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BACKGROUND: The deprivation gap for breast cancer survival remains unexplained by stage at presentation, treatment, or co-
morbidities. We hypothesised that p53 mutation might contribute to the impaired outcome observed in patients from deprived
communities.
METHODS: p53 mutation status was determined using the Roche Amplichip research test in 246 women with primary breast cancer
attending a single cancer centre and related to deprivation, pathology, overall, and disease-free survival.
RESULTS: p53 mutation, identified in 64/246 (26%) of cancers, was most common in 10 out of 17 (58.8%) of the lowest (10th)
deprivation decile. Those patients with p53 mutation in the 10th decile had a significantly worse disease-free survival of only 20% at 5
years (Kaplan–Meier logrank w2¼ 6.050, P¼ 0.014) and worse overall survival of 24% at 5 years (Kaplan–Meier logrank w2¼ 6.791,
P¼ 0.009) than women of deciles 1–9 with p53 mutation (c.f. 56% and 72%, respectively) or patients in the 10th decile with wild-
type p53 (no disease relapse or deaths).
CONCLUSION: p53 mutation in breast cancer is associated with socio-economic deprivation and may provide a molecular basis, with
therapeutic implications, for the poorer outcome in women from deprived communities.
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Deprivation has been linked to a wide range of disease (Banks et al,
2006) and to poor outcome for patients diagnosed with cancer,
including breast cancer (Schrijvers et al, 1995; Twelves et al, 2001;
Thomson et al, 2004; Mullee et al, 2004), colorectal cancer
(McMillan et al, 2003), and melanoma (MacKie and Hole, 1996).

Although the incidence of breast cancer has risen more rapidly
in women with a high socio-economic status than those from
deprived areas, the difference in survival – the ‘deprivation gap’ –
has not changed (Quinn et al, 2008) and cannot be attributed to the
higher uptake of breast screening in higher socio-economic groups
(Thomson et al, 2004). Possible explanations include:

(a) later presentation (Kogevinas and Porta, 1997), although not
substantiated in all populations (Sant et al, 1998);

(b) under-treatment, evident in Scotland in the 1980s (Twelves
et al, 2001) but not pertinent by 1994 (Thomson et al, 2004);

(c) reproductive factors, such as age at first pregnancy, meno-
pause, and use of hormone replacement therapy, which even
where highlighted would not account for all the difference
(Thomson et al, 2001);

(d) biological differences between breast cancer arising in women
according to socio-economic group. For example, a higher
incidence of oestrogen receptor (ER)-positive tumours in
higher social groups in some (Thomson et al, 2001) but not all
series (Al Murri et al, 2004).

Given the uncertainty for the underlying basis for the
deprivation gap, we considered the p53 gene a candidate molecular
marker that might account for the biological differences.

Briefly, p53 has pleiotropic functions including responses to
cellular stresses leading to cell cycle arrest, apoptosis or cellular
senescence (Staples et al, 2008). p53 also fulfills functions during
development in normal tissues (Vousden and Lane, 2007) and in
response to inflammation (Staib et al, 2005). The role of p53 in
breast cancer has been the subject of much debate (Staples et al,
2008) with recent clarity that p53 mutation is a marker of
biologically aggressive disease (Olivier et al, 2006; Staples et al,
2008) and response to therapy (Staples et al, 2008).

Given the uncertainties around the reasons for the poorer
outcome for women with breast cancer from deprived areas and
the continuing interest around the roles of p53 in breast cancer, we
set out to test the hypothesis that breast cancer in deprived women
is biologically more aggressive than breast cancer in less deprived
women and that p53 mutation may account, at least in part, for this
association.
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MATERIALS AND METHODS

Patients and tissues

A total of 246 Caucasian patients undergoing resection for
primary, previously untreated, operable breast cancer tissue
between 1997 and 2001, with frozen tissue stored in the regional
tissue bank and a minimum follow-up period of at least 5 years (or
to death), but otherwise unselected, were studied. All women,
regardless of social category, were diagnosed and treated at the
regional cancer centre served by a single multi-disciplinary team.
The total sample size of 246 was estimated on the basis of
deprivation deciles of minimum size 15 patients. Local research
ethics tissue bank committee approval of the project was obtained.

Clinical and pathological data were collected prospectively and
included pathological tumour size, histological grade, ER, proges-
terone receptor and HER2 (Human Epidermal growth factor
Receptor 2) receptor status, pathological lymph node status,
adjuvant therapies, recurrence(s) and survival.

Breast tissue was macro-dissected by a specialist breast
pathologist immediately after operation and tumour was snap-
frozen in liquid nitrogen before storage at �801C. Total genomic
DNA was isolated using MagAttract DNA Mini M48 Kit on a
BioRobotM48 (Qiagen, Crawley, West Sussex, UK) according to
the manufacturer’s protocol. The quantity and purity of DNA was
determined using a NanoDrop ND-1000 spectrophotometer
(Labtech International, Ringmer, East Sussex, UK).

AmpliChip p53 Test

p53 mutation status was determined using the Roche p53
Amplichip research test (Roche Molecular Systems, Pleasanton,
CA, USA) from 100 ng of purified genomic DNA extracted from
homogenised fresh frozen tumour tissues. The AmpliChip p53
microarray consists of over 33 000 probe sets of more than 220 000
individual oligonucleotides tiled for a total of 1268 nucleotide
positions of coding regions of exons 2 –11. A single probe set for
an interrogating base position includes five probes: one probe to
hybridise to the WT, three probes to detect three possible single
base-pair mutations, and one probe to detect single deletion. There
are at least 24 probe sets for each nucleotide position, including
both sense and anti-sense probe sequences. The p53 mutation
status was determined by a p53 Mutation Detection Algorithm
developed for research use by Roche Molecular Systems, which is
designed to detect single base-pair substitutions and single base-
pair deletions of a sample in a background of WT p53 DNA probe
intensities.

Deprivation data

Deprivation was calculated using the Carstairs index of socio-
economic status (Carstairs and Morris, 1991) for patients who were
diagnosed with breast cancer between 1997 and 2001. The Carstairs
index produces deprivation scores for postcode sectors using the
standard UK postcode minus the last two characters, so large areas
are grouped together under a single deprivation score. The
Information Services Division, Scotland (Bishop et al, 2004) has
subdivided each of these areas to produce a decile score for each full
postcode in Scotland ranging from 1 (most affluent) to 10 (most
deprived). This decile score allows the precise linkage of patients to
the correct deprivation score, and was adopted for this study.

Data analyses

Initial analyses indicated that the deprivation extremes were more
likely to yield statistically significant data; indeed, deprivation
categories 2–9 rarely produced statistically differing results.
Moreover, deprivation category 1 did not produce significant

results compared with categories 2– 9, and the deprivation results
were, therefore, subsequently grouped as 1–9 and 10, unless
otherwise stated.

Data were analysed for three cohorts of patients: (1) all patients
in the study, (2) all patients with a p53 mutation (p53m), and (3) all
patients that did not have a p53 mutation (WT; p53WT).

Additional analyses were performed according to histological
tumour grade (Bloom and Richardson, 1957) (graded by a
specialist consultant breast pathologist); pathological tumour size
(pT1, tumours o2 cm vs pT2 and pT3 cancers – tumours X2 cm);
ER status (as ER negative: 0–3 vs ER positive: 4 –18 by the
Quickscore method (Detre et al, 1995)); HER2 positive (HER2 2þ
and gene amplified on fluorescence in situ hybridisation or
HER2 3þ on immunohistochemistry); and triple negative
(as ER, progesterone receptor and HER2 negative) or not triple
negative.

Treatments were analysed to assess whether survival and
recurrence intervals were influenced by differences in treatment.
Recurrence was defined as clinical, radiological or pathological
evidence of disease recurrence. Survival was calculated from the
date of surgery to the date of death (last recorded hospital visit for
censored data). All deaths that were not attributable to breast
cancer were censored at the date of death. Accordingly, the
primary end points were breast cancer-specific overall survival and
breast cancer-specific disease-free survival (respectively abbre-
viated to OS and DFS throughout).

Tests for statistical significance between ordinal variables were
performed by two-sided Fisher’s exact tests (2FET) and non-
parametric Kaplan–Meier survival analyses (KM) using Mosaic, an
internally developed statistical analysis system (implemented in
Matlab, Mathworks, Natick, MA, USA; Version 6.5 Release 13). For
all analyses, the null hypothesis was rejected at an a-level of 10%
(P40.10), observations were considered to be marginal (i.e.
worthy of further analysis) for an a-level between 5 and 10%
(0.05pPo0.10), and significant at a 5% a-level (Po0.05). Further
analyses were conducted using binary logistic regression (BLR)
with associated odds ratios (ORs) using Minitab (Minitab State
College, PA, USA, Release 14.1) and Cox’s proportional hazards
regression model with associated risk ratios (RRs).

RESULTS

Deprivation category, clinical and pathological data, and p53
mutation status were successfully ascertained in all 246 patients
(Table 1). The observed frequency of most variables was close to
the expected in each decile (as calculated by their w2 scores), and
there was no gradation across deprivation deciles for any variable.
However, several variables in deprivation category 10 registered
significantly high or low values.

Overall, 109 of the 234 patients with tumour grade assessment
were grade 3 (46.6%) with significantly more (12 out of 17; 70.6%)
grade 3 tumours in the lowest deprivation decile (P¼ 0.046, 2FET;
OR¼ 3.0(1.0, 8.7); power¼ 0.54). For HER2 status, 33 out of 230
tested were HER2 positive (14.3%), with more HER2-positive
patients in deprivation category 10 (6/16; 37.5%) than expected
(P¼ 0.015, 2FET; OR¼ 4.2(1.4, 12.4); power¼ 0.72). HER2 posi-
tivity was also significantly associated with p53 mutation
(P¼ 0.003, 2FET; OR¼ 3.3(1.5,7.0); power¼ 0.85). Age, tumour
size, nodal status, ER, progesterone receptor and triple-negative
cancers were not significantly associated with deprivation
category.

p53 mutation

p53 mutation was detected in 64 cancers from 246 patients
(26.0%), excluding the p53 polymorphism at amino-acid 72 as a
neutral change in terms of p53 function. p53 mutation was
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significantly associated with a decrease in OS (34% vs 10% dead –
Po0.0001, 2FET; OR¼ 0.2(0.1,0.5); power¼ 0.98) and DFS (47% vs
18% relapsed – Po0.0001, 2FET; OR¼ 0.2(0.1,0.5); power¼ 0.99).
Tumour p53 mutation was significantly associated with
grade 3 cancer (Po0.0001, 2FET; OR¼ 10.3(4.9,21.8);
power¼ 1.00); axillary lymph node metastasis (P¼ 0.004, 2FET;
OR¼ 2.4(1.3,4.3); power¼ 0.84); ER-negative tumours (Po0.0001,
2FET; OR¼ 4.9(2.6,9.0); power¼ 1.00); HER2 expression
(P¼ 0.003, 2FET; OR¼ 3.3(1.5,7.0); power¼ 0.85) and triple-
negative tumours (P¼ 0.001, 2FET; OR¼ 3.3(1.7,6.5);
power¼ 0.92). There was no association between p53 mutation
status and pathological tumour size or patient age.

Univariate analyses

Both OS in deprivation category 10 (P¼ 0.012, 2FET; OR¼
0.2(0.1,0.7); power¼ 0.74); and DFS (P¼ 0.042, 2FET; OR¼ 0.3
(0.1,0.9); power¼ 0.57) were worse than expected. Patients in

deciles 1–9, but not decile 10, were significantly more likely
to have a relapse and die if they had a grade 3 tumour, large
cancer, ER-negative, HER2-positive or triple-negative cancer
(KM: logrank w2

X5.650, Pp0.017 in each case, Table 2). Patients
with axillary metastases were more likely to have a relapse or die
from breast cancer irrespective of deprivation category, with the
notable exception that patients in deprivation category 10 were
significantly more likely to have a relapse, but were not
significantly more likely to die (w2

X4.620, Pp0.032 in each case
– excepted w2¼ 3.080, P¼ 0.079, Table 2). There was no association
between any of the treatment regimes and deprivation.

Tumour p53 mutation was more common in deprivation decile
10 (10 out of 17 patients, 58.8%) than WT p53 (P¼ 0.003, 2FET;
OR¼ 4.6(1.7,12.7); power¼ 0.87). In the patients with p53 muta-
tion, 27.8% (15 out of 54) of the patients in deprivation group 1– 9
died, whereas 70.0% (7 out of 10) of those in decile 10 died
(P¼ 0.025, 2FET; OR¼ 6.1(1.4,26.6); power¼ 0.74). Similarly,
among p53 mutant cancers 40.7% (22 out of 54) of patients in

Table 1 Study characteristics of the breast cancer clinical and pathological variables grouped by deprivation 1–9 and 10 and by p53 mutation status

p53m p53WT

Deprivation 1–9 Deprivation 10 Deprivation 1–9 Deprivation 10

Total N % v2 N % v2 N % v2 N % v2

Total number 246 54 — — 10 — — 175 — — 7 — —
Alive 205 39 72.2 �0.80 3 30.0 �3.41 156 89.1 +0.71 7 100.0 +0.23
Dead 41 15 27.8 +4.00 7 70.0 +17.07 19 10.9 �3.54 0 0.0 �1.17
Disease free 184 32 59.3 �1.74 2 20.0 �4.01 143 81.7 +1.12 7 100.0 +0.59
Recurred 62 22 40.7 +5.17 8 80.0 +11.91 32 18.3 �3.32 0 0.0 �1.76

Tumour grade
1 34 0 0.0 �7.41 0 0.0 �1.45 31 18.7 +1.96 3 42.9 +3.87
2 91 9 17.6 �5.92 1 10.0 �2.15 80 48.2 +3.69 1 14.3 �1.09
3 109 42 82.4 +14.01 9 90.0 +4.05 55 33.1 �6.45 3 42.9 �0.02

Not known 12 — — — — — — — — — — — —

Tumour size
o2 cm 170 34 65.4 �0.18 8 80.0 +0.14 122 70.5 +0.00 6 85.7 +0.24
X2 cm 72 18 34.6 +0.41 2 20.0 �0.32 51 29.5 �0.00 1 14.3 �0.56

Not known 4 — — — — — — — — — — — —
ER+ 175 24 44.4 �5.50 5 50.0 �0.64 140 80.5 +1.99 6 85.7 +0.20
ER� 70 30 55.6 +13.76 5 50.0 +1.61 34 19.5 �4.97 1 14.3 �0.50
Not known 1 — — — — — — — — — — — —
HER2+ 33 14 28.6 +6.91 2 20.0 +0.22 13 7.9 �4.81 4 66.7 +11.45
HER2� 197 35 71.4 �1.16 8 80.0 �0.04 152 92.1 +0.81 2 33.3 �1.92
Not known 16 — — — — — — — — — — — —
TrNeg 45 17 34.7 +5.73 4 40.0 +2.13 24 14.5 �2.13 0 0.0 �1.17
Not TrNeg 185 32 65.3 �1.39 6 60.0 �0.52 141 85.5 +0.52 6 100.0 +0.29
Not known 16 — — — — — — — — — — — —
Node+ 117 35 64.8 +3.38 6 60.0 +0.33 74 42.3 �1.02 2 28.6 �0.53
Node� 129 19 35.2 �3.07 4 40.0 �0.30 101 57.7 +0.93 5 71.4 +0.48

Age (years)
o40 14 4 7.4 +0.28 0 0.0 �0.57 8 4.6 �0.39 2 28.6 +6.44
40–49 34 10 18.5 +0.86 2 20.0 +0.28 21 12.0 �0.42 1 14.3 +0.00
50–59 69 13 24.1 �0.30 3 30.0 +0.01 51 29.1 +0.07 2 28.6 +0.00
X60 129 27 50.0 �0.06 5 50.0 �0.01 95 54.3 +0.11 2 28.6 �0.76

Median age (years) 61.30 58.79 (28.72–88.48) 61.15 (43.58–84.25) 61.94 (33.53–88.99) 55.51 (39.69–87.78)
Median FU (years) 4.96 4.94 (0.06–8.47) 2.44 (0.41–6.42) 4.96 (0.10–10.00) 7.20 (5.02–8.70)
Median DF (years) 4.74 4.10 (0.02–8.47) 2.02 (0.02–6.42) 4.83 (o0.01–9.29) 7.20 (5.02–8.70)

Abbreviations: DF¼ disease-free survival; ER¼ oestrogen receptor; FU¼ follow-up. Percentages may not sum to 100 due to rounding. The w2 score, calculated across all four
p53/deprivation categories, indicates the deviation of the observed from the expected frequency, in which a high score signifies a large deviation and a w2 score greater than unity
is deemed ‘of interest’, and highlighted in bold type. The w2 score is marked with a ‘+’ if the observed frequency exceeds the expected, and with a ‘�’ otherwise. Median ages and
follow-up were not significantly different for any of the patient groupings (pX0.342 in all cases; two-sample t-test and Mann–Whitney U-test).
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deprivation groups 1 –9 relapsed compared with 80% (8 out
of 10) of those in the worst deprivation category (P¼ 0.025,
2FET; OR¼ 6.1(1.4,26.6); power¼ 0.74; and P¼ 0.036, 2FET;
OR¼ 5.8(1.1,30.0); power¼ 0.65; respectively). However, in the
p53 WT cohort, there was no such association between deprivation
and OS or DFS; indeed, all seven patients with p53 WT cancers in
deprivation category 10 survived and remained disease free at a
median follow-up of 7.2 years (95% CI: 5.5–8.1 years).

Multivariate analyses

The analyses of BLRs and Cox’s logistic regressions (Table 3) were
also performed. Death and recurrence were chosen as the response
variables so that most of the OR and RR values (BLR and
Cox’s proportional hazards regression, respectively) would be
greater than unity (OS and DFS OR and RR values and 95% CI
values may be obtained by inversion). Results of BLRs and Cox’s
proportional hazards regressions were in agreement with all
analyses, and as such, the results of BLR analyses have been
excluded from Table 3.

In the first two sets of analyses (top half of Table 3), deprivation
groups 1– 9 and 10 were input as binary variables, as were p53m/
WT for the prediction of death and recurrence (left and right of
Table 3, respectively). In the second set of analyses (bottom half of
Table 3), the influence on death and recurrence of deprivation
category 10 patients who had p53-mutated cancer was explored.
Deprivation category 10 was a strong predictor of death and
recurrence, as were large tumours, ER negativity and nodal status
(Pp0.041 in each case). Interestingly, p53 mutation was strongest
as a predictor of disease recurrence, but less strong as a predictor
for death.

When patients were grouped according to deprivation category 10
with a p53 mutation (vs all other patients), the ability to predict death
or recurrence became very strong and highly significant (bX±2.18,

Pp0.0001 in all cases). The OR and RR values for death and
recurrence were large (OR¼ 33.4(5.2,215.0) and OR¼ 19.6(3.4,114.2)
and RR¼ 12.4(4.8,32.3) and RR¼ 8.8(3.6,21.7), respectively).
Tumour size, ER status and nodal status all retained large b
coefficients and remained significant predictors of death and
recurrence (bX±0.90, Pp0.026 in all cases).

In addition, although there was no association between any of
the treatment regimes and deprivation in univariate analyses, all
multivariate analyses were re-run with various treatment regimes
included as binary variables (data not shown). Treatment regimes
were not significant, and were therefore not associated with the
outcome variables.

Kaplan –Meier survival analyses

Patients from the worst deprivation decile were significantly more
likely to have a relapse or die than those in deprivation groups 1– 9
(5-year OS: 57% vs 86%; KM: logrank w2¼ 7.827, P¼ 0.005 for OS
and KM: logrank w2¼ 4.450, P¼ 0.035 for DFS). Similarly, patients
with a mutant p53 were more likely to relapse or die compared
with those with WT p53 (5-year OS: 65% vs 90%; KM: logrank
w2¼ 21.267, Po0.0001 for OS and KM: logrank w2¼ 23.308,
Po0.0001 for DFS).

Patients were divided into four groupings – each of deprivation
groups 1 –9 and 10 with each of p53 mutation and WT – and
plotted as KM analyses in Figure 1 (OS and DFS, top and bottom,
respectively).

Within the decile groups (1– 9 and 10), OS and DFS were both –
as expected – better in the p53 WT patients compared with the
mutant (decile 1 –9: 5-year OS: 89% vs 72%; decile 10: 5-year OS:
100% vs 24%; decile 1– 9 KM: logrank w2¼ 9.958, P¼ 0.002 and
KM: logrank w2¼ 12.098, P¼ 0.0005 for OS and DFS, respectively;
decile 10 KM: logrank w2¼ 8.011, P¼ 0.005 and KM: logrank
w2¼ 9.177, P¼ 0.002, OS and DFS, respectively).

Table 2 Results of Kaplan–Meier overall survival and disease-free survival analyses for all patients, patients in the p53 mutant and in the p53 wild-type
cohorts

Survival Disease free

All patients p53 m patients p53WT patients All patients p53 m patients p53WT patients

Dep.
group v2 P v2 P v2 P v2 P v2 P v2 P

p53 mutation (vs WT) All 21.27 o0.0001 — — — — 23.31 o0.0001 — — — —
1–9 9.96 0.002 — — — — 12.10 0.001 — — — —
10 8.01 0.005 — — — — 9.18 0.002 — — — —

Tumour grade (1–2 vs 3) All 22.33 o0.0001 2.95a 0.086a 9.23 0.002 17.38 o0.0001 3.22a 0.073a 2.75 0.097
1–9 18.81 o0.0001 3.55a 0.059a 9.58 0.002 13.96 0.0002 3.94a 0.047a 2.97 0.085
10 1.51 0.219 0.01a 0.937a N/Ab N/Ab 1.31 0.252 8.20a 0.004a N/Ab N/Ab

Tumour size (o2 cm vs X2 cm) All 10.13 0.001 0.32 0.574 14.95 0.0001 8.06 0.005 2.20 0.138 5.11 0.024
1–9 11.01 0.001 0.28 0.596 14.32 0.0002 8.25 0.004 2.30 0.130 4.75 0.029
10 1.08 0.298 1.07 0.300 N/Ab N/Ab 2.05 0.152 9.54 0.002 N/Ab N/Ab

ER (+ vs �) All 31.65 o0.0001 5.75 0.017 13.79 0.0002 25.06 o0.0001 5.38 0.020 6.54 0.011
1–9 27.83 o0.0001 5.81 0.016 13.66 0.0002 22.71 o0.0001 6.80 0.009 6.47 0.011
10 3.40 0.065 0.97 0.326 N/Ab N/Ab 1.80 0.180 0.14 0.704 N/Ab N/Ab

HER2 (+ vs �) All 3.38 0.066 0.24 0.626 4.62 0.032 6.24 0.013 0.67 0.414 0.74 0.389
1–9 5.65 0.017 0.15 0.702 8.71 0.003 8.33 0.004 0.59 0.441 2.61 0.106
10 1.67 0.197 0.33 0.563 N/Ab N/Ab 0.91 0.339 0.44 0.507 N/Ab N/Ab

Triple negative (yes vs no) All 16.72 o0.0001 5.21 0.022 3.80 0.051 12.52 0.0004 3.82 0.051 2.52 0.112
1–9 13.41 0.0003 4.92 0.027 3.39 0.066 10.29 0.001 4.44 0.035 2.15 0.142
10 2.48 0.115 0.08 0.774 N/Ab,c N/Ab,c 1.32 0.250 0.03 0.854 N/Ab,c N/Ab,c

Nodal status (+ vs �) All 19.14 o0.0001 5.33 0.021 9.55 0.002 15.92 o0.0001 11.90 0.0006 2.07 0.150
1–9 16.96 o0.0001 4.72 0.030 9.21 0.002 12.42 0.0004 10.46 0.001 1.87 0.171
10 3.08 0.079 1.35 0.244 N/Ab N/Ab 4.62 0.032 2.39 0.122 N/Ab N/Ab

Abbreviations: ER¼ oestrogen receptor; WT¼wild type. Results are also detailed by deprivation groups 1–9 and 10. aThere were no p53 mutation patients, who had Grade 1
tumours. bAll patients in deprivation group 10 without a p53 mutation survived and remained disease free. cAll patients in deprivation group 10 without a p53 mutation were free
of triple-negative tumours. All analyses have one degree of freedom, and statistically significant results are highlighted in bold type.
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Within the p53-mutant patients, those in deprivation decile 10
were more likely to have a relapse or die compared with those in
deciles 1– 9 (p53m: 5-year OS: 24% vs 72%; p53m 5-year DFS: 20%
vs 55%; KM: logrank w2¼ 6.791, P¼ 0.009 and KM: logrank
w2¼ 6.050, P¼ 0.014 for OS and DFS, respectively). In contrast,
within the WT p53 patients, there was no statistically significant
difference between decile group 1–9 and 10 for either OS or DFS
(KM: logrank w2¼ 0.917, P¼ 0.338 and KM: logrank w2¼ 1.626,
P¼ 0.202 for OS and DFS, respectively).

DISCUSSION

This study demonstrates the new finding that a worse survival and
shorter disease free interval in breast cancer for the most socio-
economically deprived patients (deprivation decile 10) is associated
with tumour p53 mutation. This suggests the intriguing possibility of
a causal link between the molecular basis of breast cancer
exemplified by p53 mutations and extreme deprivation, and that
the biological features of breast cancer may contribute substantially
to the perceived deprivation gap in survival compared with stage of
presentation, co-morbidities or treatment differences (Kelsey et al,
1981; Schrijvers et al, 1997; Twelves et al, 2001; Taylor and Cheng,
2003; Thomson et al, 2004; Mullee et al, 2004).

p53 mutation in this series of patients was associated, as anticipated,
with high tumour grade, axillary node metastasis, ER-negative cancers
and HER2-positive cancers (Staples et al, 2008). Although – again as
expected – tumour p53 mutation conferred an increased chance of
relapse and death compared with having a WT p53 tumour (Olivier
et al, 2006; Staples et al, 2008), it seems that deprivation is associated
with a worse prognosis even amongst those with p53 mutation.
Interestingly, for WT p53 patients, this does not hold: all patients in
deprivation category 10 with WT p53 breast cancers remained disease
free and survived. Reasons for this extreme difference are unclear; it is
unlikely that patient selection (on the basis of the availability of tissue
rather than consecutive patients by decile of residence) was
responsible but suggests that the combination of p53 mutation in
breast cancer and extreme deprivation prejudices survival.

The influence of established prognostic features of breast cancer
when comparing extreme deprivation (decile 10) patients with higher

socio-economic status could not be excluded as contributors in the
current series, with the biological features of poorer prognostic
cancers (higher grade, ER negative and HER2 positive) in general
more evident in the decile 10 patients. Moreover, the relationship
between deprivation and ER positivity (Thomson et al, 2001) was not,
as others have also found (Al Murri et al, 2004), confirmed in this
study. The effects of treatment were also considered. The response of
the p53 network in breast cancer to chemotherapies and radiation
therapy may be dependent on the p53 status of the cancer (Al Murri
et al, 2004; Staples et al, 2008). The increased presence of p53
mutations in the worst deprivation decile suggests such cancers may
also be resistant to treatment and has implications for the types of
chemotherapy that may be most effective (Staples et al, 2008).

From the results of multivariate analyses, patients from the worst
deprivation group were significantly more likely to have a relapse and
die from breast cancer, even after adjusting for other associated
variables. Interestingly, p53 mutation status in itself was significantly
associated with death when using Fisher’s exact tests and Kaplan–
Meier analyses, but not when analysed by binary logistic regression or
Cox’s regression. This suggests that p53 mutation status has a strong
interaction with (at least) one other variable in the model (i.e. a
dominant ‘partner’); therefore an interaction between p53 mutation
and deprivation decile 10 was sought. The b-coefficient of the
interaction between p53 mutation and deprivation category 10 was
positive and statistically significant (b¼ 2.52, Po0.0001 and b¼ 2.18,
Po0.0001 for death and recurrence, respectively). Moreover, the
impact of the interaction was substantially greater than the additive
effect (summation of the RR values) of the two variables alone,
indicating a potentially synergistic relationship between deprivation
and p53 mutation both for survival and disease recurrence.

Among the pleiotropic roles of p53, p53 has a pivotal node in
the inflammatory stress response pathway (Staib et al, 2005).
In addition post-translational modification of p53 by reactive
nitrogen species (Hofseth et al, 2003) may lead to the selective
clonal expansion of mutated p53 cells (Hofseth et al, 2003). As
originally proposed by Virchow in the 19th century, links between
inflammation and cancer have been established for both malignant
and pre-malignant conditions (Hussain and Harris, 2007). How-
ever, although p53 mutations have been identified in cancer-prone
inflammatory diseases, including premalignant inflammatory

Table 3 Results of Cox proportional hazards regression model, with death and recurrence as the response variables

Death Recurrence

b P RR (95% CI) b P RR (95% CI)

Deprivation 10 (vs 1–9) 1.81 0.0003 6.1 (2.3–16.2) 1.31 0.003 3.7 (1.6–8.9)
Tumour size (large vs small) 1.22 0.003 3.4 (1.5–7.5) 0.83 0.012 2.3 (1.2–4.4)
ER (+ vs �) �2.50 0.041 0.1 (o0.1–0.9) �1.28 0.056 0.3 (0.1–1.0)
p53 mutation (vs WT) 0.67 0.114 1.9 (0.9–4.5) 0.95 0.009 2.6 (1.3–5.2)
Tumour grade (3 vs 1–2) 0.90 0.087 2.5 (0.9–6.9) 0.18 0.677 1.2 (0.5–2.7)
Nodal status (+ vs �) 1.32 0.005 3.7 (1.5–9.5) 0.94 0.007 2.6 (1.3–5.1)
HER2 status (+ vs �) �1.96 0.121 0.1 (o0.1–1.7) �0.58 0.383 0.6 (0.2–2.1)
Triple negative (n vs y) �1.54 0.229 0.2 (o0.1–2.6) �0.74 0.325 0.5 (0.1–2.1)

Dep 10 & p53 m (v rest) 2.52 o0.0001 12.4 (4.8–32.3) 2.18 o0.0001 8.8 (3.6–21.7)
Tumour size (large vs small) 1.26 0.002 3.5 (1.6–7.7) 0.90 0.005 2.5 (1.3–4.7)
ER (+ vs �) �2.65 0.021 0.1 (o0.1–0.7) �1.47 0.023 0.2 (0.1–0.8)
Tumour grade (3 vs 1–2) 1.07 0.033 2.9 (1.1–7.8) 0.35 0.369 1.4 (0.7–3.0)
Nodal status (+ vs �) 1.49 0.002 4.4 (1.8–11.2) 1.05 0.002 2.9 (1.5–5.6)
HER2 status (+ vs �) �1.57 0.184 0.2 (o0.1–2.1) �0.23 0.718 0.8 (0.2–2.8)
Triple negative (n vs y) �1.55 0.199 0.2 (o0.1–2.3) �0.77 0.296 0.5 (0.1–2.0)

Abbreviations: ER¼ oestrogen receptor; RR¼ risk ratio; WT¼wild type. The upper models have deprivation and p53 mutation status as individual binary input variables,
whereas the lower models group deprivation category 10 patients that also have a p53 mutation (versus all other patients) as a binary input variable. The G-statistic w2

X51.0 and
Po0.0001 in each model, with the upper models having eight degrees of freedom and the lower models having seven. A strong predictor of the response variable (death or
recurrence; left and right half of the table, respectively) is one that has a large b-coefficient, whether positive or negative, and a high degree of confidence in the coefficient,
Pp0.05. Such strong predictors are also backed by RR values with associated 95% confidence intervals that exclude unity. Indicators of strong predictors are highlighted in bold
type.
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Figure 1 Non-parametric Kaplan–Meier plots for overall survival (top) and disease-free survival (bottom) for four patient groupings – those in
deprivation category 10 vs decile 1–9, and those having a p53 mutation vs wild-type p53. The logrank w2 statistic (with associated degrees of freedom and
P-value) was used to assess the statistical significance of difference in survival and disease-free chances. Patients with a p53 mutation had 5-year survivals of
72 and 24% (deprivation groups 1–9 and 10, respectively) and corresponding 5-year disease-free survivals of 56 and 20%. Patients with wild-type p53
had 89 and 100% chance of surviving until 5 years (deprivation groups 1–9 and 10, respectively), with corresponding 5-year disease-free survivals of
80 and 100%.
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conditions of the gastrointestinal tract (Hussain et al, 2000), to
date no similar association has been proposed in breast cancer.
Although the disparate range of p53 mutations identified (data not
shown) suggests a single agent is unlikely to be causative, patients
in deprived communities do have a chronic inflammatory response
that has been linked to breast cancer (Al Murri et al, 2004),
colorectal cancer (McMillan et al, 2003) and increased coronary
heart disease (Ridker et al, 2000; O’Reilly et al, 2006). Most
recently, evidence that raised circulating markers of chronic
inflammation (C-reactive proteins and serum amyloid A) have a
threshold effect on breast cancer survival has emerged (Pierce
et al, 2009). The tentative association explored between elevated
C-reactive protein, serum amyloid A with ER- and progesterone
receptor-negative cancers indirectly suggests further merit in
pursuing a link between such inflammatory markers and p53. We
recognise that our findings need to be confirmed in another
population of breast cancer patients, ideally, one with data on
inflammatory markers and the standard breast cancer data.

p53 mutation, with potential aberrant inflammatory stress
responses and therapeutic consequences, may account – at least in
part – for the poor prognosis in women with breast cancer from the
most deprived socio-economic background. This underlines the need
to address the broader environment and social context of patient care
along-side our increasing molecular understanding of cancer.
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