection

Training and validation datasets are from HSI Site 3. Other sites are
used as test im-ages for performance evaluation. Training and validation
datasets are collected manually by randomly select pixels from different
stages of infected plants, healthy plants, and ground. They are labelled as
A, B, H and G respectively. There is no training and validation dataset for
Stage C, as there is nothing left but soil for stage C infection. Figure 2
visualizes the training and validation datasets selection from Site 3 HSI.

Total 5739 datasets had been collected. Among them are 1290 Stage
A, 1345 Stage B, 1292 Healthy and 1812 Ground. Datasets are split into
two groups; training sets and validation sets with the proportion around
7.5:2.5. The dataset distribution is shown in Table 3.

3. Methods

Overall framework of BSR disease detection is explained in this sec-
tion. Given a hyperspectral image (HSI), the aim is to find the unhealthy
plants, and detect as early as possible. In this study, Multilayer Percep-
tron (MLP) Neural Network Model is proposed to classify each pixel of
HSI into one of these classes: Stage A, Stage B, Stage C, Healthy and
Background. Framework includes (1) image alignment, (2) HSI denoising
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Table 7. Composition of pixel in different classes and detection result from MLP (ABGH).

Dataset H (%) A (%) B (%) G (%) Detection Result Ground Truth

S1–1C 0.37 0.32 45.69 53.62 C C

S1–2C 0.26 0.68 22.86 76.20 C C

S2–1A 21.68 5.60 25.85 46.86 B A

S2–2A 8.69 8.30 40.11 42.90 B A

S2–3B 14.87 11.80 42.54 30.79 B B

S3–1B 0.88 0.17 68.91 30.04 B B

S3–2A 0.46 87.55 1.12 10.88 A A

S3–3B 4.44 0.67 80.99 13.90 B B

S3–4H 87.78 0.28 3.60 8.36 H H

S4–1B 5.64 7.35 61.92 25.10 B B

S4–2A 21.37 4.13 43.70 30.80 B A

S4–3A 29.68 5.14 30.31 34.86 B A

S4–4B 27.99 8.31 35.42 28.28 B B

S4–5H 79.57 0.38 11.42 8.63 H H

S15–1C 6.32 0.94 26.36 66.37 C C

Note: MLP (ABGH) represents MLP modal trained and inference with A, B, G, H datasets.

Figure 13. Training performance for each iteration (BGH) (a) Model Loss (b) Model Accuracy.

Figure 14. Detection result (BGH) S3–4H. 89.79% H, 3.03% B, 7.18% G.

C.C. Lee et al. Heliyon 8 (2022) e09252
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Figure 15. Detection result (BGH) S3-2A. 47.08% H, 31.84% B, 21.08% G.

Figure 16. Detection result (BGH) S3–3B. 4.76% H, 84.74% B, 10.50% G.

Figure 17. Detection result (BGH) S1–1C. 0.84% H, 50.90% B, 48.26% G.

C.C. Lee et al. Heliyon 8 (2022) e09252
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Table 8. Composition of pixel in different classes and detection result from MLP
(BGH).

Dataset H (%) B (%) G (%) H/B Ratio Detection Result Ground Truth

S1–1C 0.84 50.90 48.26 0.02 C C

S1–2C 1.19 37.14 61.66 0.03 C C

S2–1A 43.34 36.55 20.12 1.19 A A

S2–2A 20.53 47.62 31.85 0.43 B A

S2–3B 27.08 54.94 17.96 0.49 B B

S3–1B 1.55 70.54 27.91 0.02 B B

S3–2A 47.08 31.84 21.08 1.48 A A

S3–3B 4.76 84.74 10.50 0.06 B B

S3–4H 89.79 3.03 7.18 29.68 H H

S4–1B 12.11 68.91 18.97 0.18 B B

S4–2A 30.71 48.38 20.91 0.63 A A

S4–3A 40.34 31.84 27.82 1.27 A A

S4–4B 37.54 42.14 20.32 0.89 A B

S4–5H 80.93 13.12 5.95 6.17 H H

S15–1C 9.49 29.87 60.64 0.32 C C

Note: MLP (BGH) represents MLP modal trained and inference with B, G, H
datasets. H/B ratio is ratio between H pixel and B pixel within ROI in classifi-
cation map.

Table 12. Recall and precision – stage A

Neuron
Hidden Layer

128 256 392

1 0.0/0.0 0.6/0.6 0.75/0.6

2 0.6/0.6 0.0/0.0 0.8/0.8

3 1.0/0.4 0.8/0.8 0.8/0.8

4 1.0/0.6 1.0/0.4 0.71/1.0

Table 13. Recall and precision – stage B.

Neuron
Hidden Layer

128 256 392

1 0.59/1.0 0.75/0.6 0.67/0.8

2 1.0/0.6 1.0/0.6 0.8/0.8

3 0.62/1.0 0.67/0.8 1.0/0.8

4 0.71/1.0 0.67/0.8 1.0/0.6

Table 14. Recall and precision – stage C.

Neuron
Hidden Layer

128 256 392

1 0.75/1.0 1.0/1.0 1.0/1.0

2 0.75/1.0 0.33/1.0 1.0/1.0

3 1.0/1.0 1.0/1.0 1.0/1.0

4 1.0/1.0 0.6/1.0 1.0/1.0
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using minimum noise fraction (MNF) to enhance image quality, (3)
dataset preparation for proposed MLP model training, (4) MLP inference
and output visualization as demonstrated in Figure 3.

To assess the proposed method, several experiments have been done.
Mainly focus on the following aspects: (1) accuracy of the network by
using two training datasets, namely ABGH and BGH datasets. This is to
evaluate the effect of Stage A and Stage B spectral signature towards MLP
Table 9. Classification result between MLP (ABGH) and MLP (BGH).

Category MLP (ABGH) MLP (BGH)

Healthy 2/2 2/2

Stage A 1/5 4/5

Stage B 5/5 4/5

Stage C 3/3 3/3

Overall Accuracy 78.57% 86.67%

Recall – Stage A 0.2 0.8

Recall – Stage B 1.0 0.8

Precision – Stage A 1.0 0.8

Precision – Stage B 0.56 0.8

Table 10. Overall accuracy (%).

Neuron
Hidden Layer

128 256 392

1 60.00 73.33 73.33

2 73.33 53.33 86.67

3 80.00 80.00 86.67

4 86.67 73.33 86.67

Table 11. Recall and precision – healthy.

Neuron
Hidden Layer

128 256 392

1 1.0/0.5 0.67/1.0 0.67/0.67

2 0.67/1.0 1.0/1.0 1.0/1.0

3 1.0/1.0 1.0/0.67 0.67/1.0

4 1.0/1.0 1.0/1.0 1.0/1.0

Table 15. Training time (s).

128 256 392

1 300 326 360

2 362 406 531

3 411 474 639

4 489 538 752

Table 16. Average inference time per image (s).

128 256 392

1 12.2 12.8 13.9

2 11.9 13.0 13.8

3 12.6 14.3 14.8

4 13.3 14.6 18.6
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performance, (2) To investigate the effect of width and depth of the
network, number of neurons per layer is set to 128, 256, and 392 and
number of hidden layers is set to 1, 2, 3, 4. Each model is trained with
same dataset and parameter setting. (3) Comparison with other ML
methods, and traditional vegetation index method. In this work, the
result will be compared with support vector machine (SVM) and 1
dimensional convolutional neural network (1D CNN), and four vegeta-
tion indices, Normalized Difference Vegetation Index (NDVI), Normal-
ized Difference Red Edge (NDRE), Optimised Soil-Adjusted Vegetation
Index (OSAVI), and Merris Terrestrial Chlorophyll Index (MTCI).

3.1. Data-preprocessing

3.1.1. HSI band alignment
HSI images captured is out of align in certain band. One of the reasons

causing misalignment between bands is UAV flight stability. During data



Table 18. Performance – computational cost.

Training Time Inference Time

MLP 752 18.6

1D-CNN 512 30.7

Linear SVM 0.56 107

RBF SVM 1.05 350

Table 17. Performance - accuracy.

Overall Accuracy Recall/Precision H Recall/Precision A Recall/Precision B Recall/Precision C

MLP 86.67 1.0/1.0 0.71/1.0 1.0/0.6 1.0/1.0

1D-CNN 73.33 1.0/0.2 0.56/1.0 1.0/1.0 1.0/1.0

Linear SVM 66.67 0.6/0.6 0.67/0.4 0.6/1.0 1.0/1.0

RBF SVM 66.67 0.67/0.4 0.6/0.6 0.6/1.0 1.0/1.0
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capturing, UAV is programmed to hover above the plants. However, in
actual flight, it may disturb by wind, and result undesired translational,
rotational or shear motion. This result bands between HSI has the same
Figure 18. NDVI Detec

Figure 19. NDVI detec
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motion. In such, any two bands within HSI cube are related by a motion
model.

The misalignment can be visualized by comparing band 280 and band
380. The visualized output of dataset S4–1B is shown as Figure 4(a). Band
280 is shown as blue colour, and band 380 is displayed as green colour.
The misalignment is significant in translational motion, especially across
X-axis.

The band images realignment can be seen as image registration
problem. To further simplified this problem, a band image is chosen as
template image to align rest of the band images. Ideal template image is
to has good contrast and feature. In this study, band 240 is used as
template image. The registration is done using Parametric Image
tion Result: S1–1C.

tion result: S1–2C.
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Figure 20. NDVI detection result: S2–1A.
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Alignment Using Enhanced Correlation Coefficient Maximization [5].
This method requires motion model to estimates the geometric trans-
formation between rest of the bands with template band image. Affine
Transformation is used as motion model as it can express rotations,
translations, and shear motion of an image. Figure 4(b) shows the
misalignment is reduced after realignment process.

3.1.2. Image denoising
Minimum Noise Fraction (MNF) is a widely used algorithm in

hyperspectral image denoising. MNF transforms hyperspectral data into
MNF space, components are ordered by descending signal-to-noise ratio
(SNR), which means that the MNF output images contain steadily
decreasing image quality. The eigenvalues of the components are equal
to one plus SNR in the transformed space. Hence, near unity eigenvalue
components are noise dominated. One can spatially filter noisiest com-
ponents and follow by invert MNF transform to obtain smoothing image
without serious signal degradation [6].

Figure 5 illustrates output of component 2, 34, and 70 in MNF
domain. Component 2 has very strong signature, while component 34
contains noises. Feature still can be observed component 70 with strong
noise. MNF images are truncated at 80 bands, as they contain useful
Figure 21. NDVI detec
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features, and eliminate band 81-392, which dominating by noise. Inverse
MNF transform to HSI is performed on truncated MNF images. The HSI is
smoother after denoising, salt-and-pepper noise is removed. Figure 6
demonstrates image comparison in band 280 of data S4–1B, before and
after denoising.

3.2. Multilayer Perceptron

In early stage of infection, there is no difference in plant shape
from UAV view. When it starts showing symptom like leaves
hanging downwards vertically from the point of attachment to the
trunk that make it skirt-like appearance, it is at advance stage of
infection. Therefore, spatial feature is not the key feature in BSR
disease detection in early detection. Feature extraction is designed to
extract information from hyperspectral signature using a Multilayer
Perceptron Model (MLP). In contrast to Convolutional Neural
Network, there is no spatial feature extraction in this network. MLP
has only 392 inputs in this work, and this scale down network size,
lesser number of hyperparameters, hence reduce computational cost.
And this makes it an efficient network opposed to other deep
learning network.
tion result: S2–2A.
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Figure 22. NDVI detection result: S2–3B.
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The classification based on hyperspectral features can be seen as
nonlinear input-output mapping, aims at finding a mathematical function
y¼ f(x) that canmap anm-dimensional Euclidean input space(x) to anM-
dimensional Euclidean output space(y). Universal approximation theo-
rem states that a single hidden layer with finite number of neuronsMLP is
sufficient to compute an approximation to a given training set repre-
sented by a set of input x1; :::; xm0 and a desired output f ðx1; :::; xm0Þ.
Even Though one sufficiently large hidden layer can approximate a non-
linear function, it is also found two layers hidden layers network is
generally perform better than single hidden layer network [11]. Hence, a
two hidden layer MLP is implemented in this work. Besides, dropout
regularizations are added at hidden layer. The dropout rate is set to 30%,
meaning one of three inputs will be randomly excluded from each update
cycle. This prevent MLP from overfitting and more robust to the inputs.
Lastly, output layer has 4 neurons with Softmax activation function, to
classify each pixel into one of four categories, Stage A, Stage B, Stage C,
and Healthy. Table 4 depicts the network architecture of proposed MLP
model.

The loss of network is minimized, and weight is updated using
Adaptive Moment Estimation (ADAM) optimizer [23]. In contrast with
Figure 23. NDVI detec
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conventional gradient descent algorithm, which is having constant
learning rate and momentum, ADAM optimizer accelerates weights up-
date by taking into consideration of exponentially moving average of
gradient. The weights are updated as described in Eq. (1):

wt ¼wt�1 � η

εþ
ffiffiffiffiffiffiffiffiffibvt�1

p bmt�1 (1)

Where w is weight, η is step size, bv is compute bias-corrected second raw
moment estimate, bm is compute bias-corrected first moment estimate and
ε is a small value to avoid the function being divided by zero when the
gradient is almost zero. bv and bm can be calculated using Eqs. (2) and (3):

bmt ¼ mt

1� β1
t (2)

bvt ¼ vt
1� β2

t (3)

Where mt is update biased first moment estimate, vt is update biased
second raw moment estimate, β1 and β2 are exponential decay rates for
tion result: S3–1B.
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Figure 24. NDVI detection result: S3-2A.

Figure 25. NDVI detection result: S3–3B.
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the moment estimates for mt and vt correspondingly. mt and vt can be
derived using Eqs. (4) and (5):

mt ¼ β1mt�1 þ ð1� β1Þgt (4)

vt ¼ β2vt�1 þ ð1� β2Þgt2 (5)

Where gt is calculated gradient. From above equations, there are four
parameters η, β1, β2 and ε to tune ADAM optimizer.

3.3. Vegetation index

A vegetation index is generated by calculating bath math between
multiple spectral bands into a single value to reflect plant properties.
Various vegetation indices are developed to obtain different plant's
properties. Among the common one, Normalized Difference Vegetation
Index (NDVI) [41], Normalized Difference Red Edge (NDRE), Optimised
14
Soil-Adjusted Vegetation Index (OSAVI) [42], and Merris Terrestrial
Chlorophyll Index (MTCI) [43], as summarized in Table 5.

NDVI is calculated from the visible red light and near infrared light
reflected by vegetation, which can be expressed using equation (6). It is
commonly used to quantify green biomass and vegetation coverage. As
NDVI correlates with chlorophyll, it is also being used as plant health's
indicator. NDVI always result in a number between -1 andþ1. High value
indicates high vegetation density.

NDRE has similar calculation with NDVI. Instead of using visible
light, it uses red edge to obtain the index as describe in equation (7).
Compared to red band, red edge is capable of penetrating leaves better
and sensitive to chlorophyll content in leaves. NDRE plays an important
role for late season crops that concentration of chlorophyll is relatively
higher.

OSAVI is a modification of NDVI. It adds a correction factor to reduce
influences of soil reflectance. OSAVI can be calculated from equation (8).
It enhances the vegetation spectral features where vegetation cover is
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Figure 26. NDVI detection result: S3–4H.

Figure 27. NDVI detection result: S4–1B.
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low, and soil is expose. It also works well in areas with high vegetation
density.

MTCI is mainly designed for Merris Dataset to estimate chlorophyll
content. Equation (9) shows NIR, red edge and red band are use in this
index, hence it is sensitive towards wide range of chlorophyll concen-
tration. S.Mori et. al. [10]. mentioned MTCI is among the most efficient
algorithm.

3.4. Classification process

HSI of 1024 � 1024 pixels are flatten to 102, 481, 024 pixels and
feedforward by MLP to generate classification output of 102, 481, 024
pixels, and the output is re-shape into 1024 � 1024 pixels and form a
classification map. Each pixel is categorized into one of the classes as
described in Table 3. A region of interest (ROI) of 300 � 300 pixels from
the centre of the plants in classification map will be used to determine
infection stage.

Classification of plant's infection stage is done based on pixels
composition of four classes within the ROI. In MLPwith A, B, G, H classes,
15
healthy plants have higher percentage (>70%) in H pixel, Stage C has
more G pixel (>50%) compared to others. Stage A and B is classified
based on who has higher percentage in the ROI. In the other hand, MLP
with B, G, H classes, there is no class A pixel, thus stage A and stage B is
differentiated by the ratio between H pixel and B pixel. Higher ratios
(>0.5) represent there are more H pixel in the plant, hence it is Stage A,
otherwise Stage B. Table 6 summarizes the classification condition.

Figure 7 shows example of classification map and ROI pixel compo-
sition, which consists of 77.08% H pixel, 14.97% B pixel and 7.96% G
pixel.

3.5. Performance evaluation

To evaluate performance of proposed method, overall accuracy,
recall, and precision scores are chosen as accuracy performance metrics.
The overall accuracy calculated by adding all correctly classified samples
and dividing by total number of samples in all classes. Recall and pre-
cision can be calculated from True Positive (TP), False Positive (FP) and
False Negative (FN), as described in Eqs. (10) and (11).
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Figure 28. NDVI detection result: S4–2A.

Figure 29. NDVI detection result: S4–3A.
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Recall¼ TP
TPþ FN

(10)
Precision¼ TP
TPþ FP

(11)

In addition, computational cost will also be evaluated. All machine
learning methods are trained and evaluated with same datasets. Training
and inference time are tabulated for comparison purpose. As of vegeta-
tion indices, it is mathematical calculation, thus only accuracy perfor-
mance will be compared. The results are generated on a PC equipped
with Intel Core i5 3.3GHz, 16GB memory and GPU Nvidia GTX745.

4. Result and discussion

4.1. MLP with A, B, G, H datasets

The model is trained with A, B, G, H datasets, batch size of 4, total
training 500 iterations. Training parameter with ADAM optimizers are η
¼ 0.001, β1 ¼ 0.9, β2 ¼ 0.999 and ε ¼ 1e�7. The validation loss is
16
approaching 0.1 after 100 iterations. Similarly, validation Revieaccuracy
is getting above 0.95 after 100 iterations, and finally achieves training
loss 0.0595, training accuracy 0.9825, validation loss 0.0355 and vali-
dation accuracy 0.9864, as shown in Figure 8.

Classification map for 15 HSI are generated. To visualize classifica-
tion map, G pixel is set to greyscale value 0 (Black), B pixel is 80 (Dark
Grey), A pixel is 160 (Light Grey), and H pixel is 240 (White). Figures 9,
10, 11, and 12 shows classification map and pixel composition for H, A,
B, G pixel. Detection results are tabulated in Table 7.

The MLP achieves 100% accuracy in detecting disease and healthy
plants. However, to further differentiate Stage A, B, and C, MLP's can still
perform with 78.57% accuracy. From detection result, MLP can separate
Healthy plants, and Stage C successfully, nevertheless, stage A and B
cannot be differentiated. It is also observed there is only one plant clas-
sified as Stage A (S3–4H), which is used as training datasets. This could
indicate network overfitting happen at Stage A. Considering the network
simplicity and dropout regularization being used during the training, it
may also indicate the spectral signature for Stage A and Stage B may not
exists. There are only healthy, infected, and ground spectral signatures.
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Figure 30. NDVI detection result: S4–4B.

Figure 31. NDVI detection result: S5–5H.

Figure 32. NDVI detection result: S15–1C.
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Figure 33. NDRE detection result: S1–1C.

Figure 34. NDRE detection result: S1–2C.

Figure 35. NDRE detection result: S2–1A.
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Figure 36. NDRE detection result: S2–2A.

Figure 37. NDRE detection result: S2–3B.

Figure 38. NDRE detection result: S3–1B.
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Figure 39. NDRE detection result: S3–2A.

Figure 40. NDRE detection result: S3–3B.

Figure 41. NDRE detection result: S3–4H.
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Figure 42. NDRE detection result: S4–1B.

Figure 43. NDRE detection result: S4–2A.

Figure 44. NDRE detection result: S4–3A.

C.C. Lee et al. Heliyon 8 (2022) e09252

21

mailto:Image of Figure 42|tif
mailto:Image of Figure 43|tif
mailto:Image of Figure 44|tif


Figure 45. NDRE detection result: S4–4B.

Figure 46. NDRE detection result: S5–5H.

Figure 47. NDRE detection result: S15–1C.
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Figure 48. MTCI detection result: S1–1C.

Figure 49. MTCI detection result: S1–2C.

Figure 50. MTCI detection result: S2–1A.
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Figure 51. MTCI detection result: S2–2A.

Figure 52. MTCI detection result: S2–3B.

Figure 53. MTCI detection result: S3–1B.
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Figure 54. MTCI detection result: S3–2A.

Figure 55. MTCI detection result: S3–3B.

Figure 56. MTCI detection result: S3–4H.
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Figure 57. MTCI detection result: S4–1B.

Figure 58. MTCI detection result: S4–2A.

Figure 59. MTCI detection result: S4–3A.
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Figure 60. MTCI detection result: S4–4B.

Figure 61. MTCI detection result: S5–5H.

Figure 62. MTCI detection result: S15–1C.
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Figure 63. OSAVI detection result: S1–1C.

Figure 64. OSAVI detection result: S1–2C.

Figure 65. OSAVI detection result: S2–1A.

C.C. Lee et al. Heliyon 8 (2022) e09252

28

mailto:Image of Figure 63|tif
mailto:Image of Figure 64|tif
mailto:Image of Figure 65|tif


Figure 66. OSAVI detection result: S2–2A.

Figure 67. OSAVI detection result: S2–3B.

Figure 68. OSAVI detection result: S3–1B.
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Figure 69. OSAVI detection result: S3–2A.

Figure 70. OSAVI detection result: S3–3B.

Figure 71. OSAVI detection result: S3–4H.
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Figure 72. OSAVI detection result: S4–1B.

Figure 73. OSAVI detection result: S4–2A.

Figure 74. OSAVI detection result: S4–3A.
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Figure 75. OSAVI detection result: S4–4B.
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4.2. MLP with B, G, H datasets

Based on the finding above, the network is fine-tuned further.
Network is trained with B, G, and H datasets only, where B represents
infected pixels. Same training steps are done, it achieves training loss
0.0479, training accuracy 0.9842, validation loss 0.0457 and validation
accuracy 0.9891, as shown in Figure 13.

Classification map for 15 HSI are generated. Figures 14, 15, 16, and
17 shows example classification map and pixel composition of H, B and G
respectively. To visualize classification output, G pixel is set to greyscale
value 0 (Black), B pixel is 120 (Grey), and H pixel is 240 (White).
Detection results are tabulated in Table 8.

As previous experiment, MLP achieves 100% accuracy in detecting
disease and healthy plants. It can also differentiate Stage A, Stage B, Stage
C and Healthy plants with overall accuracy 86.67%. From detection
result, only one stage A plant categorized wrongly as stage B and one
stage B plant categorized wrongly as stage A.

Table 9 compares the result between MLP (ABGH) and MLP (BGH).
Although both experiments yield comparable overall accuracy, but MLP
(ABGH) model has lower recall in Stage A and lower precision at Stage B.
Figure 76. OSAVI detec

32
This shows MLP (ABGH) is not able to differentiate Stage A and Stage B
well.

4.3. MLP width and depth

From experiment 4.1 and 4.2, it shows datasets B, G, H is sufficient to
perform early-stage detection. MLP is further tuned to target better ac-
curacy or faster processing time. This is done by setting different number
of hidden layer and neurons. Table 10 shows the overall accuracy of each
setting. The result shows maximum overall accuracy 86.67% happens 4
times, 3 happen at MLP with 392 neurons at each layer, 1 at MLP with 4
hidden layers, and 1 happen at 1 hidden layerwith 64 neurons. In general,
deeper network (4 hidden layer) or higher number of neurons (392) can
perform better. In term of recall and precision, these 4 settings have
achieved 100% inHealthy and Stage C detection, exceptMLPwith 3 Layer
with 392 neurons. As of recall and precision for Stage A and B, it shows
none of settings can separate them perfectly (see Tables 11, 12, 13, 14).

Different setting also results in different training and inference time.
As tabulated in Tables 15 and 16, a greater number of layers or neuron
has higher processing time. Training time is not the major concern, as
tion result: S5–5H.
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Figure 77. OSAVI detection result: S15–1C.

Table 19. Comparison between MLP and vegetation index.

Healthy Stage A Stage B Stage C

Ground Truth 2 5 5 3

MLP 2 4 4 3

NDVI 11 4

NDRE 11 4

OSAVI 11 4

C.C. Lee et al. Heliyon 8 (2022) e09252
neural network does not require frequent training. Furthermore,
maximum training time is 752s, which can be considered as fast training
time. From the result, there are two MLP settings give good detection
result with better inference time, (1) 2 Hidden Layers, 392 Neurons, (2) 4
Hidden Layers, 128 Neurons.

4.4. Performance evaluation

Table 17 tabulate accuracy score and Table 18 tabulate computa-
tional cost between several ML algorithm. MLP, 1D-CNN, Linear SVM and
Radical Basis Function Kernel SVM (RBF SVM). All algorithms are trained
and inference with B, G and H datasets only. MLP is found to be the most
effective ML modal compared to SVM and 1D-CNN, showing the highest
score in term of overall accuracies, recall and precision in all infection
stages. It also shows it is the fastest model in average inference time.
Unlike SVM, neural network methods are having significant longer
training time to find the best curve to segregate the classes. Both SVMs
shows training time is around 1 s or lower. Nevertheless, they have lower
classification accuracy (66.67%) when compared to MLP model
(86.67%) and 1D-CNN modal (73.33%). Despite having fast training
time, inference time in SVM is taking much longer which is 107s for
linear SVM and 305s for RBF SVM. This is 5–18 times slower than MLP
modal. This is having huge impact on the practicability, when actual
inference will be done on hundred- or thousand-times larger image than
samples used in this study.

All ML modals have perfect recall and precision for stage C infection.
MLP has highest score in recall and precision in healthy plant, indicating
it can correctly identify infected and non-infected plant. In the other hand
1D CNN shows highest score in recall and precision in Stage B and C, this
represent early detection is not working well in 1D-CNN, but it can
separate mild and late stage correctly. SVM has worst performance in
term of recall and precision, despite it is having moderate overall accu-
racy, this shows it is not performing well in early-stage detection.

Proposed method also being compared with vegetation indices,
which transform spectral properties of plants into index. In NDVI result,
as shown from Figures 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, histogram distribution for stage C is obvious compared to the rest.
In stage A, B, and Healthy plant, pixel values are concentrated at 200 and
above, while stage C has distribution across 150-250. This indicates NDVI
can detect late stage of infection but unable to differentiate between
early-stage infection and healthy plants. NDRE result is illustrated from
Figures 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47. It shows
similar detection result with NDVI. Stage C pixel values concentrate at
33
160, whereas Healthy, Stage A and Stage B has peak value at 190. Only
exception at S3–1B, where it shows Stage C histogram pattern. Fig-
ures 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62 shows the
detection result from MTCI. There is no significant pattern to differen-
tiate Healthy, Stage A, B and C. Figures 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77 presents result for OSAVI. Healthy, Stage A and
Stage B has pixel values concentrate between 0-20. While Stage C has
more values distributed at 180-250. Overall, vegetation indices can
separate Stage C and the rest well, except MTCI, but they could not
perform in separating Healthy, Stage A and Stage B plants. S3–1B shows
histogram pattern of Stage C in NDRE, NDVI and OSAVI. This represents
the key spectral features in separating infected trees in different stages is
not contain within the bands used to calculate NDRE, NDVI, OSAVI and
MTCI.

In summary, vegetation indices cannot segregate early-stage infection
and healthy plant. NDVI, NDRE and OSAVI can detect Stage C infection,
except MTCI, which has no obvious histogram pattern in the output for
different stages. The result is shown in Table 19. This result is within
expectation because only few bands are used for calculation out of 392
bands. And bands used may not be significant to detect BSR disease. In
the other hand, MLP learns spectral features out of 392 bands, and decide
which band is useful for disease detection.

5. Conclusion

In this work, a Multilayer Perceptron Neural Network is proposed to
detect BSR disease on UAV hyperspectral images. The network is opti-
mized with 2 layers neural network, and 392 neurons in each layer.
Benefitting from neural network self-learning ability, it uses spectral
information to learn and act as novel vegetation index. The MLP has been
validated with training data and unseen ground truth. The result is
compared with various machine learning algorithm and vegetation
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indices, and it shows convincing result. It also shows there may be no
spectral signature for Stage A and Stage B, but only spectral signature for
Healthy, Infected and Ground. Stage A, B, and H can be differentiated by
the composition percentage of these pixels type in ROI. Nonetheless,
amount of data for each stage is considerably small in this study, more
field experiments, and data collection to be carried out for further vali-
dation with proposed method.

This study can be further enhanced with two stages neural network.
First stage is proposed MLP method, learn spectral signature and classi-
fying each pixel into corresponding class, and second stage is to learn ROI
pixel composition in identifying plant disease stage.
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