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Abstract: From 2010 to 2015, 73 common marmosets (Callithrix jacchus) housed at the Wisconsin
National Primate Research Center (WNPRC) were diagnosed postmortem with lymphocytic
enterocolitis. We used unbiased deep-sequencing to screen the blood of deceased enterocolitis-positive
marmosets for viruses. In five out of eight common marmosets with lymphocytic enterocolitis,
we discovered a novel pegivirus not present in ten matched, clinically normal controls. The novel
virus, which we named Southwest bike trail virus (SOBV), is most closely related (68% nucleotide
identity) to a strain of simian pegivirus A isolated from a three-striped night monkey (Aotus trivirgatus).
We screened 146 living WNPRC common marmosets for SOBV, finding an overall prevalence of
34% (50/146). Over four years, 85 of these 146 animals died or were euthanized. Histological
examination revealed 27 SOBV-positive marmosets from this cohort had lymphocytic enterocolitis,
compared to 42 SOBV-negative marmosets, indicating no association between SOBV and disease
in this cohort (p = 0.0798). We also detected SOBV in two of 33 (6%) clinically normal marmosets
screened during transfer from the New England Primate Research Center, suggesting SOBV could be
exerting confounding influences on comparisons of common marmoset studies from multiple colonies.

Keywords: pegivirus; flavivirus; Callithrix jacchus; common marmoset; lymphocytic enterocolitis;
next-generation sequencing; novel virus discovery

1. Introduction

Common marmosets (Callithrix jacchus) are a valuable model species due to their small body size,
communal monogamous familial behavior, birth of hematopoietic chimeric litters, short parturition
intervals, and status as members of a non-endangered primate species [1–5]. The utility of common
marmosets in research resulted in a recent increase in demand for these animals [6]. The Wisconsin
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National Primate Research Center (WNPRC) in Madison, Wisconsin, USA, houses a common marmoset
colony typically consisting of about 240 common marmosets, which are used by researchers at the
University of Wisconsin-Madison for groundbreaking research in neurological, neurobehavioral,
and pharmacologic research, among many others [7–17].

From 2010 to 2015, 73 common marmosets housed at the WNPRC were euthanized due
experimental end point, chronic intractable diarrhea, or chronic severe weight loss; they then underwent
necropsy with histology and were diagnosed with lymphocytic enterocolitis [18–21]. Beyond the
regrettable loss of animal life, common marmoset morbidity and mortality due to enterocolitis is
harmful both to colony success and to the scientific studies to which these animals are assigned.
Though lymphocytic enterocolitis is one of the most common causes of death in captive common
marmosets [18–23], the epizootic at the WNPRC was associated with an unusually high disease
incidence for the colony, prompting investigations into a possible infectious contributor. Unbiased
deep-sequencing led to the discovery of two similar variants of a novel pegivirus, most closely related
to a variant of simian pegivirus A (SPgV-A) previously isolated from a three-striped night monkey
(Aotus trivirgatus). This novel pegivirus was present in a subset of deceased common marmosets
diagnosed postmortem with lymphocytic enterocolitis and was not present in matched, clinically
normal controls.

Pegiviruses, members of genus Pegivirus (Amarillovirales: Flaviviridae), are ubiquitous in animal
populations [24–35], but their biological consequences are poorly understood. Pegiviruses can persist
at high titers for years or decades in humans [36–40] and chimpanzees [41] with an unusually low
mutation rate compared to other RNA viruses [38,42], and they have never been shown to be the
causative agent of any disease [43–60]. Apparent links between pegiviruses and disease, such as that
initially posited for Theiler’s disease-associated virus (TDAV) and Theiler’s disease [61,62], have later
been shown to be more likely spurious [35,63]. The mechanisms of pegivirus biology have eluded
definition, but these viruses are considered most likely lymphotropic [64–67], and evidence from in vivo
and in vitro studies suggests they may affect T cell functioning and homeostasis [68–76]. Lymphocytic
enterocolitis in common marmosets is likewise characterized by a dysregulation of T cell biology,
as the intestinal villus architecture is disrupted or lost due to the intraepithelial infiltration of large
numbers of CD3 CD8-positive lymphocytes [22]. Given the importance of common marmosets as a
model species and the disease burden caused by lymphocytic enterocolitis, we set out to characterize
the possible link between this new virus and the disease state.

Here, we report the discovery of two variants of a novel pegivirus in a captive common marmoset
colony. We establish phylogenetic relationships with other known pegiviruses. Since this virus was
discovered in common marmosets with lymphocytic enterocolitis and was absent in clinically normal
controls, we measure the prevalence of the virus in the colony and track the potential association of
viral status with risk of developing lymphocytic enterocolitis disease over four years. Our findings
have implications for animal studies in which specific pathogen-free animals are desired, and they
demonstrate the need for further investigations to increase understanding of these viruses and their
impact on common marmoset health.

2. Materials and Methods

2.1. Animals

All animals in this study were common marmosets (Callithrix jacchus Linnaeus, 1758) housed at the
Wisconsin National Primate Research Center (WNPRC) in Madison, WI, USA. The common marmoset
colony at the WNPRC was established in 1960. The original animals were imported from northeastern
Brazil, with the final importation occurring in the early 1970s. The average yearly population of the
colony each year from 2010 to 2019 was approximately 240 animals, all of which were born in captivity.
WNPRC animals screened were 41% (60 animals) female and 59% (86 animals) male. Age at the time
of screening ranged from 0.82–12.82 years (mean 4.65 +/- 2.83 years, median 4.26 years).
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The New England Primate Research Center (NEPRC), Southborough, MA, USA, was closed in 2015,
resulting in a transfer of 82 common marmosets to WNPRC before closure in November 2014. Plasma
samples were collected from 33 of these animals upon their arrival at WNPRC (November–December
2014) while quarantined in a separate building and location from the WNPRC marmoset colony. In the
population initially from the NEPRC, 16 (48%) of the screened animals were female, and 17 (52%) were
male. Age at the time of screening ranged from 0.66–9.42 years (mean 4.21 ± 2.87, median 3.76 years)
in this population.

2.2. Ethics

All common marmosets were cared for by WNPRC staff according to the regulations and
guidelines outlined in the National Research Council’s Guide for the Care and Use of Laboratory
Animals, the Animal Welfare Act, the Public Health Service Policy on the Humane Care and Use of
Laboratory Animals, and the recommendations of the Weatherall report (https://royalsociety.org/topics-
policy/publications/2006/weatherall-report/). Per WNPRC standard operating procedures for animals
assigned to protocols involving the experimental inoculation of infectious pathogens, environmental
enhancement included constant visual, auditory, and olfactory contact with conspecifics, the provision
of feeding devices that inspire foraging behavior, the provision and rotation of novel manipulanda, and
enclosure furniture (i.e., perches, shelves). The common marmosets were housed socially in enclosures
measuring 0.6 mD × 0.9 mW × 1.8 mH or 0.6 mD × 1.2 mW × 1.8 mH. The WNPRC maintains an
exemption from the USDA for these enclosures as they do not meet the Animal Welfare Act regulations
for floor space but greatly exceed height requirements as the species are arboreal. This study was
approved by the University of Wisconsin-Madison College of Letters and Sciences and Vice Chancellor
for Research and Graduate Education Centers Institutional Animal Care and Use Committee (animal
protocol numbers G005401 and G005443).

2.3. Unbiased Deep-Sequencing

Samples from 18 common marmosets (eight deceased common marmosets diagnosed with
lymphocytic enterocolitis through necropsy and 10 live, healthy common marmosets) from the WNPRC
and 12 common marmosets (all live and healthy) from the NEPRC were screened for the presence of
viruses using unbiased deep-sequencing. The live WNPRC common marmosets and the live NEPRC
common marmosets were selected randomly for deep-sequencing.

DNA and RNA were isolated from plasma. Common marmoset plasma (1 mL/animal) was
centrifuged at 5000× g for 5 min at 4 ◦C. Supernatants were removed and filtered through a 0.45 µm
filter, then centrifuged at maximum speed (20,817× g) for 5 min at 4 ◦C. Supernatants were removed
and incubated for 90 min at 37 ◦C with a DNA/RNA digest cocktail consisting of 4 µL DNAfree DNAse
(0.04 U/µL; Ambion, Austin, TX, USA), 6 µL Baseline Zero DNAse (0.1 U/µL, Epicentre Technologies,
Madison, WI, USA), 1 µL Benzonase (1 U/µL, Sigma-Adrich, St. Louis, MO, USA), and 12 µL DNAse
10x buffer. Viral nucleic acids were then isolated using the Qiagen QIAamp MinElute Virus Spin
Kit without the use of AW1 buffer or carrier RNA (Qiagen, Valencia, CA, USA). Random hexamers
were used to prime cDNA synthesis (Life Technologies, Grand Island, NY, USA), followed by DNA
purification using Ampure XP beads, as previously described [77,78]. Deep-sequencing libraries were
prepared using the Nextera XT DNA Library Prep Kit (Illumina, San Diego, CA, USA) and sequenced
on MiSeq (Illumina).

2.4. Viral Sequence and Phylogenetic Analysis

Sequence data were analyzed using CLC Genomics Workbench 5.5 (CLC bio, Aarhus, Denmark).
Low-quality reads (Phred < Q30) and short reads (<100 bp) were removed with CLC Genomics
Workbench 7.1 (CLC bio, Aarhus, Denmark), and the remaining reads were assembled de novo using
the MEGAHIT assembler. Assembled contiguous sequences (contigs) and singleton reads were queried
against the GenBank nucleotide database using the basic local alignment search tools blastn. Nucleotide

https://royalsociety.org/topics-policy/publications/2006/weatherall-report/
https://royalsociety.org/topics-policy/publications/2006/weatherall-report/


Microorganisms 2020, 8, 1509 4 of 21

sequences were codon aligned individually for all known pegiviruses with complete genomes using
ClustalW2 in the alignment editor program in MEGA6.06 and edited manually. The best-fitting distance
model of nucleotide substitution for each alignment was inferred using the maximum likelihood
(ML) method with goodness of fit measured by the Bayesian information criterion in MEGA6.06.
The best-fitting nucleotide substitution model for the phylogenetic alignments was inferred to be the
GTR model with discrete gamma and invariant among-site rate variation. The GenBank accession
numbers of the sequences used are MT513216 (Southwest bike trail virus variant 1 [SOBV-1]), MT513217
(Southwest bike trail virus variant 2 [SOBV-2]), MK059751 (dolphin pegivirus), KU351669 (porcine
pegivirus), KC815311 (rodent pegivirus), KC796088 (bat pegivirus I), KT439329 (human hepegivirus),
KC796076 (bat pegivirus G), KC796080 (bat pegivirus F), KC410872 (equine pegivirus), KC145265
(Theiler’s disease-associated virus), U44402 (human pegivirus genotype 2), GU566734 (GB virus-D),
U22303 (simian pegivirus A isolated from black-mantled tamarins [Saguinus nigricollis]), AF023425
(simian pegivirus A isolated from three-striped night monkeys [Aotus trivirgatus]), AF023424 (simian
pegivirus A isolated from mustached tamarins [S. mystax]), NC_001837 (simian pegivirus A isolated
from white-lipped tamarins [S. labiatus]), KC796075 (bat pegivirus PDB737B), KC796075 (bat pegivirus
PDB106), KC796082 (bat pegivirus PDB24), U63715 (human pegivirus genotype 1), D87713 (human
pegivirus genotype 3), AB021287 (human pegivirus genotype 4), AY949771 (human pegivirus genotype
5), AB003292 (human pegivirus genotype 6), and AF070476 (simian pegivirus A isolated from common
chimpanzees [Pan troglodytes]).

Protein family analysis and putative protein predictions were performed using Pfam (http:
//pfam.xfam.org/). The amino acid similarity of the novel pegivirus with related pegivirus lineages was
determined across the polyprotein using SimPlot v3.5.1 [79] following TranslatorX alignment (MAAFT)
without Gblocks cleaning. The GenBank accession numbers of the sequences used are HGU22303
(GBV-A-like virus recovered from black-mantled tamarins), AF023425 (GBV-A-like virus recovered
from three-striped night monkeys), AF023424 (GBV-A-like virus recovered from mustached tamarins),
NC_001837 (GBV-A-like virus recovered from white-lipped tamarins), and KC796081 (bat pegivirus
recovered from African straw-colored fruit bats [Eidolon helvum]).

The sequence similarity matrix was created in Geneious Prime 2020.1.2 (Auckland, New Zealand)
using representative members of each pegivirus species [80,81].

2.5. Screening for SOBV by RT-PCR

Plasma samples from 136 healthy WNPRC common marmosets were screened specifically for
SOBV by RT-PCR. Twenty plasma samples collected from NEPRC animals were likewise screened
by RT-PCR.

Screening of these animals was performed with samples from animals positive for SOBV by deep
sequencing as positive controls. RNA was isolated from 100–500 µL of plasma using the QIAamp Viral
RNA Mini Kit (Qiagen). A primer set (forward primer: GGTGGTCCACGAGTGATGA; reverse primer:
AGGTACCGCCTGGGGTTAG) targeting a region of the viral helicase which was conserved among the
animals initially positive by deep-sequencing was designed, resulting in a 615-bp amplicon. Viral RNA
was reverse-transcribed and amplified using the SuperScript III High Fidelity One-Step RT-PCR kit
(Invitrogen, Life Technologies, Carlsbad, CA, USA). The reverse transcription-PCR conditions were as
follows: 50 ◦C for 30 min; 94 ◦C for 2 min; 40 cycles of 94 ◦C for 15 s, 55 ◦C for 30 s, and 68 ◦C for 1 min;
and 68 ◦C for 5 min. Following PCR, amplicons were purified from excised gel slices (1% agarose)
using the Qiagen MinElute Gel Extraction kit (Qiagen). Each amplicon was quantified using Quant-IT
HS reagents (Invitrogen), and approximately 1 ng of each was used in a tagmentation reaction with
the Nextera XT DNA Library Prep Kit. Final libraries representing each amplicon were characterized
for average length using a DNA high sensitivity chip on a 2100 bioanalyzer (Agilent Technologies,
Loveland, CO, USA) and quantitated with Quant-IT HS reagents. Libraries were sequenced on a MiSeq.

http://pfam.xfam.org/
http://pfam.xfam.org/
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2.6. Post Mortem Diagnosis of Lymphocytic Enterocolitis

All animals humanely euthanized or that die spontaneously at the WNPRC undergo complete
postmortem examinations (necropsy) with the collection of a standardized set of tissues for histologic
evaluation and ancillary diagnostics (if necessary). Lymphocytic enterocolitis is well-characterized
in common marmosets [22] and a marmoset-specific enteric collection has been established for all
marmoset necropsies. Hematoxylin and eosin (H&E) stains are used for histological examination to
evaluate for spontaneous diseases and experimentally induced tissue and organ changes. In this study,
immunohistochemical (IHC) CD3 and CD20 or CD79 staining was additionally performed on samples
from these animals to differentiate lymphocyte populations (primarily T cells, B cells, or mixed T and B
cells). Diagnosis of T cell rich lymphocytic enterocolitis was based on abnormal architecture of the
intestines and IHC staining [22,82]. If confounding factors hampered diagnosis (e.g., severe B cell
lymphoma or autolysis), the data for that animal were removed from the analysis.

2.7. Statistical Analysis

We used univariate logistic regression to evaluate the associations of SOBV viremia with
enterocolitis risk. Analyses were repeated to determine association with lymphocytic disease in
small intestines only, large intestines only, both the small and large intestines, and either the small
or large intestines. All reported p-values are two-sided and p < 0.05 was used to define statistical
significance. Statistical analyses were conducted using R version 3.6.3 in RStudio version 1.1.383.

2.8. Data Accessibility and Management

Metagenomic sequencing data have been deposited in the Sequence Read Archive (SRA) under
Bioproject PRJNA613737. Derived data, analysis pipelines, and figures are available for easy replication
of these results at a publicly accessible GitHub repository (https://github.com/aheffron/SPgVwnprc_in_
marmosets).

3. Results

3.1. Captive Common Marmosets Harbor a Novel Pegivirus

To examine the etiology of the unusually high rate of lymphocytic enterocolitis in deceased
WNPRC common marmosets, banked plasma samples from eight common marmosets diagnosed
with lymphocytic enterocolitis and from ten clinically normal, live common marmosets to be used as
controls were screened by deep-sequencing for the presence of viral RNA. RNA from a previously
undocumented pegivirus was detected in the plasma of five of eight deceased marmosets with
lymphocytic enterocolitis. We propose this novel virus (BioProject PRJNA613737) be formally named
the Southwest bike trail virus (SOBV). Pegivirus RNA was not detected in the plasma of the ten
clinically normal common marmoset controls.

SOBV consists of a 9.8-kb-long contig that is highly similar to the genome of simian pegivirus
A (SPgV-A) trivirgatus, a simian pegivirus previously discovered in a three-striped night monkey
(Aotus trivirgatus) [27] (Figure 1), with 68% nucleotide identity across the coding sequence when aligned
using ClustalW with an IUB cost matrix (gap extension cost, 6.66; gap open cost, 15.00). Four of the
five common marmosets positive for SOBV had variants of the virus with 98–99% sequence identity,
while one common marmoset had a variant with 88% sequence identity to the others. We have
named these variants SOBV-1 (GenBank accession number MT513216) and SOBV-2 (GenBank accession
number MT513217).

https://github.com/aheffron/SPgVwnprc_in_marmosets
https://github.com/aheffron/SPgVwnprc_in_marmosets
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Pairwise comparisons of amino acid identity across the entire coding region further illustrate
the similarity of SOBV-1 and SOBV-2 and the divergence between these novel virus strains and the
next most closely related viruses (Figures 2 and 3), most of which were simian pegiviruses. Several
pegivirus isolates found in a bat [83] also shared high degrees of similarity with the novel pegivirus.

3.2. Novel Pegivirus RNA Is Detected in up to 34% of a Captive Common Marmoset Colony

Having identified the novel pegivirus in diseased animals, we sought to determine its prevalence
within the WNPRC common marmoset colony. We developed an RT-PCR assay to detect a conserved
region of the putative helicase protein of SOBV and used this to screen plasma collected from
146 clinically normal live common marmosets in the WNPRC colony, confirming results through
deep-sequencing of the amplicons. At the time of the initial screening in March–April 2014, 50 of the
146 (34.25%) clinically normal screened animals tested positive for SOBV RNA. Nineteen of 60 females
(31.67%) and 31 of 86 males (36.05%) tested positive at the time of screening. Sex was not associated
with the likelihood of SOBV using univariate logistic regression (p = 0.583). Age at the time of screening
was associated with the likelihood of SOBV (p = 0.0324, odds ratio 1.144, 95% confidence interval
1.014–1.298), with the likelihood of positivity increasing with each additional year of age (Figure 4,
Table 1).

Table 1. SOBV status by age of 146 common marmosets at the WNPRC.

Age (Years) at Time
of Screening

Total Number of
Marmosets

Number of
Marmosets Infected

Number of Marmosets
Non-Infected

1 20 6 14
2 24 5 19
3 18 6 12
4 14 3 11
5 22 8 14
6 7 2 5
7 14 9 5
8 13 3 10
9 5 4 1

10 6 2 4
11 2 1 1
12 0 0 0
13 1 1 0

In November 2014, 82 common marmosets were transferred from the New England Primate
Research Center (NEPRC) to the WNPRC. Samples from 33 NEPRC common marmosets were collected
while the animals were in quarantine. Two (6%) of these were found to be positive for SOBV RNA
when screened by RT-PCR.
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Figure 1. A phylogenetic tree of newly discovered pegivirus Southwest bike trail virus (SOBV) 
variants 1 and 2 shows it is most closely related to pegiviruses found in other New World monkeys 
and bats. We generated maximum likelihood trees using MEGA6.06 (1000 bootstrap replicates, GTR 
+ I+γ model) from codon-based alignments (via MAFFT); bootstrap values of less than 70 were 
omitted. Abbreviations: HPgV = human pegivirus; SPgV = simian pegivirus. 

Figure 1. A phylogenetic tree of newly discovered pegivirus Southwest bike trail virus (SOBV) variants
1 and 2 shows it is most closely related to pegiviruses found in other New World monkeys and bats.
We generated maximum likelihood trees using MEGA6.06 (1000 bootstrap replicates, GTR + I+γ model)
from codon-based alignments (via MAFFT); bootstrap values of less than 70 were omitted. Abbreviations:
HPgV = human pegivirus; SPgV = simian pegivirus.
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NS4B, NS5A, and NS5B [80]. Abbreviations: SPgV-A nigri = GBV-A-like virus recovered from 
black-mantled tamarins (Saguinus nigricollis); SPgV-A tri = GBV-A-like virus recovered from 
three-striped night monkeys (Aotus trivirgatus); SPgV-A mx = GBV-A-like virus recovered from 
mustached tamarins (S. mystax); SPgV-A lab = GBV-A-like virus recovered from white-lipped 
tamarins (S. labiatus); BPgV 737 = bat pegivirus recovered from African straw-colored fruit bats 
(Eidolon helvum). 

 

  
Figure 3. Sequence identity matrix based on amino acid alignment of the newly discovered SOBV-1 
and SOBV-2 (red box) compared to members of the 11 recognized pegivirus species and of one* 
proposed species [80]. * The classification of dolphin into species “Pegivirus L” has been suggested 
[81]. 

Figure 2. Sliding window similarity plots [79] show the relatedness of the amino acid sequences of
SOBV-2 and other closely related pegiviruses to SOBV-1. Dashed vertical lines indicate the putative
approximate start positions of inferred viral proteins, from left to right: E1, E2, P7, NS2, NS3,
NS4A, NS4B, NS5A, and NS5B [80]. Abbreviations: SPgV-A nigri = GBV-A-like virus recovered
from black-mantled tamarins (Saguinus nigricollis); SPgV-A tri = GBV-A-like virus recovered from
three-striped night monkeys (Aotus trivirgatus); SPgV-A mx = GBV-A-like virus recovered from
mustached tamarins (S. mystax); SPgV-A lab = GBV-A-like virus recovered from white-lipped tamarins
(S. labiatus); BPgV 737 = bat pegivirus recovered from African straw-colored fruit bats (Eidolon helvum).
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Figure 4. Prevalence of infection with SOBV in common marmosets at the WNPRC increases with age.
One hundred forty-six live, clinically normal common marmosets in the WNPRC captive common
marmoset colony were screened for SOBV using RT-PCR and deep-sequencing methods. The likelihood
of infection with these viruses was significantly statistically associated with increasing age (p = 0.03237)
using univariate logistic regression.

3.3. Presence of Novel Pegivirus Is Not Statistically Significantly Associated with Lymphocytic Enterocolitis in
the Common Marmoset

Given that pegiviruses are known to persist in hosts for years or decades [36–41], we sought to
determine whether SOBV-positive animals were more likely to develop lymphocytic enterocolitis over
a period of observation. Typical enteric architecture consists of slender, often branching villi, with short
intestinal glands, small numbers of lymphocytes in the lamina propria, and prominent B cell aggregates
dispersed throughout the length of the intestines (Figure 5, control). Lymphocytic enterocolitis was
diagnosed as a disruption of this architecture, with lymphocytic infiltration that expands the lamina
propria, resulting in widening and shortening of villi and hyperplasia of crypt epithelium (Figure 5,
E1–E3). Cases varied in severity, with mild cases showing only slight expansion of the lamina propria
and advanced cases showing complete loss of villus architecture due to infiltration of the lamina
propria with large numbers of CD3-positive lymphocytes. Eighty-five of the live WNPRC animals
initially screened for SOBV in 2014 were euthanized for experimental end points or clinical illness
between their screening and 3 May 2019. Sixty-nine (81.18%) of these animals were diagnosed by
postmortem histological analysis with lymphocytic enteritis, colitis, or enterocolitis. The data from two
animals were removed from this analysis due to confounding factors (one animal had severe tissue
autolysis, and the other animal had B cell lymphoma of the small and large intestines).
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Figure 5. Representative photomicrographs show disruption of the normal architecture in the
duodenum, jejunum, and colon by lymphocytic enterocolitis in common marmosets. Histology was
performed upon intestinal samples from 85 common marmosets. Intestinal sections were stained
with hematoxylin and eosin (H&E) and with B cell-specific and T cell-specific staining procedures
(immunohistochemistry) with monoclonal antibodies to CD20 or CD79 (B cell markers) and CD3 (T cell
marker), respectively. E1, E2, and E3 represent three different marmosets with lymphocytic enterocolitis.
E1 has disease in the duodenum and jejunum that spares the colon, while E2 and E3 have disease in the
duodenum, jejunum, and colon.
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Pegivirus infection was not found to be associated with an increased likelihood of developing
lymphocytic enteritis in the small intestines (p = 0.779), colitis in the large intestine (p = 0.196), either a
colitis or enteritis (p = 0.820), or an enterocolitis (p = 0.0798), or with lack of any lymphocytic disease
(p = 0.904) (Figure 6). Sex was not associated with likelihood of the various disease states (p = 0.400,
p = 0.912, p = 0.235, p = 0.812, and p = 0.235, respectively). SOBV status was likewise not associated
with any other pathology (Supplemental Table S1).
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Figure 6. Infection with SOBV is not associated with the likelihood of developing lymphocytic enteritis,
colitis, or enterocolitis. Eighty-five common marmosets at the WNPRC, which had been previously
screened for SOBV by RT-PCR or deep-sequencing of plasma samples, were examined postmortem for
histological evidence of lymphocytic enterocolitis. Pegivirus infection was not found to be associated
with an increased likelihood of developing lymphocytic colitis (p = 0.196), enteritis (p = 0.779), either
enteritis or colitis (p = 0.820), enterocolitis (p = 0.0798), or lack of lymphocytic disease (p = 0.904), using
univariate logistic regression.

4. Discussion

We describe the discovery of a novel simian pegivirus, the Southwest bike trail virus (SOBV), first
identified in common marmosets diagnosed with lymphocytic enterocolitis. We show this pegivirus
was prevalent in our colony during a period of increased incidence of lymphocytic enterocolitis and
that it was less prevalent in a similar, clinically normal colony. The novel virus was not significantly
associated with the likelihood of developing lymphocytic enterocolitis, though prevalence of the virus
increased with increasing age in the common marmoset. With an average prevalence of 34%, SOBV
was common throughout the WNPRC common marmoset colony.

Pegiviruses, the members of genus Pegivirus (Amarillovirales: Flaviviridae), have single-stranded,
positive-sense RNA genomes and produce enveloped virions [84]. The first members of the genus were
identified about 20 years ago [85,86], and since that time pegiviruses have been found in many animal
populations [24–35,81]. Pegiviruses have never been shown to be causative agents of any disease or
alteration in physiology [43–60]. Human pegivirus (HPgV) has been linked both to improved outcomes
in HIV-1 infection [68,87–104] and to increased incidence of various types of lymphoma [105–113],
though this remains controversial [114–118]. HPgV is considered likely lymphotropic [64–67], and
evidence from in vivo and in vitro research suggests HPgV may affect T cell activation, signaling,
proliferation and apoptosis, and CD4 or CD8 expression [68–76], and that it may be associated with a
higher rate of host cell DNA damage [119] and genomic destabilization [110]. These effects on T cell
functions may be a common pathway through which these viruses may cause lymphocytic diseases.
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It is not known whether common marmosets are the natural host for SOBV or whether they
acquired this virus from another species in captivity [120]. Other pegiviruses were discovered in wild
common marmosets in the 1990s [121], but their prevalence has never been examined. The prevalence
of SOBV in our captive common marmoset population was quite high compared to the prevalence of
HPgV, which is found in about 1–4% of human populations [122–129], and compared to the prevalence
of pegiviruses in captive chimpanzees (1–3%) [41]. SOBV is most similar to a pegivirus discovered in a
three-striped night monkey (Aotus trivirgatus) [27], a species used in malaria research at other primate
research facilities [130–132], indicating SOBV may have been introduced into common marmosets
through contact in captivity. Interestingly, SOBV is highly similar to several variants of a bat pegivirus
isolated from African straw-colored fruit bats (Eidolon helvum). Given that common marmosets
and three-striped night monkeys are native to northern South America, this may indicate a South
American bat species harbors a more closely related pegivirus and could have been the source of an
interspecies spillover.

The routes of transmission of SOBV and of other simian pegiviruses have not been examined.
HPgV transmission has been extensively studied and is known to occur efficiently through blood
products or dialysis [36,45,133–136], intravenous drug use and needle sticks [133,137–139], sexual
intercourse [133,137,140,141], and from mother to infant [133,142–146]. Captive common marmosets are
typically housed in familial groups in shared cages and receive some vaccines and other medication by
injection, and common marmosets frequently give birth to non-identical twins [3–5,22]. These animals
thus have the potential to transmit SOBV through direct contact, sexual contact, birth, and medical
injections or veterinarian manipulations. Defining mechanisms of transmission will be important in
preventing infection and thereby allowing the study of this virus’ effects.

The high prevalence of this virus at the WNPRC raises important considerations about potential
effects on common marmoset experiments. Facilities working with common marmosets should
prescreen the animals to establish the pegivirus status of animals in research to account for potential
confounding. Pegiviruses can replicate at high titers in a host for more than a decade [36,37,41,147];
thus, the length of time for which an animal has been continuously infected may also be relevant in
potentially confounding study outcomes. Future investigations, perhaps involving the isolation of
common marmosets for years at a time to follow the natural history of chronic pegivirus infection in
these animals, could examine the long-term effects of infecting common marmosets with SOBV.

This study has several limitations. First, this study was observational in nature, as we did not
want to risk infecting more marmosets in our research colony with an apparently transmissible and
potentially harmful virus. This study design could not examine a causal link between viral positivity
and the development of lymphocytic enterocolitis. Definitive establishment of causation would require
demonstrating that animals infected experimentally develop the disease. Second, many animals in
this study were concurrently enrolled in other WNPRC studies, and therefore some were euthanized
earlier than would have occurred otherwise when those studies reached experimental endpoints.
We chose to use this convenience sample as it allowed us to achieve a large study sample size in
which to investigate a potential infectious contributor to an important and poorly understood cause of
common marmoset mortality without disrupting other ongoing studies at the WNPRC. Third, not all
of the animals initially screened were deceased at the time of this analysis, and future necropsies of
these animals may contribute additional data concerning the likelihood of enterocolitis development.
Finally, some animals in this study may have cleared the virus before the samples we tested were
collected. Consequently, these animals could have been mistakenly classified as virus-naïve, and
others may have acquired the virus after initial screening. Development of a SOBV-specific ELISA
or other serodiagnosis tools would enable deeper appropriate analyses of SOBV infection rates both
prospectively and retrospectively.

In summary, this work describes the discovery of a novel simian pegivirus and investigates its
relationship with a widespread and devastating cause of common marmoset mortality. Our study lays
the groundwork for the future development of a nonhuman primate model system using this natural



Microorganisms 2020, 8, 1509 13 of 21

infection as a potential model for studying the mechanisms of these enigmatic viruses and providing a
greater understanding of their genus as a whole.

5. Conclusions

We discovered a novel pegivirus, SOBV, in common marmosets with lymphocytic enterocolitis.
This novel virus had highly variable prevalence between two different colonies (34% prevalence in
one and 6% prevalence in another). While SOBV was not found to be associated with pathology in
this retrospective analysis, the difference in rates of infection among different colonies may affect the
outcomes of studies done at different primate centers, and thus infection rates and prevalence should
be monitored. Further investigations should probe the routes of transmission and the biological effects
of experimental infection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/10/1509/s1,
Table S1: Association of SOBV with pathology in 81 common marmosets at the WNPRC.
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