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Aging is the phenotype resulting from accumulation of genetic, cellular, and molecular
damages. Many factors have been identified as either the cause or consequence of age-
related decline in functions and repair mechanisms. The hypothalamus is the source and
a target of many of these factors and hormones responsible for the overall homeostasis
in the body. With advanced age, the sensitivity of the hypothalamus to various feedback
signals begins to decline. In recent years, several aging-related genes have been identified
and their signaling pathways elucidated. These gene products include mTOR, IKK-β/NF-κB
complex, and HIF-1α, an important cellular survival signal. All of these activators/modulators
of the aging process have also been identified in the hypothalamus and shown to play cru-
cial roles in nutrient sensing, metabolic regulation, energy balance, reproductive function,
and stress adaptation. This illustrates the central role of the hypothalamus in aging. Inside
the mitochondria, succinate is one of the most prominent intermediates of the Krebs
cycle. Succinate oxidation in mitochondria provides the most powerful energy output per
unit time. Extra-mitochondrial succinate triggers a host of succinate receptor (SUCN1 or
GPR91)-mediated signaling pathways in many peripheral tissues including the hypothala-
mus. One of the actions of succinate is to stabilize the hypoxia and cellular stress conditions
by inducing the transcriptional regulator HIF-1α. Through these actions, it is hypothesized
that succinate has the potential to restore the gradual but significant loss in functions
associated with cellular senescence and systemic aging.

Keywords: succinate, hypothalamus, homeostasis, menopause, mitochondria, hypoxia-inducible factor-1α, mTOR,
IKK-β/NF-κB

INTRODUCTION
Aging is an irreversible phenomenon in all species that is character-
ized by a progressive decline in all physiological functions (1–3).
With improvement in public health, medical technologies, and
nutrition, adults over 50 have become the fastest growing segment
of society (4). However, by this age, degenerative health-related
deficits start to appear and pose a potential economic burden to
the individual and the society. In women, the aging is marked by
the cessation of ovarian function and reproductive cycle accompa-
nied by the decline in cardiovascular health, motor control, bone
integrity, and cognitive and psychosocial faculty (5). Both sexes
experience a loss of muscle tone and bone strength, a decline in
energy level, a weakening of immunity, a degeneration of cogni-
tive ability, and an increase in body fat that secondarily leads to
increased risk for metabolic and cardiovascular diseases (6, 7).

Many hypotheses have been put forward to explain the cause
of aging and biological bases for the functional decline, including
gene-directed cell senescence, chromosome damage, DNA mis-
repair, and telomere shortening [reviewed by Ref. (8–11)]. Other

Abbreviations: ATP, adenosine triphosphate; cAMP, cyclic adenosine monophos-
phate; CNS, central nervous system; FSH, follicle stimulating hormone; GABA,
gamma amino butyric acid; GnRH, gonadotropin-releasing hormone; LH, luteiniz-
ing hormone; NADH, nicotinamide adenosine dinucleotide; NPY, neuropeptide Y;
PHD, prolyl hydroxylase domain; POMC, pro-opio-melano-cortin.

physiological causes are hormonal imbalance, excessive caloric
intake, mitochondrial dysfunction, and oxidative stress (12–14).
The landmark discovery of replication senescence by Hayflick
and Moorhead (15) showing that human embryonic somatic cells
could only divide a limited number of times under optimal condi-
tions in vitro (15) significantly improved our understanding of
aging. This phenomenon, known as Hayflick limit, is demon-
strated in virtually all cell types and later shown to be due to
telomere shortening after each division in cultured cells (16).
Although not the only causes, cellular senescence and telomere
attrition are considered two common denominators in aging (3).

Considering that aging is a multifactorial and cumulative
process with multiple contributors interacting with one another in
a cascade manner, it is difficult to narrow down one specific cause
(17). As in many diseases, the degenerative process is a complex
interplay of two main components: genetic, or preprogrammed,
and phenotypic variability associated with non-genotoxic stress
and environmental influences. Of the nine hallmarks summa-
rized by Lopez-Otin, genetic instability, telomere attrition, loss
of proteostasis, and stem cell exhaustion are primarily genetically
predetermined. Epigenetic alterations, deregulated nutrient sens-
ing, cellular senescence, and altered intercellular communication
have their primary source in life style and environment influ-
ences. Recently, the importance of interconnection among these
factors and the difference between longevity (lifespan extension)
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and aging (18) are also recognized. In this context, aging refers
to the progressive appearance of a number of aging-induced phe-
notypes, i.e., reduced reproductive functions and other metabolic
and adaptive changes (19).

In this review, we hypothesize that certain organs (i.e., the
hypothalamus) and organelles (i.e., the mitochondrion) are more
crucial than others in the aging process by virtue of the dominant
role they play in the body (3, 20–22). To this end, we present a
growing body of supportive evidence demonstrating that chronic
low-grade inflammation of hypothalamic and other somatic cells
contribute to generalized age-related degenerative processes (23).
Of particular interest is the recognition that certain genes and their
translational products play significant roles in the delay or progres-
sion of aging (12, 13, 24). This opens the possibility that potential
therapeutic agents could be developed to target these genes and
metabolites to moderate the age-associated degenerative processes
and improve quality of life.

The purposes of this review are to (1) highlight the command-
ing role of the hypothalamus in organismal aging; (2) reassess the
prominent role of the mitochondrion and the emerging role of
one of its metabolites, succinate, in cellular aging; and (3) evaluate
our current understanding of key genes and signaling pathways
involved in the aging process. A better understanding of these
important components of senescence has the potential benefit of
guiding the development of effective therapeutic interventions in
enhancing the quality of life of the aging population.

THE AGING HYPOTHALAMUS: GRADUAL LOSS OF
HOMEOSTATIC REGULATION
The hypothalamus is a collection of distinct neurosecretory cells
located at the base of the brain. These neurosecretory cells receive a
multitude of external and internal signals from virtually all organs
in the form of hypothalamus-end-organ axes. They interpret, inte-
grate, and respond to these messages accordingly and maintain
homeostasis in the body. The vital processes under control of the
hypothalamus include regulation of body temperature, nutrient
intake and energy balance, sleep and wake cycle, sexual behavior,
reproductive cyclicity, water and electrolyte balance, stress adapta-
tion, nursing, growth, and circadian or ultradian cycles (6, 7, 25).
When the responsiveness of these neurons declines during aging,
all body activities are adversely affected. This is especially prob-
lematic for women because menopause, which generally occurs
around age 50, is at the prime stage of a woman’s life history
(2, 26–32). The cessation of the hypothalamus-pituitary-gonadal
(HPG) function also triggers dysregulation of other homeostatic
functions of the hypothalamus, i.e., loss of muscle tone and bone
density (the HP-growth hormone/IGF axis), a decline in immune
and adaptive responses (the HP-adrenal axis), and cognitive fac-
ulties. Of particular concern is that a woman’s menopause transi-
tion is frequently accompanied by weight gain (33), which stems
from imbalance among the orexigenic [Agouti-related peptide/
neuropeptide Y (NPY) neurons], anorexigenic [pro-opio-melano-
cortin (POMC)/leptin neurons], and energy expenditure (orexin
neurons) circuitry (the HP-adipocyte axis), disruptions in nutrient
sensing (hypothalamic mTORC1 and mTORC2), and interactions
with the microglial cells (34–37). Because of its impact on car-
diovascular diseases and a multitude of health issues, attention

has been focused on the dominant role of the hypothalamus in
systemic aging. Indeed, in the large-scale Wisconsin epidemiology
study, human longevity has been linked to the HPG axis (38).

Historically, one of the earliest ideas suggesting that the aging
process stems from a progressive loss of hypothalamic sensi-
tivity and homeostatic imbalance came from studies conducted
in aging rodents that are corroborated with clinical conditions
in humans (21). In a series of studies, Dilman and Anisimov
examined changes in the thresholds of sensitivity in three major
hypothalamic-pituitary-end-organ axes, namely, the reproductive,
stress adaptive, and energy/thyroid systems (39, 40), II and III.
In a hemi-castrated rat model, in which compensatory hyper-
trophy of the contralateral ovary can be investigated, the dose
of exogenously administered estrogen required to suppress the
compensatory effect increases as age advances from 1-month-old
to 28-month-old rats. The degree of suppression is comparable
regardless of whether estrogen is given systemically or directly
into the third ventricle of the brain. These studies strongly suggest
that the responsiveness of the hypothalamus to estrogen feedback
gradually decreases with age.

To ascertain the tissue specificity of the change in sensitivity,
uptake of radiolabeled estradiol by various nuclei was studied.
The anterior and mediobasal hypothalamus where gonadotropin-
releasing hormone (GnRH) neurons are located showed marked
decreases in 3H-estradiol uptake with advancing age (21). Admin-
istration of l-DOPA, a D1 receptor agonist and secretagogue of
GnRH (41) restores the uptake of 3H-estradiol by the hypo-
thalamus, but not by the pituitary gland which serves as a con-
trol. l-DOPA also restores the ability of estrogen to suppress
compensatory ovarian hypertrophy (21).

When the adaptive homeostat (adrenal axis) and the energy
homeostat (growth hormone, fatty acid, and glucose metabo-
lism) were studied using their respective feedback regulators (dex-
amethasone, insulin, free fatty acids, and glucose, respectively),
thresholds of the hypothalamic sensitivity were raised toward these
agents in both aging rodents and humans (39, 40), II and III. How-
ever, opposite effects were observed in the dopaminergic neuron-
lactotroph-prolactin axis, presumably due to the fact that this axis
is normally under inhibitory regulation (39, 40), IV. These obser-
vations established the concept that physiological aging stems
from a progressive loss of sensitivity of the hypothalamus toward
their respective feedback regulators and provided experimental
evidence for the neuroendocrine theory of aging (20, 42).

Dilman and Anisimov reasoned that before menopause, the
hypothalamus constantly adjusts to inputs from internal and exter-
nal sources with accuracy and precision. However, with aging,
the sensitivity of the hypothalamus to feedback regulators begins
to decline. This results in a progressive loss of homeostasis and
eventually, disruption of appropriate hormone production and
an inability of the hypothalamus to appropriately regulate its tar-
get tissues. In order to maintain the same level of responsiveness,
stronger feedback signals or increased sensitivity of the hypo-
thalamus are required. This disruption of homeostasis and the
age-dependent loss of responsivity are manifested with syndromes
such as menopause, andropause, adrenopause, somatopause, and
many other metabolic disturbances. Dilman’s hypothesis about
the primary role of the hypothalamus in aging has been described
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in an exhaustive review of the age-related changes in the structure
and function of the hypothalamus (43).

In retrospect, this neuroendocrine theory of aging is in no way
in conflict with or excludes other paradigms of aging, but instead,
accentuates the importance of the interconnection of many hall-
marks of aging (18, 19). A modified version of this theory “the
hyperfunction theory” was proposed recently that incorporates
the genetic components with dysregulation of various signaling
pathways during aging (13). Virtually, all the genes implicated in
the hyperfunction theory, i.e., SIRT1, mTOR, NF-κB, ras, PI3K,
p53, etc., play a role in uncontrolled cell division and some aspect
of reproductive aging. In the following sections, advances on the
three fronts that support the neuroendocrine theory of aging will
be discussed. They are:

• Better understanding of the mechanism of end-organ resistance
in chronic stimulation.

• Discovery of key longevity genes and their regulatory pathways.
• Determination of the role of succinate in systemic and hypo-

thalamic metabolic adaptation.

BETTER UNDERSTANDING OF THE MECHANISM OF
END-ORGAN RESISTANCE IN CHRONIC STIMULATION
Although the neuroendocrine theory of aging is supported by
experimental evidence, the exact cellular and molecular mech-
anisms were not known when it was first proposed. Advances
in our understanding of the consequence of over-stimulation
or chronic, low-grade activation of various neuroendocrine cells
allow us to revisit and better interpret this theory. From a large
body of research conducted since the 1980s on down-regulation
and desensitization of various endocrine organs [see below], we
begin to understand the underlying cellular and molecular mecha-
nisms by which neuronal and endocrine cells terminate the action
of their stimulatory signal. The accumulation of both types of
over-stimulation during a life-time results in a progressive eleva-
tion of the threshold of sensitivity of the target cell toward their
cognate activator. This eventually leads to the end-organ refrac-
toriness. This phenomenon has been demonstrated in virtually
all endocrine glands, including targets of insulin (44, 45), cate-
cholamines (46, 47), corticotropin-releasing hormone (48), GnRH
(49), growth hormone (50), and luteinizing hormone (LH)/hCG
(51). The reduced responsiveness of the target organ is the patho-
logical basis for diseases like insulin resistance, Type II diabetes,
the “metabolic or insulin resistance syndrome” (44, 52), and
hyperprolactinemia-induced infertility. The end-organ resistance
is also the reason for ineffective treatment of many diseases (52–
56). On the other hand, GnRH receptor-mediated desensitization
of the hypothalamus is used routinely as the strategy to increase
oocyte reserves for later recruitment in standard infertility treat-
ments (49). In the stress adaptive system, it is well known that
while short-term stressors promote a beneficial “hormetic stress
adaptation,” prolonged exposure could shorten lifespan (57).

The cellular and molecular mechanisms for down regula-
tion and desensitization largely depend on the cell type. The β-
adrenoceptor desensitization/down-regulation is the most exten-
sively studied (46, 47) and involves β-arrestin-mediated receptor
internalization, sequestration into coated pits, and caveolae for
degradation or recycling (58). In other systems, uncoupling of

G-protein and its effectors, activation/inactivation of key signal
transduction kinases have been demonstrated to contribute to
the unresponsiveness of the target cell (44, 48, 49, 51). The age-
related resistance in hypothalamic functions and reduced uptake
of the feedback steroid by the hypothalamus are consistent with
this model (21).

DISCOVERY OF KEY LONGEVITY GENES AND THEIR
REGULATORY PATHWAY
Over the last decade, several candidate genes connected to the
onset and progressions of age-related degenerative process have
been identified and their regulatory pathways mapped out (59–
61). Some of the most extensively studied are the gene family
of SIRT, TOR, NF-κB, insulin/growth factor-related genes, and
some cancer-related genes such as Ras, PI3K, and p53 (13, 62).
Two of the most prominent non-genetic factors regulating these
genes are the accumulation of molecular damage brought about
by excessive life-long caloric intake and oxidative damages from
certain reactive oxygen species (ROS) (63–65). Recently, a more
complete picture has emerged of the signaling network involved
in dietary- and reactive oxygen-induced damage that promotes
cellular senescence in mammals (19, 66). This network of mol-
ecular interaction involves three major components: (1) external
signals, such as calories, energy, and hormones/growth factors;
(2) an intracellular mediator, the TOR/mTOR kinases (the mam-
malian target of rapamycin) nutrient response pathways; and (3)
the target gene modulator, IKK-β/NF-κB (or the NF-κB pathway,
inhibitor of nuclear factor kappa-B kinase subunit β/nuclear factor
kappa-light-chain-enhancer of activated B cells). The two intracel-
lular signaling pathways,TOR and NF-κB,previously thought to be
independent, are in fact, closely linked, and both are strongly influ-
enced by dietary status and ROS (12). They are present in virtually
all somatic cells in the body. But more significantly, both pathways
are shown to converge into a single common signaling pathway in
the hypothalamus. The discovery of these specific mediators and
modulators provides a common denominator and helps to unify
a number of previously independent hallmarks of aging into a
model of the aging process rooted in the hypothalamus.

mTOR AND ITS ROLE IN THE HYPOTHALAMUS
mTOR is an enzyme belonging to a family of protein kinases,
which are the target of the anticancer drug rapamycin (67, 68).
One of the first indications that mTOR regulates cellular aging
came from studies in S. cerevisiae (67) in which the TOR gene
was deleted, resulting in doubling of the lifespan (69). Through
its inhibitory action on the TOR gene family, rapamycin has been
shown to extend the lifespan of diverse model organisms includ-
ing worms, flies, and even mammals (65, 70). These observations
firmly established that mTOR is a central, evolutionarily conserved
determinant of longevity.

mTOR is activated proximally by the intake of a variety of
nutrients and hormones/growth factors. After a meal, nutrients
and fuels, such as glucose, activate mTOR for the anabolic syn-
thesis of cellular carbohydrates, proteins, and lipids (65). This
turns on a set of downstream effectors, including cap-dependent
mRNA translation and phosphorylation of the ribosomal pro-
tein S6 kinase, leading to cell growth, accelerated metabolism that
favors cell survival (68, 69, 71). Additionally, mTOR inactivates
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the cellular catabolic and degradation pathways and prevents
cell death. The overall action of the mTOR pathway is there-
fore, to encourage cell growth and proliferation in the presence
of nutrients under normal physiological states. However, chronic
nutrition overload and overexpression of mTOR lead to oxidative
stress, damage accumulation, and eventually cell senescence –
all hallmarks of inflammatory responses (3). This escalation of
cellular stress and the compromised ability of self-repair result
in the development of age-related diseases such as cancer, obe-
sity, type 2 diabetes, and neurodegeneration (72). Since insulin
and growth factors prominently facilitate nutrient uptake by the
cell, the mTOR pathway is highly sensitive to over-stimulation by
insulin and other growth-promoting factors (37).

mTOR exists in two distinctly different complex forms,
mTORC1 and mTORC2 (73–75). Although they exert similar
effects in energy metabolism, they operate through distinct path-
ways. Similar activation/inactivation mechanisms for mTORC1
and mTORC2 are also demonstrated in the hypothalamus (37,
76–79). These findings are significant because of the central home-
ostasis role played by the hypothalamus and the fact that neurose-
cretory cells are not renewed (2). In the hypothalamus, mTORC1
centrally regulates food intake and body weight through leptin and
ghrelin signals and peripherally controls adipogenesis, lipogenesis,
and gluconeogenesis in tissue such as the liver (73). mTORC2, on
the other hand, regulates neuronal cell number, size, morphology,
synaptic connectivity, and thus, plays a crucial role in the central
nervous system (CNS) regulation of energy balance. In a series of
elegant experiments, it is shown that chronic exposures to even
low-grade nutrients such as glucose and insulin/growth factors
could directly or indirectly (through the downstream regulatory
enzyme Akt, which is also an activator of mTORC1) down regulate
mTOR activity in the hypothalamus. This eventually leads to the
loss of sensitivity of various hypothalamic nuclei and their ability
to regulate their respective homeostatic loops (37, 75–79).

THE IKK-β/NF-κB COMPLEX IN THE HYPOTHALAMUS
A major downstream target of mTOR has recently been identified
(12, 80). This target is a fast-acting cell survival protein com-
plex and transcription factor known as the IKK-β/NF-κB complex
(77–79). NF-κB can influence the expression of hundreds of genes
involved in cellular inflammatory responses and has been studied
as one of four marker genes in people with exceptional longevity
(81). Under normal conditions, NF-κB exists in an inactive form.
Environmental pro-inflammatory agents, including caloric excess
and oxidative stress can trigger the activation of the IKK-β/NF-κB
pathway. The same regulatory pathway exists in the hypothala-
mus as well. Recently, Tang and Cai showed that chronic caloric
excess leads to inflammatory responses in the mediobasal hypo-
thalamus, precisely the same area affected in the study of Ref.
(21). This inflammation is shown to involve an IKK-β/NF-κB-
dependent pathway in microglial cells, a modified macrophage.
Microglial cells are in constant communication with hypothal-
amic neurosecretory cells through pro-inflammatory cytokines,
TNFα and IL-1β (79, 82), thus activating the IKK-β/NF-κB system
in these cells. Over time, this leads to signal resistance and loss of
hypothalamic homeostatic responsiveness (12, 21, 65, 79). This
central dysregulation has been associated with systemic aging

and the accelerated development of aging-related metabolic syn-
dromes, obesity, Type II diabetes, cardiovascular diseases, cognitive
degeneration, and reproductive dysfunctions (37, 83). In the same
study (37), activation of the IKK-β/NF-κB pathway is shown to
strongly inhibit GnRH gene transcription (79). This gives addi-
tional credence to the central role of the hypothalamus in systemic
aging and age-related degeneration of body functions.

HYPOXIA-INDUCIBLE FACTOR 1α – KEY TRANSCRIPTION FACTOR IN
NUTRIENT SENSING IN THE HYPOTHALAMUS
The role of the hypothalamus as the center that controls appetite
and nutrient intake is well established. The hypothalamus achieves
this regulation in two ways: through positive and negative feed-
back by numerous hormones including leptin and insulin (83–86),
as well as nutrient sensing by molecules such as glucose, inter-
mediary metabolites, amino acids, and fatty acids (74, 87, 88).
Hormone-sensing is thought to provide a long and sustained
homeostatic regulation of body weight, while nutrient-sensing
offers a short-term regulation of energy balance.

In studying the downstream modulators of the mTOR path-
way in the hypothalamus, a nuclear transcription factor, HIF-1α is
identified to play a key role in nutrient-sensing. From its namesake,
HIF-1α is one of the first responders during cellular and systemic
hypoxia that help an organism to deal with oxygen deficiency (89).
It achieves this task in multiple ways. HIF-1α activates the anaero-
bic breakdown of sugar to provide urgently needed energy for cell
survival under low oxygen conditions (the glycolysis pathway). It
stimulates more red blood cell formation (erythropoiesis) by the
bone marrow (90, 91) and new blood vessel formation (angio-
genesis) in (hypoxia) affected areas (92). The combined action
helps increase energy flow, oxygen-carrying capacity, and nutrient
delivery, and thus, ensures the survival of the organism.

The level of HIF-1α is stringently regulated in response to the
level of oxygen in the microenvironment (76). In the presence of
an adequate amount of oxygen, HIF-1α is targeted for degrada-
tion because it is not needed. But under hypoxic conditions, the
synthesis of HIF-1α is activated and the degradation is inhibited,
resulting in more HIF-1α to help restore oxygen homeostasis. The
combined action ensures the availability of sufficient oxygen and
energy for cell survival.

HIF-1α is recently found to play a key role in glucose sens-
ing and the metabolism of other intermediary metabolites in the
hypothalamus. The particular area of the hypothalamus identi-
fied as the site of glucose sensing and energy regulation coincides
with an area rich in POMC-expressing neurosecretory cells (93–
95). The POMC gene has long been recognized to assist in the
acute and long-term adaptation of an organism to various types
of stress. The POMC gene product, pro-opio-melano-cortin, is
the precursor protein that gives rise to many potent trophic hor-
mones in the “master gland,” the pituitary. Some of the hormones
produced by the pituitary gland are melanocyte-stimulating hor-
mones (MSHs), corticotrophin (ACTH), and β-endorphin. MSHs
and ACTH are collectively known as melanocortins and are the
dominant regulator of feeding behavior.

Because of the blood-brain barrier, glucose is the primary
source of energy in the mammalian brain (96). The increase
in glucose concentration is sensed by the nutrient sensor of
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the hypothalamic POMC neurons. Working through the mTOR
nutrient-sensing pathway, the synthesis of HIF-1α is stimulated
and its degradation suppressed, resulting in an enhanced HIF-1α

(97). One major action of the HIF-1α is to turn on the POMC gene
and thus, increase melanocortins. The HIF-1α and POMC path-
way is therefore an important circuit in the hypothalamic control
of appetite and energy balance. As the hypothalamus ages, the
sensitivity to the sensor input begins to decline which results in
dysregulation of feeding behavior (93, 94, 97). Internal or external
signals that activate this pathway will thus be useful therapeutic
targets in preventing weight gain, obesity, and other metabolic or
cardiovascular diseases (97–99).

THE ROLE OF SUCCINATE AND OTHER METABOLIC
INTERMEDIATES IN METABOLIC ADAPTATION
Among many nutrient sensors and regulators in the hypothalamus,
there is strong evidence indicating the Krebs cycle intermediates,
succinate and fumarate, play an obligatory role in restoring energy
homeostasis (100–104). Succinate is one of the most important
raw materials in the energy-producing cycle that generates adeno-
sine triphosphate (ATP) and fumarate is produced from succinate
by the oxygen-dependent succinate dehydrogenase (101).

In addition to their ATP and nicotinamide adenosine dinu-
cleotide (NADH)-generating role in energy metabolism, succinate,
and to a lesser extent, fumarate, are involved in sensing and
regulating the metabolic activity during cellular stress, including
during hypoxia and exercise. This allows most organisms to

coordinate and adapt to transient or prolonged oxygen-deficit
conditions. When oxygen is abundant, the Krebs cycle generates
ATP and NADH which are used for virtually all cellular activities.
When oxygen is insufficient, the Krebs cycle runs in reverse result-
ing in an accumulation of succinate in the mitochondrial matrix
(105). This has been demonstrated in activated macrophages and
is thought to be critical for the body’s immune defense. An accu-
mulation of succinate and fumarate in the cytosol directly induces
the synthesis and stabilization of the transcription factor HIF-
1α independent of the mTOR pathway by inhibiting proteolysis
of HIF-1α by the prolyl hydroxylase domain (PHD)-containing
enzyme (82, 106). In the hypothalamus, succinate also impor-
tantly stabilizes HIF-1α and promotes POMC gene expression for
the central control of food intake and energy expenditure (76,107).
Thus, succinate not only helps restore energy production through
glycolysis under hypoxic conditions, it also helps regulate the com-
plex leptin-mediated behavior in the appetite center and long-term
weight control (108–112). These findings affirmed and corrobo-
rated with the decade-long work of Maevsky, Kondrashova, and
their colleagues that succinate (compared to fumarate and other
metabolites) is an effective modulator in the central regulation
of energy expenditure, weight control, and metabolic homeostasis
(113). It suggests a potential role of succinate in the regulation of
a multitude of hypothalamic function in adults and particularly
during the aging process (Figure 1).

It should be noted that succinate is not the only intermedi-
ate metabolite studied and demonstrated to have beneficial effects

FIGURE 1 | Schematic representation of the role of the Krebs cycle
intermediate succinate as a Krebs cycle intermediate in the
mitochondrion and as an extra-mitochondrial sensor/signal in the
regulation of cellular growth and aging mediated by mTOR and

induction of the cellular stress regulator HIF-1α and inhibiting of the
ROS in peripheral tissues and in the hypothalamus. The actions of
succinate in the hypothalamus include energy balance, metabolic
homeostasis, and GnRH gene expression.
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in receptor-mediated adaptive actions. Receptors for other Krebs
cycle intermediates such as α-ketoglutarate have also been identi-
fied (114, 115). Both fumarate and succinate mediate the glucose-
induced up-regulation of HIF-2α (76). Malate and fumarate have
been shown to extend lifespan in C. elegans (116). Although suc-
cinate does not extend lifespan per se in C. elegans, it does activate
the longevity regulator DAF-16 and its nuclear translocation as
malate and fumarate do, and all three increase stress resistance
(76). Succinate is also shown to be a biomarker of ischemia and
can also be formed from several sources, i.e., the glyoxylate path-
way, glutamine, aspartate, and gamma amino butyric acid (GABA)
metabolism (117). Succinate at a dose of 2 mg/kg of body weight
results in increased blood flow, synthesis, and release of cate-
cholamines, which in turn, stimulate the hypothalamic centers
to enhance local blood flow (118). Taken together, succinate may
play a more dominant role than previously thought in age-related
metabolic adaptations.

IDENTIFICATION OF THE EXTRA-MITOCHONDRIAL ROLE OF
SUCCINATE AND SURFACE SUCCINATE RECEPTORS IN
PERIPHERAL TISSUE
While succinate is well known for its role as an intermediary meta-
bolic product in the Krebs cycle, accumulation of succinate in
mitochondria due to hypoxia may cause it to diffuse out into
the general circulation through a number of putative membrane
transporters (105) and may act as a signaling molecule in periph-
eral tissues. Succinate was shown to mediate the action of adrenalin
and other neurotransmitters (118–120). This suggests a non-cell
autonomous role of succinate that diverges from its traditional
role as simply a raw material in the production of ATP in the
mitochondria.

A cell surface receptor that specifically binds succinate was
subsequently identified in 2004 (114) and its signal transduc-
tion pathway was later elucidated (121–125). Many of the extra-
mitochondrial actions of succinate have since been substantiated
by studies in many tissues (see below). The receptor, GPR91 or
SUCNR1, is a G-protein-coupled receptor that is closely related
to the family of P2Y purinoceptors (105, 114). The mRNA of
SUCNR1 was found to be highly expressed in the kidney and to
a lesser extent, in the liver and the spleen (114, 121, 126–128).
Later it was localized in many tissues including cardiomyocytes,
bone marrow hematopoietic precursor cells, immune cells (129,
130), the retina, and adipocytes (121–123). Many of these are
part of the hypothalamic-pituitary-end-organ homeostatic axes.
More recently, succinate has been shown to play an important role
in nutrient sensing, energy balance, stress adaptive, and GnRH
regulation in the interaction between microglial cells and the
hypothalamus (37, 76).

The SUCNR1 is coupled to at least two signaling pathways –
Gi/o and Gq, depending on the tissue studied (114, 130, 131).
Interaction of succinate with SUCNR1 results in increases of cal-
cium and inositol phosphate, and decreases in cyclic adenosine
monophosphate (cAMP) formation. On the other hand, succi-
nate stimulates cAMP production in myocardiocytes and platelets
as well as calcium accumulation (122). Similar to other GPCRs,
SUCNR1-ligand interaction results in internalization of the recep-
tor, desensitization, and subsequent sequestration and receptor

recycling (114, 132). The estimated half-maximal effective concen-
tration of succinate is compatible with the physiological concen-
tration found in the body fluid (123). All these lines of evidence
point to the fact that succinate plays important regulatory roles
in immune response, lipid metabolism, formation of blood cells
and blood vessels, and restoring blood pressure and cardiovascu-
lar function. Because of its pivotal role in the regulation of the
central and peripheral organs, considerable interests have been
raised in the development of agonists and antagonists to modify
various vital functions. One peripheral role of succinate that is
of concern is its hypertensive action mediated by renin secreted
by the macula densa of the juxtaglomerular apparatus of the kid-
ney as a result of SUCNR1 activation. This is demonstrated in
isolated tissue preparations and in spontaneously hypertensive
rats (SHR) (133, 134). However, whether or not the same hyper-
tensive effect can be reproduced in humans requires additional
studies as many of the effects observed in isolated tissue prepa-
ration and in rodents have not been demonstrated in humans
(117, 135).

Of all the actions the succinate receptor mediates in human
physiology and pathology, the most intriguing one is that SUCNR1
serves in homeostasis as a sensor for extracellular succinate. That
is, under normal energy balance, mitochondrial succinate serves
its principal role in energy production in the Krebs cycle. Nei-
ther accumulation of succinate in the mitochondria nor leakage
of succinate out of the mitochondria occurs, and the periph-
eral SUCNR1 remains inactive (105). Under stressful conditions,
as in hypoxia, hyperglycemia (as in diabetes), hypertension, or
liver insult, succinate accumulates in mitochondria and subse-
quently diffuses out and into the circulatory system (136), in Ref.
(105). Extracellular succinate, in turn, binds to SUCNR1 in var-
ious tissues and promotes tissue-specific action (105, 115, 133,
134). More recently, it is shown that succinate (and its derivative
fumarate) induces the synthesis of anti-inflammatory proteins,
stress-adapting hormones, and GnRH gene expression, and also
suppresses feeding behavior – all homeostatic circuitries regu-
lated by the hypothalamus (discussed above and summarized in
Figure 1). These findings provide molecular evidence of the neu-
roendocrine theory of aging proposed over 40 years ago. Deeper
understanding of these molecular pathways may point to find-
ing solutions to restoring homeostasis of the body. Given that
aging is associated with multiple organ degeneration, it would
be of limited benefit to treat individual organs and their dis-
eases. The hypothalamus, a regulator of multiple physiological
tissues and processes, offers a single target for potential drug
therapy.

A POTENTIAL THERAPEUTIC ROLE OF SUCCINATE IN
METABOLIC DISEASES AND MENOPAUSAL-RELATED
SYMPTOMS
Two pressing issues in moderating the degenerative process in
human aging are weight control (which leads to cardiovascu-
lar diseases, metabolic syndromes, and cancer) and menopausal
symptom relief. Intriguing questions are raised about the potential
benefit of using succinate in alleviating age-associated metabolic
disturbances. In a series of studies, succinate is shown to facili-
tate the formation of glutamate, which increases the turnover of
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adenylate and glutamine and induces nitric oxide synthesis in the
brain. This results in stimulation of the vascular tone, blood flow,
antioxidant activity, and improvement of age-related degenerative
changes (137).

Another succinate target in the hypothalamus is the
hypothalamus-POMC axis involved in nutrient sensing as well
as other functions including the regulation of sexual behavior,
lactation, the reproductive cycle, and possibly central neural con-
trol (97). This strongly suggests that regulation of HIF-1α activity
by succinate as shown in previous sections may have multiple
benefits.

A pulsatile GnRH secretion pattern is essential for follicle-
stimulating hormone (FSH)/LH release by the pituitary gland
and the integrity of positive and negative feedback loops involv-
ing estrogens (7). An added evidence of the importance of the
homeostatic feedback between the gonad and the hypothalamus
is the illustration that mitochondria are a major target of estrogen
(138) and that estrogen regulates mitochondrial metabolism in
the hypothalamus (139).

From recent groundbreaking discoveries of mTOR and NF-
κB pathways in the aging hypothalamus, one of the casualties of
an overactive NF-κB is the suppression of GnRH gene expres-
sion, and a reduction in GnRH synthesis and secretion (37). Since
GnRH is the key regulator of FSH and LH and secondarily controls
the gonadal production of estrogen and testosterone (7), many
reproductive and non-reproductive targets controlled by these
sex steroids are adversely affected. These include the cessation of
the menstrual cycle with its associated menopausal symptoms, a
loss of muscle tone and bone strength, a decline in the energy
level, a weakening of the body’s ability to defend against infec-
tious agents, a degeneration of cognitive ability, and an increase
in body fat that could lead to heart diseases and cancer (140,
141). Administration of GnRH or rapamycin (an mTOR inhibitor)
in animals improves many age-related symptoms, including skin
atrophy, muscle weakness, and bone loss (37). Therefore, in addi-
tion to the reproductive role, GnRH is shown to act on the brain
and peripheral organ systems to regulate systemic aging, albeit
through a different signaling pathway from rapamycin (37, 107).
The finding that hypothalamic inflammation is responsible for
the shutdown of GnRH and systemic aging provides an additional
molecular mechanism supporting the neuroendocrine basis for
aging. This may also lead to the development of treatments to
slow down the course of aging and relieve age-related symptoms.
Although GnRH and rapamycin are shown to reverse the aging
process, both have undesirable side effects. Succinate as a nat-
ural molecule that directly activates the HIF-1α/POMC pathway
may prove to be an ideal candidate in this regard. Indeed, POMC
neurons are shown to project and make synaptic contacts with
GnRH neurons and POMC-derived neuropeptides elicit a robust
activation of the GnRH/LH axis in different mammalian species
(34, 142).

CONCLUSION
Aging is a multi-faceted decline of body functions. Many hypothe-
ses have been proposed to explain the cause of aging. They include

permanent damage of the genetic material, hormonal imbalance,
and environmental/lifestyle insults, such as excessive caloric intake,
free radical or oxidative stress, and inflammation.

The hypothalamus is the master regulator of homeostasis in
vertebrates and is the source and target of continual regulatory
adjustments throughout one’s lifetime. The neuroendocrine the-
ory of aging proposed by Dilman over 40 years ago postulates the
functional decline of the hypothalamus is due to a decrease in its
sensitivity toward feedback control.

Succinate is not only an important intermediary metabo-
lite in the energy generating Krebs cycle, but also has diverse
extra-mitochondrial roles, acting in both cell and non-cell
autonomous manner in peripheral tissues. The concept of suc-
cinate as a signaling molecule is confirmed by the identifica-
tion of the succinate receptor, elucidation of its signal trans-
duction pathways, and recognition of its diverse action in many
tissues.

Recently, mTOR has been identified as a proximal molecular
switch in the onset and progression of systemic aging. Over-
stimulation of hypothalamic mTOR as a result of chronic exposure
to nutrients and activation of the pro-inflammatory NF-κB that
inhibits expression of the GnRH gene are responsible for the loss
of sensitivity of the hypothalamus. Activation of HIF-1α which
activates POMC gene expression appears to reverse the decline of
hypothalamic function.

Succinate stimulates the expression of the HIF-1α gene, sta-
bilizes the HIF-1α protein, and mitigates the functional decline
in both the stress adaptation/energy-balancing pathway and the
GnRH loop. This helps to moderate age-related processes that
lead to weight gain, menopausal symptoms, and other degener-
ative diseases. Since the succinate receptor is widely distributed
throughout the body, succinate may play a central role in revers-
ing the gradual but significant dysregulation of the hypothalamus
as well as peripheral cellular senescence.
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