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ABSTRACT Clustered regularly interspaced short palindromic repeat (CRISPR) meth-
odology is not only an efficient tool in gene editing but also an attractive platform
to facilitate DNA, RNA, and protein interactions. We describe here the implementa-
tion of a CRISPR-based system to regulate expression in the clinically important
yeast Candida albicans. By fusing an allele of Streptococcus pyogenes Cas9 devoid of
nuclease activity to a transcriptional repressor (Nrg1) or activator (Gal4), we were
able to show specific repression or activation of the tester gene CATI1, encoding the
cytosolic catalase. We generated strains where a 1.6-kbp upstream regulatory region
of CAT1 controls the expression of the green fluorescent protein (GFP) and demon-
strated the functionality of the constructs by quantitative PCR (qPCR), flow cytom-
etry, and analysis of sensitivity/resistance to hydrogen peroxide. Activation and re-
pression were strongly dependent on the position of the complex in this regulatory
region. We also improved transcriptional activation using an RNA scaffolding strat-
egy to allow interaction of inactive variants of Cas9 (dCas9) with the RNA binding
protein MCP (monocyte chemoattractant protein) fused to the VP64 activator. The
strategy shown here may facilitate the analysis of complex regulatory traits in this
fungal pathogen.

IMPORTANCE CRISPR technology is a new and efficient way to edit genomes, but it
is also an appealing way to regulate gene expression. We have implemented CRISPR
as a gene expression platform in Candida albicans using fusions between a Cas9 in-
active enzyme and specific repressors or activators and demonstrated its functional-
ity. This will allow future manipulation of complex virulence pathways in this impor-
tant fungal pathogen.

KEYWORDS CRISPR, Candida albicans, Gal4, RNA scaffold, catalase, gene activation,
gene repression, genetic tool
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by the cell to repair the cleaved allele by homologous recombination. CRISPR has been
implemented in a wide range of taxons (8) and has proven a useful tool in fungal
research, not only for pathogenic fungi (9, 10) but also for yeasts, for which several tools
are already available (11, 12).

Candida albicans is a clinically relevant diploid pathogenic fungus that is commonly
found as a harmless commensal of humans but which is able to cause severe diseases
among immunocompromised individuals. The development of genetic tools in this
fungus is important for the discovery of novel virulence genes and antifungal agents.
A CRISPR editing system was recently implemented in C. albicans through the con-
struction of a C. albicans codon usage-adapted version of the S. pyogenes Cas9
endonuclease (13). Those authors created knockout strains simultaneously altered in
both chromosomal alleles, thus circumventing the use of two different markers or a
marker recycling strategy (14-16). Given the high efficiency of the nuclease, even
double-disruption events in two different genes were simultaneously accomplished.
Stable integration in the genome is not necessary, as introduction of PCR products
devoid of replicons provides transient expression that is functional for gene deletions
(17), as shown also in other pathogenic Candida species (18). The system has been
improved through increased gRNA production via an alternative promoter/posttran-
scriptional processing scheme (19). Gene drives (20) have been also implemented in C.
albicans and, combined with the availability of haploid C. albicans strains (21), have
allowed the easy construction of deletion sets of mutants via mating (22).

While CRISPR has proven extremely useful in strain construction, it has also gained
interest as a platform to facilitate interactions among RNA, DNA, and proteins. Inactive
variants of Cas9 (dCas9) have been generated by mutagenesis in their nuclease
domains (D10A and H840A) but retained their ability to target a specific sequence.
Protein fusions between dCas9 and cargo protein enable activation or repression of
transcription in eukaryotes (23, 24), visualization of specific chromosomal locations (25),
or even editing of genomes without cleaving DNA (26). Activation or repression of a
given gene is particularly useful in the dissection of biological process in pathogens,
especially as the nature of CRISPR allows multiplexing (27-29). We describe here the
implementation of CRISPR-based modulation of transcription in C. albicans. By fusing a
catalytically dead version of Cas9 to the transcriptional activation domain of Gal4
and/or VP64 and the Nrg1 repressor, we demonstrated specific gene regulation of the
catalase CATT gene, a result with important applications for genetic dissection of
biological processes in this fungus.

RESULTS

Generation of a catalytically inactive Cas9 protein in Candida albicans. In order
to use CRISPR for gene regulation instead of genome editing, we generated an
RNA-guided DNA-binding protein by eliminating the ability of Cas9 to cleavage DNA.
We introduced the D10A and H840 point mutations that abolish the RuvC-like and HNH
nuclease activity by overlapping PCR (see Materials and Methods), generating a C.
albicans-adapted version of dCas9. We cloned both CAS9 and dCAS9 in plasmids under
the control of the TETOFF system and integrated them in C. albicans at the ADH1
genomic region in wild-type strains (Fig. 1A). As expected, in the presence of doxycy-
cline (Dox) in the medium, the expression of CAS9 or dCAS9 was completely blocked
and no protein was observed in whole-cell extracts (Fig. 1B). To demonstrate the
absence of nuclease activity of dCas9, we compared the abilities of both Cas9 and
dCas9 to induce mutagenesis of ADE2. We integrated at the RP10 locus a single guide
RNA (sgRNA) against ADE2 to abolish the activity of ADE2, thus rendering red cells and
colonies (13). As shown in Fig. 1C, when we simultaneously expressed CAS9 and the
guide under inducing conditions (without Dox), red colonies were generated when a
complementary repair template with a stop codon was added. However, no red
colonies appeared in cells expressing dCas9, indicating that no DNA cleavage and
therefore no repair had occurred via homologous directed repair (Fig. 1C). We therefore
used this allele for subsequent studies.

January/February 2019 Volume 4 Issue 1 e00001-19

mSphere’

msphere.asm.org 2


https://msphere.asm.org

Regulation of Gene Expression via CRISPR in C. albicans

CAS9/dCAS9 -Wcan

DOX =—|
BsmBI BsmBI
m— nSNR52 SgADE? SAT1 RP10  |j—

pNRU-Cas9 pNRU-dCas9
Dox10mglL - + -+ - + - +

Cas9/dCas9 __, /
150 kDa 2 r..a "=

ADE2 mutagenic template

Cas9 = -l

Possv, iy 1‘\ Slbbe ez
vtj,\—' AL - vy \ A

Z s L) ;~ -
Iyl . "y A 5\ o & -~
f, T R e T P pan !:&‘ ~ -
e T N, L | -
E E R e_N *L =&
dCas9 = . = =
as R % il N
-~m -~ e
u.‘. Bl ~

-~

»

FIG 1 Construction and validation of an inactive Cas9 allele. (A) CRISPR constructs used to validate dCas9
in C. albicans. The first one (top) integrates CAS9 or dCAS9 at the ADH1 genomic region, and expression of
Cas9 alleles is under the control of the TETOFF system (repressed by doxycycline [DOX]). The second one
(pV1090, bottom) (13) integrates at RP10 and is used to clone the desired guide (ADE2 in this case) by
digestion with BsmBI under the control of the SNR52 promoter. (B) Protein extracts from strains expressing
either Cas9 (pNRU-Cas9) or dCas9 (pNRU-dCas9) after 24 h of growth in YPD medium at 37°C in the absence
(-) or presence (+) of doxycycline (Dox) (10 mg/liter) were analyzed by Western blotting. A band of 150 kDa
corresponding to Cas9 or dCas9 was detected with antiCas9 antibody. (C) ADE2 mutagenesis by CRISPR is
achieved only when Cas9, ADE2 sgRNA, and a repair mutagenic template (+) are cotransformed in C.
albicans as determined by the appearance of red colonies.

Implementation of CRISPR as a tool for transcriptional activation in C. albicans.
In order to test whether dCas9 can be used as a modular RNA-guided platform to
specifically recruit CRISPR transcriptional activators (CRISPRa) to DNA, we chose the
CAT1 gene, which encodes the cytosolic catalase in C. albicans. A 1.6-kbp region
upstream of the methionine starting codon was fused to the green fluorescent protein

January/February 2019 Volume 4 Issue 1 e00001-19

mSphere’

msphere.asm.org 3


https://msphere.asm.org

Romén et al.

(GFP) gene and integrated at the ARDT locus (see Materials and Methods) to generate
the tester strain pCAT1-GFP, where CATT expression can be easily checked by both
microscopy and flow cytometry (FC) (see Fig. STA and B in the supplemental material).
An in silico analysis of this DNA using the Chop-Chop server (http://chopchop.cbu.uib
.no) identified sequences susceptible to be used as CRISPR guides (20 nucleotides [nt]
followed by a PAM). Different targets were chosen, and guides were cloned under the
control of the pADH1-tRNA promoter (19), as it has been suggested that expression of
the sgRNA flanked by a 5’ tRNA and transcribed by a strong RNA polymerase Il ADH1
promoter increases sgRNA production, which could be a bottleneck in CRISPR/Cas9
editing (19). We constructed vectors expressing dCas9 fused to transcriptional activator
Gal4 (Fig. 2A) (30), as this activator has been successfully used for engineering a C.
albicans adapted reverse trans-activator (rtTA) in doxycycline-dependent induced reg-
ulation (31). The dCas9-Gal4 chimera was introduced into the pCAT1-GFP strain using
the pADH1-tRNA guide production scheme (19).

An analysis of the relative GFP levels of induction (determined by comparing the
mean fluorescence intensity [MFI] of the population to that of cells without a guide) of
strains after 24 h of growth in SD medium (2% glucose, 0.5% ammonium sulfate, 0.17%
yeast nitrogen base and amino acids) at 37°C revealed that guides 4 and 5 gave the
clearest results (Fig. 2B), while the rest of the guides showed few (guide 2) or no
statistically significant differences. As shown in Fig. 2C, the MFI ratio increased only
when the activator (dCas9-Gal4) was coexpressed with guide 4 compared to strains
without any sgRNA (control). Guide 4 hybridizes at positions —197 to —183 with
respect to the starting methionine. We included in these experiments complementary
target guides (4F and 5F) devoid of a PAM site as internal controls; those controls, as
expected, showed no increase (MFI values were 74 + 15 for the vector, 88.6 * 12.3 for
control guide 4F, and 144.6 = 9.7 for guide 4, thus showing ~2-fold induction) (Fig. 2Q).
Guide 5 (sgRNAS5F) also led to GFP expression but to a lesser extent (~1.5X), confirming
the relevance of the positioning of the complex along the promoter to modulate
transcription. In other to confirm that regulation was dependent on the activator
module, we compared the GFP MFI results for cells growing in the presence or absence
of doxycycline (Fig. 3D). As expected, the addition of the drug resulted in MFI levels
similar to those seen with the control strain lacking the activator module, while in its
absence, the level was found to have increased ~2-fold to 2.5-fold. We also analyzed
whether the CRISPRa system could interfere with the canonical CATT promoter regu-
lation. When stationary-phase cells from strains expressing the activator module and
different sgRNAs were subjected to hydrogen peroxide for 2 h and GFP expression was
quantified (Fig. 3E), we observed similar increases of MFI (~2-fold-to-3-fold-higher) in
response to the oxidant in all strains. Therefore, despite induction of activation by
dCas9, the promoter was still sensitive to its canonical triggering stress.

A dual-CRISPR system enhances transcriptional gene activation. In order to
improve gene activation, we implemented the RNA scaffolding system recently de-
scribed in mammalian cells and Saccharomyces cerevisiae (32). This system is based on
incorporating a single RNA hairpin into the 3" end of the sgRNA; this additional module
is recognized by its corresponding RNA binding protein, which can then be fused to
transcriptional activators or repressors, allowing the recruitment of additional transcrip-
tional regulators to a specific DNA region. To generate these scaffold RNA constructs,
we fused the viral RNA sequence of the phage MS2 3 end to the sgRNA in the original
gRNA production scheme (13) (called “scRNA” [small cytoplasmic RNA]). We also
developed a chimera between the MS2 RNA-binding protein (monocyte chemoattrac-
tant protein [MCP]) and the VP64 transcriptional activator (see Materials and Methods),
both chemically synthesized and codon adapted for C. albicans (33) (see Materials and
Methods) (Fig. 3A). The system was tested in the same strain (pCAT1-GFP) with dCas9
under the control of the TET®F promoter and the scRNA with the corresponding
activator module. After 24 of growth in SD medium at 37°C, the analysis of GFP MFI by
flow cytometry showed an approximately 1.6-fold increase in the MFI of cells express-
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FIG 2 dCas9-Gal4-mediated activation of transcription in C. albicans. (A) Diagram of the dCas9-Gal4 fusion as an
RNA guided DNA binding protein to the CATT promoter. sgRNAs were expressed using the pADH1-tRNA scheme
(19). (B) Relative MFI induction ratios of GFP detected by flow cytometry in cells coexpressing dCas9-Gal4 and the
indicated guides after 24 h of growth at 37°C in SD medium. The data are displayed as means * standard
deviations of results from 3 independent experiments performed with different transformants; “Control” refers to
a strain with vector but no guide. (C) Fold induction of the MFI from different sgRNAs compared to the
corresponding strain without guide (Control). (D) GFP Relative MFI induction ratio of the indicated strains after 24
of growth at 37°C in the presence (+) or absence (-) of doxycycline (Dox). The data are displayed as means =+
standard deviations of results from 3 independent experiments and were normalized to the control strain without
guide in the absence of Dox. (E) Stationary-phase cells were treated or not with 5 mM hydrogen peroxide (H,0,)
for 2 h. Relative MFI induction ratios are represented in cells coexpressing dCas9-Gal4 and sgRNA4 (4) or sgRNA4F
(4F). Data are normalized to the values for the vector without any guide (Control) in the absence of hydrogen
peroxide. *, P < 0.05; ***, P < 0.001; ns, not significant.

ing scRNA using guide 4 compared to the strain without a guide or with the 4F control
guide (not shown) (2.05 = 0.26 compared to 1.3 = 0.08, P = 0.0016) (Fig. 3B). We
reasoned that recruiting different activators would increase transcriptional activation
and therefore combined the two strategies, i.e., a direct fusion of Gal4 to dCas9 and the
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FIG 3 RNA-mediated scaffolding increased transcriptional activation. (A) Design of the modular RNA structure encoding the MS2
domain used to recruit RNA binding protein MCP fused to transcriptional activator VP64 at the CATT promoter and scheme of the
dual-activator system that uses Gal4 fused to dCas9 and scRNA-MCP-VP64 modules guided to the CATT promoter. (B) Fold increase
(induction relative to the tester strain, pCAT1-GFP) of the GFP MFI detected by flow cytometry of the indicated strains after 24 h of
growth in SD medium at 37°C. Values represent means * standard deviations of results from least 4 independent experiments. **,
P < 0.01; ****, P < 0.0001. (C) Overnight (18-h) cultures of the indicated strains were diluted in prewarmed fresh SD medium
and incubated at 37°C. At different time points (2, 4, and 6 h), samples were processed and analyzed by flow cytometry; the fold
increase of GFP MFI (induction relative to the tester strain, pCAT1-GFP) is represented. (D) Overnight cultures of the indicated
strains were diluted in prewarmed fresh SD medium, incubated at 37°C, recovered at 5 h, and processed for qPCR. The fold
increase of the mRNA levels of CATT and GFP (relative induction) obtained from the indicated strain compared to control strain
pCAT1-GFP is represented.
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(H,0,) at the indicated concentration or subjected to 100 mM H,0, in liquid SD medium and spotted at different
times (indicated in minutes) onto YPD plates. Images were taken after 24 h of growth at 37°C.

RNA scaffold to recruit the MCP-VP64 module. Comparing the levels of activation of the
reporter gene, we observed that the dual system showed increases of approximately
3.5-fold relative to the control strain (MFI of 3.6 = 0.28, P < 0.0001) and 1.7-fold relative
to strains expressing only the scRNA (P = 0.0002) (Fig. 3B).

Interestingly, we observed that induction levels were higher when MFIs were
determined during the exponential phase of growth. In fact, an analysis of the CATT
promoter revealed that the MFI of the pCAT1-GFP tester strain varied along the phase
of growth, with the 24-h cells showing high catalase levels compared to the exponen-
tially growing cells (Fig. S1B). We therefore analyzed the phase dependence patterns of
our constructs. Stationary cultures from the tester strain, dCas9 with scRNA-MCP-VP64,
and dCas9-Gal4 with scRNA-MCP-VP64 (all expressing guide 4) were diluted in pre-
warmed fresh SD medium, and GFP was determined by flow cytometry at different time
points. As shown in Fig. 3C, MFI values were increasing in both scaffold constructs
during the log phase, reaching a maximum at 6 h postdilution and always being higher
with the dual-activation system (Fig. 3C). In order to validate the levels detected by flow
cytometry, we quantified mRNA by quantitative PCR (qPCR) analysis of both the CAT7
and GFP genes (Fig. 3D). Comparing the activation induced by scRNA in either the
dCas9 or the dCas9-Gal4 strains 5 h after dilution from stationary-phase growth, we
observed that the level of CATT was ~10-fold higher than that of the pCAT1-GFP strain
in both strains, while GFP expression was higher when the dual system was used
(8.3-fold versus 5.6-fold). Therefore, the dual-activation system is able to activate gene
expression in C. albicans.

We tested whether dCas9-mediated transcriptional activation would also (as ex-
pected) increase transcription of native CAT1 by testing the susceptibility of the
indicated strains to hydrogen peroxide. We did two types of analyses: a standard drop
assay on oxidant-supplemented plates and an assay of loss of cell viability in liquid
medium upon challenge with a lethal concentration of oxidant. For these experiments,
we chose cells growing in logarithmic phase at 4 to 5 h after dilution in fresh SD
medium from overnight cultures. As shown, the cells that coexpressed the dCas9-Gal4
activator with guide 4 were more resistant to hydrogen peroxide than the wild-type
CAF2 strain cells and the controls expressing the flipped guide (guide 4F) (Fig. 4). These
results corroborate the data from the transcriptional analysis. As expected, those strains
that directed a dCas9-Gal4-MCP-VP64 chimera via guide 4 scRNA to the promoter were
more resistant to hydrogen peroxide than those expressing only one of activator
module dCas9-Gal4 and activator module dCas9-MCP-VP64 (Fig. 4). Therefore, CRISPR-
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mediated gene activation in C. albicans has functional consequences that can be
detected by phenotypic analysis.

Implementation of CRISPR as a tool for gene repression in C. albicans. To check
if dCas9 could be used to repress transcription, we used similar constructs with different
markers (URA3 or SATIT) to express dCAS9 under the control of the TETOFF system
(Fig. 5A) and generated the corresponding strains harboring guide 4, as this guide
showed the most evident influence on regulation.

The analysis of the GFP signal by flow cytometry under conditions of full expression
(minimal SD medium without doxycycline), using the pSNR52 promoter and guide 4,
showed a 30.4% = 9.8% blockage. We also tested the effect of incorporating full-length
Nrg1, a cognate repressor in C. albicans (Fig. 5B and C), which was added to the C
terminus of dCas9 (see Materials and Methods). In this case, the level of blockage with
dCas9-Nrg1 was 45.5% =+ 3.6%. As expected, no blockage (1.7% = 1%) was obtained
when the control flipped version (guide 4F) was used (Fig. 5C). The results obtained by
using the pADH1-tRNA scheme (19) were slightly better (53% = 3.4%) than those
obtained by using pSNR52 (13). These results demonstrate the ability of the CRISPR
interference (CRISPRi) system to repress gene expression in Candida albicans.

We tested whether blockage of CAT1 expression resulted in increased oxidant
susceptibility using either standard drop assays on SD plates with hydrogen peroxide
or kinetics of loss of viability in liquid media supplemented with the oxidant. The
corresponding strains generated with both systems were grown for 24 h in SD medium
at 37°C and subjected to oxidative stress. When dCas9 was guided by guide 4, the cells
became more susceptible to hydrogen peroxide than the cells expressing only dCas9
or the cells of the wild-type host strain CAF2 (Fig. 5D, top panel). In this experiment, no
differences were observed using the Nrg1 repressor, as dCas9-Nrg1 behaved similarly
to dCas9. The phenotypes seen with the two strategies were similar, and expression of
the guide using pADH1-tRNA resulted in either growth defects in plates or a decay of
cell viability kinetics (Fig. 5D, bottom panel). No defects in growth were observed when
control guide 4F was used (data not shown). These results demonstrated that CRISPR
can be specifically used to reduce gene expression in C. albicans.

DISCUSSION

The peculiar role of S. pyogenes Cas9 as an RNA-and-DNA-interacting protein
enables biological approaches where it can be used as a scaffold to facilitate these
biological interactions. We demonstrated here that the CRISPR system may be used to
modulate gene transcription in C. albicans by using catalase CATT as a tester gene. We
chose this gene since, on the basis of our observations (34, 35), moderate changes in
its amount result in clear phenotypes regarding hydrogen peroxide sensitivity.

We demonstrated here that CRISPR can be used both to activate and to repress
transcription in C. albicans. Negative regulation of transcription (CRISPR interference
[CRISPRI]) has been demonstrated previously in bacteria by targeting the gRNA-dCas9
complex at different places within a monomeric red fluorescent protein (mRFP) test
gene (23). Those authors were able to show approximately 300 repression as well as
strand-specific positional effects at both the transcription initiation and elongation
levels (23). Such values are far from those attained in S. cerevisiae, which showed much
modest levels. For example, a decrease of 18X was observed previously for a TEF1-GFP
construct (24), and that level can be increased to 50X with the Mxi1 transcriptional
mammalian repressor, which has been reported to interact with the yeast Sin3 acety-
lase. More-modest (2X to 3X) reductions or even an absence of such reductions has
been reported previously in yeast (36), indicating that the simple positioning of the
gRNA-dCas9 complex does not efficiently interfere with transcriptional initiation/elon-
gation. In an attempt to circumvent such an outcome, yeast and mammalian repressors
have been fused to dCas9. For example, in Yarrowia lipolytica, the use of dCas9-Mxi1
was previously shown to result in 10X repression (37) whereas the use of dCas9-KRAB
was previously shown to result in 2.5X repression and the use of a tripartite Ume6-
Mig1-Tup11 domain to result in 5X repression in comparison to Mxi1 (38). In our case,
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independent transformants. (D) Oxidant susceptibility of cells expressing dCAS9 or dCAS9-NRG1 and sgRNA4
in both guide systems. Cells of the indicated strains from the stationary phase were serially diluted 10-fold and
plated on SD media containing hydrogen peroxide (H,0,) at the indicated concentration or subjected to
75 mM H,0, in liquid SD medium and spotted at different times (indicated in minutes) onto YPD plates.
Images were taken after 24 h of growth at 37°C.
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we used Nrg1 since this protein is a well-known repressor of hyphal genes (39, 40). The
fold repression observed was in the range of 40% to 60% (Fig. 5C), which is similar to
what is observed in other yeasts. We avoided the use of filamentation-inducing
conditions in the analysis of catalase expression, as we used full-length Nrg1 and the
dCas9-Nrg1 construct could interfere with the expression of hypha-specific genes.
However, this would be easy to engineer in the future using the Nrg1 repressor domain
and/or alternative repressor modules (see accompanying paper by L. Wensing, J.
Sharma, D. Uthayakumar, Y. Proteau, et al.).We used different transcriptional activation
domains and strategies to increase expression. We used the Gal4 activation domain
(indicated as Gal4 in the figures) to create dCas9-Gal4 chimeras, obtaining a 2-fold-to-
3-fold doxycycline-specific increase in GFP transcription. These values were obtained
when sgRNAs were expressed under the control of the pADH1-tRNA promoter and
were slightly higher than those obtained when guides were expressed under the
control of the pSNR52 promoter with the system described previously by Vyas et al.
(13), which is in concordance with what has been described previously (19). Although
these values are still modest, they are close to those determined in a similar study in
S. cerevisiae using a pCYC1-GFP construct (36). As Gal4 shows strong effects and is
routinely used in C. albicans to achieve a high level of expression (31), we think that the
level seen here may represent a limitation of the experimental setup. We thus com-
bined this strategy, in a dual system (Fig. 3A), with a RNA scaffolding strategy (32) in
which a scaffold RNA is used to recruit transcriptional activators via a RNA interacting
protein. Using four tandem copies of the herpes simplex virus protein 16 (VP64
activator), we were able to increase this value to approximately 4X (Fig. 3B). Such
increases were moderate when cells were analyzed in stationary phase but reached
approximately 10X to 13X during the log phase of growth (Fig. 3C), demonstrating
that activation was increased when different activator modules were recruited (Gal4
plus VP64). Studies in mammalian cells have shown drastic increments of the signal;
however, these values are usually obtained only when several copies of the target
sequence are placed in tandem upstream the tester gene. Increasing the number of
available gRNA 5’ to the gene significantly increases the gene reporter output (24, 32,
36). Despite these current limitations, we showed the critical role of the specific region
of the dCas9-AD complex in modulation, as has been also observed in other recent
studies (36). We studied up to 6 different guides along with the CAT7 promoter and
demonstrated that guide 4, which lies at positions —197 to —183 approximately 100 bp
upstream of the most probable TATA box, was the most efficient for CRISPRa (Fig. 2B),
suggesting that this spacing is the spacing best suited for transcriptional activation, at
least for CAT1. We also present evidence of effects at the endogenous native CATT
locus, as shown in Fig. 4 and 5, where the effect on endogenous CATT expression
correlated with a pattern of resistance/susceptibility to hydrogen peroxide, thus pro-
viding evidence for the interaction of the Cas9 complex at the native CAT7 gene.
Future improvements of the system will surely involve studies on regulatory regions
of other genes to determine the precise spacing required for optimal effects on
transcription as well as for developing new dCas9 chimeras. As dCas9 production does
not seem to be limiting (19), coexpressing several guides will simplify the analysis of
complex pathways such as those shown in S. cerevisiae (32). This technology will also
enable genome-wide analysis of regulatory regions in C. albicans, which will surely
facilitate understanding the regulation of virulence in this important pathogen.

MATERIALS AND METHODS

Strains and growth conditions. The strains used are listed in Table S1 in the supplemental material.
Cells were grown at 37°C in YPD medium (1% yeast extract, 2% peptone, 2% dextrose) or complete SD
medium (2% glucose, 0.5% ammonium sulfate, 0.17% yeast nitrogen base and amino acids) unless
otherwise stated. The analysis of susceptibility/resistance to different compounds was performed using
the standard drop test as follows. Cultures grown at 37°C from stationary-phase cells were adjusted to
2 X 107 cells/ml, serially 10-fold diluted, and deposited (5 ul) onto solid SD plates supplemented (or not)
with hydrogen peroxide at different concentrations. Plates were incubated at 37°C for 24 h and were
then scanned. When necessary, doxycycline was added to either liquid or solid medium at 5 to 10 or
20 mg/liter, respectively. For flow cytometry (FC) analysis, cells were recovered 24 h after growth at 37°C
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in SD complete medium (stationary phase) or at the indicated times after dilution in fresh SD medium
(log phase) from stationary-phase cultures. Cells were fixed in 1% phosphate-buffered saline (PBS)-
formaldehyde and washed twice with PBS previous to fluorescence-activated cell sorter (FACS) analysis
performed using a Guava cytometer (Millipore).

Molecular biology procedures and construction of plasmids. All plasmids and oligonucleotides
are listed in Table S2 and Table S3, respectively. C. albicans CAS9 (CaCAS9) was amplified with primers
Up-Cas9 and Rev-Cas9 (Table S3) using pV1093 (kindly provided by Vyas et al.) (13) as the template.
CadCAS9 was obtained by overlapping PCR to introduce the corresponding mutations using primer pair
dCas9-o1 and dCas9-02 and primer pair dCas9-o3 and dCas9-o4. Both the CaCAS9 and CadCAS9
amplicons were introduced in the intermediate pGEM-T vector (Promega), digested with Sall/Notl, and
then inserted in the pNRU expression vector, with URA3 used as a selection marker (41), to generate
pNRU-CAS9 and pNRU-dCas9 plasmids. Both plasmids were finally digested with Kpnl/Sacll to force
homologous recombination at the ADHT locus. pNIM1RX-dCas9 vectors, with SATT used as a selection
marker, were generated by the insertion of the Sall/Notl dCas9 fragment into the construct that had been
digested previously with the same pair of enzymes, and pNIM1RX-RFP vector was generated by replacing
the 5" ADH1 Xbal/Sacl fragment from pNIM1R-RFP (42) with a 1.630-bp Xbal/Sacl fragment from the
pNIMX vector (43), containing the 5" ADH1 and the TDH3 promoter. Homologous recombination at the
ADHT1 locus was forced after enzymatic digestion with Kpnl/Sacl. Transformants were selected in SD Ura—
or YPD nourseothricin (200 mg/liter) media, and the levels of expression of the corresponding Cas9 and
dCas9 proteins were detected by Western blotting using Cas9 polyclonal (Clontech) and anti-Flag clone
M2 (Sigma) antibodies. GAL4 and NRGT transcriptional modulators were amplified by PCR with primer
pairs Up-GAL4/Rev-GAL4 and Up-NRG1/Rev-NRG1, subcloned into intermediary vector pGEM-T, digested
with Xhol/Notl, and finally inserted into pNRU-dCas9 or pNIM1RX-dCas9 vectors that had been previously
digested with Xhol/Notl, generating corresponding vectors pNRU-dCas9-Gal4, pNIM1RX-dCas9-Gal4,
pNRU-dCas9-Nrg1, and pNIM1RX-dCas9-Nrg1.

The gene reporter vector containing a CATT promoter fused to GFP strain pCAT1-GFP was obtained
as follows. pDU1-GFP_myc was constructed as follows. ACTT promoter was amplified by PCR with
Up-pACT1 and Rev-pACT1, digested with Sall/Nhel, and cloned into pDUO-L, which had been digested
previously with the same pair of enzymes, to generate pDU1-L (44). The click beetle luciferase (CbLUC)
open reading frame (ORF) was removed from pDU1-L by cutting with Sall and Bglll and replaced by
GFP_Myc obtained from Sall/Bglll digestion of plasmid pNIM1_MoGFP_carboxi_ca_myc (45). We ampli-
fied 1,600 bp containing the coding region of HIST with primers o-up-HIS1-Spel and o-rev-HIS1-Sacll and
cloned the result into pDU1-GFP_myc, previously digested with Spel and Sacll, to generate pDHO-
GFP_myc. To generate a cloning site, we replaced the 5" ARD1 region of pDHO-GFP_myc with the
amplicon generated by PCR using primers Up-5 ARD1-Kpnl and Low-5 ARDT-BamHI Bswil and Sall
(Table S3) containing the same 5 ARD1 region (455 bp) by digestion with Kpnl and Sall, generating
vector pDHOMGFP_myc. A 1,000-bp fragment containing the putative CATT regulatory region was
amplified by PCR with Up-Tkbp Pr CAT1 BamHI and Low-1kbp Pr CAT1 BsiWI (Table S3), digested with
the indicated enzymes, inserted into plasmid pDHOMGFP_myc, previously digested with BamHI and
BsiWI, and treated with alkaline phosphatase (New England Biolabs [NEB]) to generate the final vector
pDH8M-GFP_myc. Kpnl and Sall digestion was used to force homologous recombination in the ARD1
locus to generate the pCAT1-GFP tester strain. Transformants were selected in SD His— media and
confirmed for GFP expression by Western blotting using anti-GFP antibody and by FC.

Bioinformatic analysis of CAT1 upstream region. The 1,594-bp upstream CAT7 ORF (orf19.6229)
(see Fig. S1D in the supplemental material) was analyzed by the use of different software programs for
determination of potential regulatory regions. In the text that follows, the numbering refers to this
specific region; therefore, “1595" represents the “A” in the ATG starting codon. Neural Network Promoter
Prediction (http://www fruitfly.org/seq_tools/promoter.html) predicted the following stretches of regu-
latory DNA sequences: positions 124 to 174 (score of 0.91, potential transcriptional start site [TSS] at
position 164), 804 to 854 (score of 0.93, potential TSS at 844), and 1389 to 1439 (score of 0.96, potential
TSS at 1429). Potential TATA boxes were analyzed with Comet Software (https://zlab.bu.edu/~mfrith/
comet/form.html) with a threshold E value of lower than 8, which gave the following results: TATA1
(positions 1398 to 1412, positive strand, score of 0.939, E value of 4.08), TATA2 (positions 131 to 145,
positive strand, score of 0.376, E value of 7.53), TATA3 (positions 1111 to 1125, negative strand, score of
0.332, E value of 7.9), and TATA4 (positions 1294 to 1308, negative strand, score of 0.272, E value of 8.44).
Combining the two analyses and considering the associated probabilities, the most probable promoter
regulatory region would be between positions 1389 and 1398 or between positions 1412 and 1439.
Guides were selected in this 1,594-bp region using CHOCHOP software (http://chopchop.cbu.uib.no/
index.php).

sgRNA design, generation and cloning. We use different approaches for sgRNA design and cloning
depending on the strategy used for the sgRNA-expressing method. In one approach, sgRNAs were
inserted into a BsmBI cloning site in the corresponding vector, pV1090 or pV1093 (kindly supplied by
Vyas et al. [13]). sgRNAs were generated by phosphorylation and annealing of complementary single-
stranded DNA (ssDNA) oligonucleotides (see Table S3) and then inserted into the corresponding vector,
previously digested with BsmBlI, and treated with alkaline phosphatase, calf intestinal (CIP) (NEB). In some
cases, we used an NEB Builder HiFi master assembly commercial kit, which allows direct cloning (in one
step and with high efficiency) of the sgRNAs whose sequences harbor the desired target sequence (20 nt
in length) flanked with a 25-nt sequence that hybridized with the cloning vector. Insertion of the correct
sgRNAs was confirmed by sequencing using o-seg-pV1093, 200 bp downstream sgRNA cloning site
(Table S3). The corresponding sgRNAs were integrated into the RP10 locus after Kpnl and Sacll digestion,
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and transformants were selected in YPD plus nourseothricin (clonNAT; Werner BioAgents) (200 mg/liter).
The correct integration was confirmed by PCR analysis of genomic DNA with 0-to-100 bp of guide
cloning site pV1090 up (in pSNR52) and Rev-ORFX-con pv1090 (outside the RP70 integration site). In the
second strategy, as previously described (19), ssDNA sequences incorporated a Sapl recognition se-
quence. After the two-step protocol was performed as previously described, sgRNAs were directly cloned
into the pND494 vector digested with Sapl and treated with alkaline phosphatase (CIP; NEB). The correct
insertion was confirmed by analysis of the loss of the Clal site in the cloning site. The corresponding
sgRNAs were integrated into the RPST locus after Stul digestion, and transformants were selected in SD
Ura—.

Yeast scaffold RNA (scRNA) sequence design. scRNA sequences with RNA recruitment hairpins
were synthetized for C. albicans codon optimization on the basis of the codon usage of four highly
expressed C. albicans genes (HWP1, ENOT, MRPS9, and ACTT1) (GenScript, USA) following the sgRNA
sequence described previously (23, 32). The Xmal-Aval fragment with RNA binding protein MCP fused to
the transcriptional activator VP64 sequences was removed from the pUC57-MCP-VP64 MS2 plasmid and
accommodated in the pV1093 vector previously digested with Xmal/Aval, generating the pV1093-MCP-
VP64 plasmid. Then, the Xhol-Sacll fragment with the sgRNA cloning site and recruitment hairpin MS2
sequences from the pUC57-MCP-VP64 MS2 plasmid were exscinded and inserted into pV1093-MCP-VP64
digested with Xhol-Sacll to obtain the final vector, pV1093-MS2-MCP-VP64. Finally, the desired sgRNAs
were inserted into the BsmBI sgRNA cloning site as previously described. The final plasmids were then
digested with Kpnl and Sacl to force recombination in the ENOT locus. Transformants were selected in
YPD plus nourseothricin (clonNAT; Werner BioAgents) (200 mg/liter), and correct integration was con-
firmed by PCR with primers Up-int-ENO1 and Rev-int-pV1093-MCP-VP64-MS2 (Table S3).

Protein extracts and immunoblot analysis. All procedures involving cell lysis, protein extraction,
gel electrophoresis, and transfer to nitrocellulose membranes were performed as previously described
(46, 47). Protein extracts were measured at A,g, to equalize the amounts of protein loaded for Western
blot analysis, and the blots were probed with anti-GFP, anti-Flag clone M2 (Sigma), or anti-Cas9
(Clontech). Western blots were developed according to the instructions of the manufacturer (Amersham
Pharmacia Biotech) using a Hybond ECL kit.

Flow cytometry analysis. Epifluorescence microscopy images were obtained by the use of an
Eclipse TE2000-U inverted microscope (Nikon) coupled with an Orca C4742-95-12 ER charge-coupled-
device camera (Hamamatsu). Image capture and processing were performed with AquaCosmos Imaging
System 1.3 software. A Guava EasyCyte cytometer and InCyte software (Millipore) were used for flow
cytometry and qualitative and quantitative analysis of GFP fluorescence. Data processing and analysis
were done by using FlowJo software.

Statistical analysis. Statistical differences between two groups were calculated using Student’s
two-tailed unpaired t tests, correcting for multiple comparisons using the Holm-Sidak method, with a=
0.05. Computations were performed with the assumption that all rows were sampled from populations
with the same standard deviation.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
mSphere.00001-19.

FIG S1, TIF file, 1.2 MB.

TABLE S1, XLSX file, 0.01 MB.

TABLE S2, XLSX file, 0.01 MB.

TABLE S3, XLSX file, 0.01 MB.
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