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Abstract
Mutations in the uncoupling protein 2 (Ucp2) gene are linked to type-2 diabetes. Here, a potential mechanism by

which lack of UCP2 is cytoprotective in pancreatic b-cells was investigated. Nitric oxide (NO) production was elevated

in Ucp2K/K islets. Proliferation (cyclin D2, Ccnd2) and anti-apoptosis (Tnfaip3) genes had increased expression

in Ucp2K/K islets, whereas the mRNA of pro-apoptosis genes (Jun, Myc) was reduced. TNFAIP3 cellular localization

was detected in both a- and b-cells of Ucp2K/K islets but in neither a- nor b-cells of UCP2C/C islets, where it was

detected in pancreatic polypeptide-expressing cells. TNFAIP3 distribution was not markedly altered 14 days after

streptozotocin treatment. Basal apoptosis was attenuated in Ucp2K/K b-cells, while the nuclear factor kB (NF-kB)

pathway was transactivated after islet isolation. Ucp2C/C and Ucp2K/K islets were treated with cytokines for 24 h.

Cytokines did not increase NF-kB transactivation or apoptosis in Ucp2K/K islets and TNFAIP3 was more strongly

induced in Ucp2K/K islets. Inhibition of NO production strongly reduced NF-kB activation and apoptosis. These data

show that null expression of Ucp2 induces transactivation of NF-kB in isolated islets, possibly due to NO-dependent

up-regulation of inhibitor of kB kinase b activity. NF-kB transactivation appears to result in altered expression of genes

that enhance a pro-survival phenotype basally and when b-cells are exposed to cytokines. TNFAIP3 is of particular

interest because of its ability to regulate NF-kB signaling pathways.
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Introduction

Uncoupling protein 2 (UCP2) belongs to a family
of mitochondrial proteins characterized by an ability
to transport ions, including protons and fatty acid
anions (Esteves & Brand 2005); however, the specific
physiological role of UCP2 is still unclear. In pancreatic
b-cells, increased UCP2 expression is associated with
suppression of glucose-stimulated insulin secretion
(Chan et al. 1999, 2001) and mediates the negative
effects of superoxide on insulin secretion (Krauss et al.
2003). In addition, the lack of UCP2 in mice protects
them from the diabetogenic effects of a high-fat diet and
also maintains glucose-stimulated insulin secretion
( Joseph et al. 2002, 2004). Although baseline apoptosis
is higher in Ucp2K/K mouse islets, and these islets
produce higher levels of reactive oxygen species, no
further increase in these parameters is observed after
long-term high-fat diet treatment ( Joseph et al. 2004).
The mechanistic basis for protection from diabetes may
be partially related to increased capacity for fatty acid
oxidation (Joseph et al. 2004, Fatehi-Hassanabad & Chan
2007), but other mechanisms may also be operative.
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It has been proposed that UCP2 modulates the
inflammatory response and regulates the production of
reactive oxygen species (Brookes 2005) and nitric oxide
(NO) in cells (Bai et al. 2005). Depending on the
amount produced, reactive oxygen species may stimu-
late or inhibit glucose-stimulated insulin secretion from
b-cells (Pi et al. 2007), which may account for some
inconsistencies in the literature regarding UCP2
function. Likewise, in the central nervous system,
induction of UCP2 protects neurons from oxidative
stress (Sullivan et al. 2004) but not all studies show this
effect (de Bilbao et al. 2004, Prabhakaran et al. 2005). In
our study of autonomic dysreflexia following spinal
cord injury, no differences in cell damage were detected
in Ucp2K/K versus Ucp2C/C mice (Webb et al. 2006). In
macrophages from Ucp2K/K mice, cytokine, NO and
reactive oxygen species (ROS) production, as well as
inducible NO synthase (iNOS) expression, were
elevated (Bai et al. 2005). This proinflammatory state
was attributed to increased activation of the transcrip-
tion factor nuclear factor kB (NF-kB). It seems clear that
under some conditions, UCP2 can provide protection
from oxidative stress but such protection may depend on
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tissue-specific factors, such as the ability to induce other
protective proteins, the overall effects on ATP pro-
duction and the involvement of resident macrophages.

In b-cells, NF-kB is generally regarded as a mediator
of inflammation, leading to induction of pro-apoptotic
genes and cell death (Ho & Bray 1999, Ou et al. 2005,
Eldor et al. 2006, Ortis et al. 2006). Acutely exposing
b-cells to cytokines (Ortis et al. 2006) induces NF-kB
nuclear translocation, whereas blocking NF-kB acti-
vation prevents b-cell damage (Eldor et al. 2006, Kwon
et al. 2006). Reduction of the b-cell mass in type 2
diabetes is among the pathological effects caused by
proinflammatory cytokines such as tumor necrosis
factor-a (TNF-a), interleukin 1b (IL1b) and inter-
feron-g (IFNg; Eizirik & Mandrup-Poulsen 2001). In
combination, IFNa and IL1b increase NO production
and iNOS expression (Thomas et al. 2002). Application
of the NO precursor nitroprusside is lethal to b-cells
(Kroncke et al. 1991), while inhibition of iNOS with
aminoguanidine is protective (Kuttler et al. 1987). An
alternative role for NF-kB in regulation of b-cell
function and survival has been revealed. Novel data
from Hagerkvist et al. (2007) showed that the tyrosine
kinase inhibitor imatinib mesylate protected b-cells
from death in non-obese diabetic and streptozotocin
(STZ)-induced diabetic mice. In vitro, imatinib reduced
cytokine-stimulated apoptosis and this was associated
with reduced association of inhibitor of kB (IkBa) with
NF-kB subunit RelA. In another study, non-obese
diabetic mice expressing a super-repressor of NF-kB
activity had increased susceptibility to developing
diabetes, which could be overcome by neutralizing
TNF-a. These mice had reduced expression of anti-
apoptotic proteins in b-cells (Kim et al. 2007).

Because we observed that lack of UCP2 protected
b-cells from UCP2K/K mice from a high-fat diet-
induced cell death (Joseph et al. 2004, 2005), we
predicted that protection from other pro-apoptotic
stimuli such as cytokines might also be afforded by lack
of UCP2. Thus, the objective of this study was to
examine the effects of cytokines on b-cells from
Ucp2C/C and Ucp2K/K mice, with emphasis on the
role of NF-kB pathway. It was hypothesized that
Ucp2K/K islets would have increased activation of the
NF-kB pathway, similar to previous results reported in
immune tissues (Bai et al. 2005).
Materials and methods

Materials

Cell culture medium (DMEM), antibiotic–antimycotic
solution, calf and fetal bovine serum, Griess Reagent
kit, TRIzol and Cloned AMV First-Strand cDNA
Synthesis kit were purchased from Invitrogen. HEPES,
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BAY 11-7082, caffeic acid phenethyl ester (CAPE) and
all cytokines were purchased from Sigma–Aldrich.
Roche supplied BSA and the TUNEL assay kit. Nuclear
extraction kits, NF-kB transactivation and IkBa phos-
phorylation ELISAs were purchased from Active Motif
(Carlsbad, CA, USA). Antibodies to iNOS (BD
Biosciences, Mississauga, Ontario, Canada), NF-kB
(C-20), TNFAIP3 (H-100 and A-12), JUN (Santa Cruz
Biotechnology, Santa Cruz, CA, USA) and b-actin
(Sigma–Aldrich) were also purchased. Insulin and
somatostatin antibodies were purchased from Dako
(Glostrup, Denmark), glucagon antibody from Abcam
(Cambridge, UK) and pancreatic polypeptide from
Thermo Fisher Scientific (Rockford, IL, USA).
Animals and pancreatic islet cultures

All procedures involving animals were approved by the
respective university Animal Care Committees (Toronto
and Prince Edward Island) and followed the guidelines
of the Canadian Council on Animal Care. Littermate
Ucp2C/C and Ucp2K/K mice on a mixed C57Bl6/129
background bred from heterozygous mice (Zhang et al.
2001), age 16 weeks old and fed ad libitum were used for
mouse islet experiments. Mice were anesthetised with
pentobarbital (65 mg/ml, i.p.) and isolated pancreatic
islets were obtained by collagenase digestion as
described (Zhang et al. 2001). After digestion, the islets
were purified by filtration (Salvalaggio et al. 2002), with
minor modifications. Islets were cultured for 24 h in
DMEM, 8.3 mmol/l glucose, supplemented with 10%
calf serum, 1% antibiotic–antimycotic solution,
10 mmol/l HEPES with or without NF-kB inhibitors
Bay 11-7082 (BAY, 10 mmol/l) or CAPE (10 mmol/l) or
the iNOS inhibitor 1400W (10 mmol/l, Sigma) plus a
combination of IL1b (50 ng/ml), IFNg (50 ng/ml)
GTNF-a (5 ng/ml). A density of 30 islets/well was
incubated for each treatment. Mice made diabetic by
STZ were treated according to Lee et al. (2009) and
tissues were harvested 14 days later.
NF-kB RelA activity and IkBa phosphorylation assay

Isolated islets from Ucp2C/C and Ucp2K/K mice were
cultured as noted above for 24 h. Nuclear proteins were
extracted according to the manufacturer’s instructions
(Active Motif). The supernatant (nuclear fraction) was
kept at K80 8C until analysis. The active NF-kB
contained in the nuclear extracts was measured by its
DNA-binding activity on immobilized oligonucleotides
encoding a specific consensus site using a NF-kB RelA
transcription factor ELISA kit (Active Motif). Phos-
phorylated IkBa was measured in islet cellular extracts.
Ucp2C/C and Ucp2K/K islets were pretreated with BAY
(10 mmol/l) or 1400W (10 mmol/l) for 2 h and then
www.endocrinology-journals.org



UCP2 affects islet TNFAIP3 activation . R NIÑO FONG and others 195
with a combination of cytokines, as described above.
After 10 min incubation, islets were centrifuged and
washed with PBS. Cellular extraction, protein
determination and IkBa ELISA to measure phosphory-
lated IkBa were carried out according to ELISA kit
instructions (Active Motif). Samples were measured by
luminescence detection.
Apoptotic and necrotic cell determination

Determination of DNA strand breaks in islet cells was
assessed by the TUNEL technique. After 24 h culture,
islets were trypsinized (0.16 mg/ml trypsin) and the
cells were fixed on precoated poly-L-lysine glass slides by
cytospinning. Cells were sequentially stained for
TUNEL and insulin, then the proportion of cells
positive for TUNEL and insulin cells was quantified at
200! magnification. An average of 2000 cells/cell
preparation was counted for each treatment condition
and data were expressed as percentage of total b-cells.
For necrosis measurements, control or treated mouse
islets, or dispersed islet cells, plated on glass coverslips
were incubated with propidium iodide (PI, 4 mmol/l)
for 20 min at room temperature in darkness in buffer of
the following composition (in mmol/l): 130 NaCl, 5
KCl, 2 CaCl2, 1 MgCl2, 5 NaHCO3, 10 HEPES, pH 7.4.
The coverslips were immediately washed in the same
buffer, transferred to an open chamber, placed on the
microscope stage and maintained at 36–37 8C using a
Delta T4 Culture Dish Controller (Bioptechs, Butler,
PA, USA). PI fluorescence was excited at 540 nm and
emission measured with a 660 nm band pass filter, using
a 550 nm beam splitter using an Olympus BX51W1
fluorescent microscope fitted with a 20!/0.95 water
Table 1 Primer sequences used for real-time PCR

Gene (alternate name) Forward

Actb (Actin, beta) 5 0-CTGAATGGCCCAGGTCTGA-3 0

Ddit3 (Chop) 5 0-CAACAGAGGTCACACGCACAT
Myc 5 0-CGGTTCCTTCTGACAGAACTG
Ptgs2 (Cyclo-oxygenase-2) 5 0-CCTACTACAAGTGTTTCTTTTT
Cpt1a 5 0-CAATGCAATTTTTTACTCCTTC
Ccnd2 (cyclin D2) 5 0-TGACTGAACCATTTTGGATGTA
Gpx1 5 0-GCGGCCCTGGCATTG-3 0

Ikbkb (IKKb) 5 0-ACAGCCAGGAGATGGTACG-3
Nos2 (inducible nitric oxide

synthase (iNOS))
5 0-CCTCCTTTGCCTCTCACTCT-3

Isl1 5 0-GGAGATGACGGGCCTCAGT-3
Jun (c-jun) 5 0-CCAGCAATGGGCACATCAC-3 0

Mapk1 5 0-TGCTGTGGAGTTGATGGTGTT
Pdx1 5 0-TTTGAAGTCAGTCAGTTGCTCC
Sod2 (MnSOD) 5 0-CACATTAACGCGCAGATCATG
Sod3 5 0-AGGTGGATGCTGCCGAGAT-3
Tnfaip3 (A20) 5 0-TGGTTCCAATTTTGCTCCTT-30

Ucp2 5 0-CATCGCCTCCCCTGTTGAT-30

www.endocrinology-journals.org
immersion objective and cooled CCD camera. For
excitation, a xenon lamp-based DeltaRam high-speed
monochromator from Photon Technology Inter-
national (PTI, Lawrenceville, NJ, USA) was used.
For control of the monochromator and videocamera,
as well as for fluorescent imaging and collecting
of data, the ImageMaster 3.0 software (PTI) was
used. The data were expressed as percent of PI
positive cells.
Nitrate/nitrite production

Nitrate/nitrite derived from NO produced in 24 h from
25 islets was measured by the Griess reaction.
Quantitative real time-PCR

Total RNA was extracted from 30 isolated islets by the
TRIzol method (Invitrogen). cDNA was synthesized
from 1 mg total RNA. Real-time-PCR was performed to
measure changes in selected genes regulated by NF-kB
or otherwise important to b-cell function. Primer
sequences are listed in Table 1.
Western blotting

Groups of cultured islets were washed with 0.1 M PBS,
then lyzed with Tris–EDTA–sucrose buffer (pH 7.4;
containing 1% Triton X-100, 4 mg/ml aprotinin and
5 mg/ml bestatin), sonicated on ice for 5 min and
separated by SDS-PAGE. Membranes were probed with
specific primary antibodies and protein band intensities
were normalized to b-actin.
Reverse

5 0-CCCTGGCTGCCTCAACAC-3 0

-3 0 5 0-CCTGGGCCATAGAACTCTGACT-3 0

A-30 5 0-CAGCCAAGGTTGTGAGGTTAGG-3 0

TGCATT-3 0 5 0-TCACACCATAGTTCAGAGAGGTAATCA-3 0

CA-3 0 5 0-TTACCTCCTCCTTTGAACACTTACAG-3 0

AGAA-30 5 0-CCCGGACGCTCAGTCTTG-3 0

5 0-GGACCAGCGCCCATCTG-30

0 5 0-CGGACTTTGCTACAGGCGAT-30

0 5 0-CTTCAGTCAGGAGGTTGAGTTTTTC-3 0

0 5 0-CTGCGTTTCTTGTCCTTGCA-30

5 0-TGCTCGTCGGTCACGTTCT-3 0

AT-30 5 0-TTGAACAAGGCATATTTCTCATCAG-3 0

TT-30 5 0-CCTTCAACCCCTCTCTTGCTATT-3 0

-30 5 0-CCAGAGCCTCGTGGTACTTCTC-3 0

0 5 0-TCCAGACTGAAATAGGCCTCAAG-3 0

5 0-CGTTGATCAGGTGAGTCGTG-3 0

5 0-TGGCCCAAGGCAGAGTTC-3 0

Journal of Molecular Endocrinology (2011) 46, 193–204
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Immunohistochemistry

Pancreas was harvested from mice just prior to islet
isolation by taking a small piece of tissue from adjacent
to the spleen and fixing in buffered formalin for 24 h.
The tissues were dehydrated and embedded in paraffin
using standard procedures and 5 mm sections cut and
affixed to glass slides. Following dewaxing, sections were
blocked using 5% normal serum complementary to the
respective secondary antibody. Unmasking was done by
immersing the slides in heated PBS (pH 7.2) for 30 min.
The sections were then incubated with primary antibody
overnight at 4 8C. Following stringent washing in
PBS, appropriate secondary antibodies (conjugated to
AlexaFluor dyes of 488 or 546 nm excitation wave-
length) were applied for 1 h at room temperature. This
process was repeated for blocking primary and
secondary antibodies for dual-labeling experiments.
Slides were coverslipped in SlowFade Gold containing
DAPI (Invitrogen) in order to visualize the nuclei.
Digital photomicrographs were obtained using a Zeiss
fluorescence microscope and Axiovision 4.6 software.
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Statistical analysis

All results are expressed as meanGS.E.M. Data were
analyzed by using one or two-way ANOVA. Statistical
analyses were done using Prism software (Graphpad,
San Diego, CA. USA). P!0.05 was considered statisti-
cally significant.
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Figure 1 Basal and cytokine-stimulated production of nitric oxide
in islets. Expression of (A) iNOS (Nos2) mRNA and (B) iNOS
protein in UCP2C/C and UCP2K/K islets. 0Zuntreated control
islets, C2ZIL1bCIFNg and C3ZIL1bCIFNgCTNF-a. Data were
normalized to b-actin expression, as shown in the representative
blot (inset). The effect of CAPE (CP) in the presence of three
cytokines is also shown. NZ3 or greater. (C) Nitric oxide (as nitrite
normalized to total protein) was measured in supernatant from
cultures of islets after 24 h in the absence or presence of iNOS
inhibitor 1400W (10 mmol/l) or CAPE (10 mmol/l). NZ4–8.
*P!0.05 compared with respective basal group; star indicates
P!0.05 compared with UCP2C/C basal; #P!0.05 compared with
respective cytokine-treated group.
Results

NO production is enhanced by UCP2 null expression

Increased NO and superoxide production has been
reported in immune tissues of Ucp2K/K mice (Bai et al.
2005; Fig. 1). In pancreatic islets, basal Nos2 mRNA
(Fig. 1A) and iNOS protein expression (Fig. 1B) were
barely detectable relative to b-actin in both Ucp2C/C

and Ucp2K/K islets, but NO production, measured by
Griess assay, was increased by 2-fold in Ucp2K/K versus
Ucp2C/C islets (P!0.05, Fig. 1C). Interestingly, the
iNOS inhibitor 1400W at a concentration of 10 mmol/l
more potently reduced basal NO production in
Ucp2K/K than Ucp2C/C islets (Fig. 1C), although a
concentration of 50 mmol/l reduced NO to not-
detectable levels in both islets (data not shown). Higher
doses of 1400W non-specifically inhibit other NOS
isoforms. Cytokine exposure of intact islets for 24 h
increased iNOS mRNA (Fig. 1A) and protein (Fig. 1B).
NO was increased significantly in Ucp2C/C but not in
Ucp2K/K islets when cytokines were present (P!0.05,
Fig. 1C). In both cases, NO production was suppressed
by 1400W but not by CAPE.
Journal of Molecular Endocrinology (2011) 46, 193–204 www.endocrinology-journals.org
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No genotype-related differences in ROS formation
were found under any experimental conditions (data
not shown). Mn-superoxide dismutase, which may be
induced by ROS, was quantified by western blotting and
was similar between Ucp2K/K and Ucp2C/C islets basally
and after exposure to cytokines for 24 h. mRNA
expression of Sod2, Sod3 and glutathione peroxidase-1
(Gpx1) was also not significantly different between
genotypes (data not shown).
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Figure 2 Expression of selected genes regulated by NF-kB
or important for b-cell differentiation and function. (A) Basal
expression of selected genes. Data show mRNA levels in
Effect of UCP2 null expression and cytokines on

expression of selected genes

The adaptive response to cytokine exposure was
compared between Ucp2K/K and Ucp2C/C islets (Figs 2
and 3A). A significant increase in basal cyclin D2
(Ccnd2) and Tnfaip3 mRNA was detected in Ucp2K/K

islets, whereas the mRNA expression of Myc and Jun
was reduced (Fig. 2A). Basal protein expression of
TNFAIP3 was also increased in Ucp2K/K islets (Fig. 2B).
Immunohistochemistry also revealed strong staining
of JUN in Ucp2C/C relative to Ucp2K/K islets, and
the majority positive cells also stained positively for
insulin (Fig. 3A).

Expression of these genes was assessed after cytokine
treatment of the islets (Fig. 2C). The mRNA for Tnfaip3,
an important anti-apoptosis gene in b-cells, was induced
w6-fold in Ucp2K/K islets (P!0.01) compared with
3-fold in Ucp2C/C islets. The redox-sensitive transcrip-
tion factor gene Jun was significantly increased in
Ucp2K/K but not in Ucp2C/C islets by 24 h cytokine
treatment, whereas Ddit3 (chop), expressed in endo-
plasmic reticulum stress, was 3-fold higher in Ucp2C/C

islets after cytokine treatment (Fig. 2C). The expression
of Myc was not altered by either cytokines in either
genotype, while cytokines reduced expression of the
rate-limiting gene of fat metabolism, Cpt1, in both (not
shown). Lastly, expression of genes involved in cell
growth and differentiation was measured. Overall,
similar inhibition of expression of Ccnd2, Isl1, Mapk
and Pdx1 was observed in both Ucp2C/C and Ucp2K/K

islets exposed to cytokines (not shown).
UCP2K/K islets relative to UCP2C/C islets (dashed line).
Carnitine palmitoyl transferase-1, Cpt1; chop, Ddit3; cyclin D2,
Ccnd2; glutathione peroxidise-1, Gpx1; mitogen-activated protein
kinase-1, Mapk1; pancreas duodenum homeobox-1, Pdx1;
superoxide dismutase-2,Sod2. (B) Protein expression of TNFAIP3
in UCP2C/C and UCP2K/K islets detected by immunoblotting.
(C) Effects of cytokine treatment (IL1bCIFNgCTNF-a) for 24 h
on mRNA expression of TNFAIP3,Ddit3 (chop) and Jun expressed
as fold of untreated controls in UCP2C/C and UCP2K/K islets.
*P!0.05 and **P!0.01 for nZ3–4 separate preparations.
TNFAIP3 and NF-kB immunostaining: effects of STZ

TNFAIP3 is characterized as a stress-response gene and
may have a critical role in protecting b-cells (Liuwantara
et al. 2006; Figs 3B and C and 4). TNFAIP3 immunos-
taining was detected in both Ucp2C/C and Ucp2K/K

islets using H-100 polyclonal antibody. In Ucp2C/C

islets, TNFAIP3 was localized in the perinuclear region
of cells on the periphery of islets and did not co-localize
with insulin. However, in Ucp2K/K islets, perinuclear
localization was detected in non-b-cells, while diffuse
cytoplasmic staining was detected in b-cells (Fig. 3B).
www.endocrinology-journals.org
Whether TNFAIP3 co-localized with glucagon was
investigated and found to differ by genotype. As
shown in the micrographs at the far right of Fig. 3B,
TNFAIP3 and glucagon were co-localized in Ucp2K/K
Journal of Molecular Endocrinology (2011) 46, 193–204
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Figure 3 (A) Protein expression of JUN in UCP2C/C and UCP2K/K islets detected by
immunohistochemistry. When images were merged, co-localization of insulin (green) and
JUN (red) was detected as yellow in UCP2C/C islets. The intensity of JUN staining also
appeared more intense in the UCP2C/C sections. (A) Representative photomicrographs
showing localization of TNFAIP3 in islets by immunohistochemistry. TNFAIP3 (green) and
insulin (red) were independently detected in islets from UCP2C/C (top) and UCP2K/K

(bottom) mice. Nuclei were visualized with DAPI. Merged images indicated that in
UCP2C/C islets, TNFAIP3 was detected mainly in the perinuclear region of non-b-cells
(top, expanded from inset). There was co-labeling of TNFAIP3 with some pancreatic
polypeptide-expressing cells (arrows) but not glucagon-labeled cells (far right). In
UCP2K/K islets, TNFAIP3 was detected not only in the perinuclear regions of non-b-cells
but also in the cytoplasm of cells co-staining for insulin (bottom, expanded from inset). In
UCP2K/K islets, co-staining of TNFAIP3 and glucagon was detected (far right). (C) Effects
of STZ treatment on TNFAIP3 immunostaining in islets. Tissues were obtained 14 days after
STZ administration. In UCP2C/C islets (top), TNFAIP3 staining was confined to non-b- and
non-a-cells. Islets from UCP2K/K mice (bottom) expressed TNFAIP3 in most a-cells.
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but not in Ucp2C/C islets. In Ucp2C/C islets, the
TNFAIP3 staining overlapped with a majority of
pancreatic polypeptide-expressing cells. No TNFAIP3
staining was detected in somatostatin-expressing cells
(not shown). A similar staining pattern of TNFAIP3 was
found when a monoclonal antibody (A-12) was used.

STZ induces oxidative/nitrosative stress and kills
b-cells. TNFAIP3 localization in pancreatic tissue from
STZ-treated Ucp2K/K and Ucp2C/C mice was compared
14 days after induction of diabetes. TNFAIP3 staining in
Ucp2C/C islets was not associated with either b- or
a-cells (Fig. 3C, top panel), whereas in Ucp2K/K islets,
some a-cells staining for glucagon also stained for
TNFAIP3 (Fig. 3C, bottom panel).
Journal of Molecular Endocrinology (2011) 46, 193–204
NF-kB regulates Tnfaip3 transcription and TNFAIP3
acts to negatively regulate NF-kB transactivation in islets
(Grey et al. 2003). We therefore investigated whether
altered NF-kB expression or cellular localization could
be detected in pancreatic sections. NF-kB immunos-
taining of pancreatic islets was more intense than of
acinar cells and was similar in intensity in Ucp2K/K and
Ucp2C/C islets in fixed pancreatic tissue. NF-kB staining
co-localized with a-cells in both Ucp2C/C and Ucp2K/K

islets (Fig. 4A and B). In islets from Ucp2K/K mice,
NF-kB staining distinctly above background was also
detected in non-a-cells. Because these cells were
central to the islet, they appeared to be b-cells, although
it was difficult to detect co-localization with insulin.
www.endocrinology-journals.org
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43–446) and the maximum intensity of NF-kB increased equally (intensity range 0–140).
(B) Effects of STZ treatment on NF-kB immunostaining in islets. Tissues were obtained
14 days after STZ administration. In UCP2C/C islets (top), NF-kB staining was confined to
non-b-cells that also stained for glucagon (left panel), whereas co-localization with insulin
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a-cells. A minority of b-cells also appeared to express NF-kB (arrows). In both genotypes,
NF-kB was detected in duct cells (arrowheads).
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Following STZ treatment, there appeared to be
increased NF-kB staining intensity in non-b-cells and
also in duct cells in islets from both genotypes (Fig. 4C
and D). In all cases, the majority of staining was non-
nuclear. A minority of b-cells also appeared to
co-localize NF-kB in the Ucp2K/K islets.
Lack of UCP2 modifies basal NF-kB activation and
apoptosis in isolated islets

Because of the potential induction of NF-kB in islets
from Ucp2K/K mice, further characterization was
performed in isolated islets (Fig. 5). Basal NF-kB
activity was significantly increased (P!0.05) by 2-fold
in Ucp2K/K versus Ucp2C/C islets after overnight
culture (Fig. 5A). The compound BAY, which blocks
www.endocrinology-journals.org
phosphorylation of IkBa to prevent NF-kB nuclear
translocation, inhibited NF-kB activation by O50% in
Ucp2C/C islets but had no effect in Ucp2K/K islets when
applied for 2 h. However, blocking NO production with
the iNOS inhibitor 1400W significantly inhibited basal
NF-kB translocation in both genotypes. Likewise, CAPE,
which interferes with the binding of the RelA subunit to
DNA, reduced NF-kB activation in islets from both
genotypes. The increase in basal NF-kB activity in
Ucp2K/K islets could be attributed to 2-fold greater
basal IkBa phosphorylation (Fig. 5B), downstream
from increased basal IKKb expression, as suggested
from measurement of mRNA (Fig. 6C). IkBa phos-
phorylation was significantly inhibited by BAY within
2 h of application in Ucp2K/K and Ucp2C/C islets,
suggesting that, in a relatively acute timeframe, lack of
Journal of Molecular Endocrinology (2011) 46, 193–204
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Figure 5 Characterization of basal NF-kB pathway and apoptosis
in islets from UCP2C/C and UCP2K/K mice. (A) Basal NF-kB
(RelA subunit) activation (nZ4) in control cells and those
incubated with IKKb inhibitor BAY 11-7082 (10 mM) or iNOS
inhibitor 1400W (10 mM) for 2 h. Data were normalized to
protein concentration. (B) Basal IkBa phosphorylation in the
presence or absence of BAY (nZ4). Effects were quantified by
chemiluminescence and normalized to protein concentration.
(C) Basal apoptosis, as a percentage of total b-cells, in UCP2C/C

and UCP2K/K islets, comparing the effects of BAY or 1400W
with untreated controls. Cell apoptosis was assessed by
TUNEL staining. Two thousand cells were counted on average
at 200! magnification (nZ4). *P!0.05, effect of inhibitor;
§P!0.05, effect of genotype).
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effect of BAY on NF-kB activation is due to its
sequestration in the nucleus.

To determine the effects of increased basal NF-kB
activation on b-cell viability, we assessed apoptosis
frequency by TUNEL, which was significantly higher
in dispersed cells from Ucp2C/C than Ucp2K/K islets
(Fig. 5C). Ucp2C/C islets had a significantly (P!0.05)
reduced percentage of apoptotic cells when treated
with BAY for 24 h but there was no effect in Ucp2K/K

islets. Blocking NO production with 1400W reduced
apoptosis by w75% in Ucp2C/C islets. There was a 36%
decrease in apoptosis in Ucp2K/K islets, from 11.0 to
w7.0% (P!0.05).
Journal of Molecular Endocrinology (2011) 46, 193–204
Cytokine-mediated cell death has altered dependence
upon NF-kB in Ucp2K/K islets

Culture for 24 h with a combination of three cytokines
(50 ng/ml IL1bC50 ng/ml IFNgC5 ng/ml TNF-a)
increased apoptosis assessed by the TUNEL method in
Ucp2C/C but not in Ucp2K/K b-cells (Fig. 6A). In b-cells
exposed to cytokines plus iNOS inhibitor 1400W,
apoptosis was strongly inhibited in both genotypes
(Ucp2C/C: 34.1G9.5% vs 8.4G0.7% and Ucp2K/K:
13.1G2.2 vs 5.8G0.9% in the absence and presence of
1400W, respectively, P!0.01). A significant reduction
(P!0.01) in apoptotic cell number was observed in
cytokine-exposed Ucp2C/C but not in Ucp2K/K b-cells
treated concurrently with BAY for 24 h (Fig. 6A).
Necrosis (PI fluorescence) in both genotypes was
increased equally by cytokines (data not shown).

NF-kB activity was stimulated by 2.5-fold by cytokines
in Ucp2C/C islets (P!0.05) and this was inhibited by
O90% with 2 h BAY treatment (P!0.001). Conversely,
neither cytokines nor BAY affected NF-kB activity in
islets from Ucp2K/K mice (Fig. 6B). However, NF-kB
activation was strongly inhibited by 1400W and CAPE
in both genotypes. IkBa phosphorylation triggers
translocation of RelA subunit of NF-kB to the nucleus.
In Ucp2C/C mice, cytokines increased IkBa phosphoryl-
ation, as expected, and this was significantly reduced by
BAY. Ucp2K/K islets did not demonstrate any increase in
IkBa phosphorylation in the presence of cytokines
but BAY did reduce phosphorylation by 85% (Fig. 6C).
By western blotting, there was no difference in total
expression of either NF-kB or IkBa in Ucp2C/C versus
Ucp2K/K islets (data not shown). However, the
mRNA expression of IKKb, which phosphorylates
IkBa, was elevated 2–3-fold in Ucp2K/K compared with
Ucp2C/C islets, both basally and after 24 h cytokine
treatment (Fig. 6D).
Discussion

Null expression of UCP2 enhances b-cell adaptation to
metabolic stress as shown by high-fat feeding studies in
which glucose-stimulated insulin secretion remained
robust and b-cell mass was expanded more than that in
Ucp2C/C mice (Joseph et al. 2002, 2004). These results
are considered paradoxical by some authors in light of
the hypothesis that UCP2 induction protects cells from
oxidative stress (Pi et al. 2009). Indeed, this is
demonstrated in stroke survival (Mehta & Li 2009).
The purpose of the current study was to examine
potential mechanisms contributing to b-cell protection
in the absence of UCP2. We show that isolated Ucp2K/K

islets have increased basal NO production and
expression of Tnfaip3 (also called A20) and Ccnd2,
two genes associated with cell proliferation, and
www.endocrinology-journals.org
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Figure 6 Effects of 24 h exposure to cytokines on b-cell death and
NF-kB pathway in islets from UCP2C/C and UCP2K/K mice. In all
cases, nZ4. BasalZuntreated control islets, cytokinesZIL1bC
IFNgCTNF-a. (A) Cytokine-induced apoptosis, as percentage of
total b-cells from UCP2C/C and UCP2K/K islets after 24 h
exposure. Effects of concurrent BAY 11-7082 (10 mM) are shown.
The iNOS inhibitor 1400W (10 mM, 24 h) inhibited apoptosis
induced by cytokines to 8.4G0.7% in UCP2C/C and 5.8G0.9% in
UCP2K/K islets (P!0.05 for both). (B) Effects of 24 h cytokines
on NF-kB activation in UCP2C/C and UCP2K/K islets in cytokine-
treated cells and those incubated concurrently with inhibitors. The
IKKb inhibitor BAY strongly inhibited NF-kB activation in
UCP2C/C but not in UCP2K/K islets. The iNOS inhibitor 1400W
inhibited NF-kB transactivation in both UCP2C/C and UCP2K/K

islets (P!0.05 for both). CAPE also inhibited NF-kB transactivation
in both UCP2C/C and UCP2K/K islets (P!0.05 for both).
(C) Phosphorylation of IkBabasally or stimulated by cytokines in the
presence and absence of BAY in UCP2C/C and UCP2K/K islets.
(D) Expression of IKKbmRNA in control and cytokine-treated islets.
*P!0.05, effect of cytokines; §P!0.05 for genotype effect;
#P!0.05, effect of cytokines compared with basal).
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reduced expression of Myc and Jun, two genes
associated with apoptosis. The link between NO and
the altered expression of these genes appears to be the
transcription factor NF-kB. The resultant phenotype in
isolated islets includes activation of NF-kB and
induction of and/or altered cellular localization of
TNFAIP3. These traits are linked to protection of b-cells
from isolation- and cytokine-mediated apoptosis.

Basal production of NO was 2-fold higher in islets
from Ucp2K/K than from Ucp2C/C mice. Because basal
NO synthesis of Ucp2K/K islets was inhibited by 1400W,
enhanced activity of iNOS is suggested, whereas in
Ucp2C/C islets, basal production of NO was not
inhibited by 1400W. Islets express neuronal NOS and
endothelial NOS, both constitutively active isoforms
(Spinas 1999) not sensitive to 1400W (Garvey et al.
1999), that are possibly the source of basal NO in
Ucp2C/C islets. These isoforms may also contribute to
the fraction of basal NO not inhibited by 1400W in
Ucp2K/K islets. Exposure to cytokines, which are known
to induce iNOS, elicited similar increase in iNOS
mRNA and protein in Ucp2C/C and Ucp2K/K islets.
www.endocrinology-journals.org
The NO produced under cytokine stimulation was
inhibited by 75 and 90% by 1400W in Ucp2C/C and
Ucp2K/K islets, respectively. These data suggest higher
basal activity of iNOS in Ucp2K/K islets and is consistent
with other studies showing elevated circulating NO,
increased NO production by macrophages and
increased iNOS expression in spleen (Bai et al. 2005).
The physiological relevance of this relatively small
increase in NO production remains unclear, but low
concentrations of NO can act in signaling pathways,
having been shown to promote insulin secretion via
modulation of ATP-dependent K channels (Sunouchi
et al. 2008).

NO is implicated in the regulation of gene transcrip-
tion, working via NF-kB and the cAMP-response
element binding protein, MYC (Contestabile 2008).
A collection of pro-proliferative, pro-apoptotic, islet-
specific and metabolic genes was screened for basal
and cytokine-stimulated mRNA expression. NF-kB is
known to respond to cytokines and is differentially
regulated in immune tissues in Ucp2K/K mice (Bai et al.
2005); thus, some genes selected are regulated by
NF-kB. Basally, four genes from this panel were
differentially expressed in Ucp2K/K compared with
Ucp2C/C islets. Reduced expression of Myc and Jun is
predicted to promote cell survival in Ucp2K/K islets.
MYC is a transcription factor implicated in starvation-
induced, caspase-mediated apoptosis in b-cells (Van de
Casteele et al. 2003), and JUN, also a transcription
factor, is involved in cytokine-mediated apoptosis
(Ammendrup et al. 2000). In islets, Myc is regulated by
NF-kB but Jun is induced by cytokines independent of
NF-kB (Cardozo et al. 2001). Conversely, we observed
induction of Ccnd2, which is essential for postnatal
b-cell replication (Kushner et al. 2005) and could be
associated with the enhanced proliferation of b-cells
observed in islets from high-fat diet-fed mice (Joseph
et al. 2002). Each of these observations is consistent with
reduced frequency of apoptosis in Ucp2K/K b-cells
observed after islet isolation.

The fourth gene of interest was Tnfaip3, which has
been identified as a cardinal gene regulating anti-
apoptosis in b-cells (Liuwantara et al. 2006) and the
strong mRNA and protein induction observed is
consistent with lower basal apoptosis in UCP2K/K islet
cells. Changes in TNFAIP3 might occur as a result of
islet isolation, which is known to induce apoptosis in a
fraction of the b-cells (Thomas et al. 2009). We used
immunohistochemistry to study in situ TNFAIP3
expression patterns in a less-stressed state, which
revealed an altered pattern of expression in islets.
In Ucp2C/C islets, TNFAIP3 was most abundantly
expressed in non-b-cells that stained for pancreatic
polypeptide and was predominantly perinuclear in
distribution. Conversely, TNFAIP3 was detected in
both b- and non-b-cells in Ucp2K/K islets and was
Journal of Molecular Endocrinology (2011) 46, 193–204



R NIÑO FONG and others . UCP2 affects islet TNFAIP3 activation202
predominantly dispersed throughout the cytoplasm of
b-cells while maintaining perinuclear localization in
non-b-cells. Liuwantara et al. (2006) demonstrated
localization of TNFAIP3 predominantly in the cyto-
plasm of b-cells but used cytokine-stimulated, dispersed
FACS-purified cells for immunostaining, whereas the
current results are from intact islets without exogenous
cytokine stimulation. Predominantly perinuclear local-
ization of TNFAIP3 was noted in a COS7 cell model (Li
et al. 2008). Dispersal of TNFAIP3 throughout the
cytoplasm in Ucp2K/K b-cells may have important
functional consequences. Interestingly, islets from
pancreatectomized rats exhibit strong, nearly 5-fold
induction of Tnfaip3 mRNA and these rats are
protected from cell death after STZ treatment (Laybutt
et al. 2002), as are mice overexpressing TNFAIP3 in
pancreas (Yu et al. 2004). Ucp2K/K mice are also
partially resistant to STZ, maintaining higher circulat-
ing insulin concomitant with lower plasma glucose,
although b-cell mass was not significantly protected
(Lee et al. 2009). After STZ treatment, TNFAIP3
localization in Ucp2C/C islets was maintained in both
phenotypes and did not appear elevated relative to
untreated islets. We speculate that co-localization of
TNFAIP3 in a-cells of Ucp2K/K islets has important
adaptive effects because Ucp2K/K a-cells are highly
sensitive to cell death stimuli (Diao et al. 2008).
Examination of islets in the early aftermath of STZ
treatment (e.g. 3–7 days instead of 14 days) might reveal
greater adaptive response and genotype differences.

Both iNOS and TNFAIP3 in islets are regulated by the
transcription factor NF-kB (Cardozo et al. 2001, Laybutt
et al. 2002). Although total NF-kB expression was similar
to Ucp2C/C islets (data not shown), translocation to the
nucleus of RelA was significantly greater in isolated
Ucp2K/K mouse islets. The mechanism appeared to be
at the level of IKKb expression, which was 3-fold higher
in Ucp2K/K islets, and correlated with 2-fold higher
IkBa phosphorylation. Normally, NF-kB RelA is
retained in the cytoplasm by association with IkBa.
IKKb phosphorylation of IkBa allows it to enter the
ubiquitin pathway for degradation, thereby permitting
translocation of NF-kB RelA subunit to the nucleus
(Magnani et al. 2000). Laybutt et al. (2002) also found
increased NF-kB activity in their pancreatectomy model
with induced TNFAIP3 expression and resistance to
STZ. The current findings were also consistent with
those in Ucp2K/K immune tissues, where IKKb activity
was enhanced and persistent NF-kB activation was
noted (Bai et al. 2005). Curiously, while the IKKb
inhibitor BAY strongly reduced IkBa phosphorylation
in Ucp2K/K islets, it had no effect on NF-kB nuclear
translocation or apoptosis. One explanation is that
once NF-kB is sequestered in the nucleus, it is immune
to regulatory events occurring in the cytoplasm. This
hypothesis is supported by the fact that CAPE, which
Journal of Molecular Endocrinology (2011) 46, 193–204
inhibits NF-kB by blocking its binding to DNA, reduced
basal and cytokine-stimulated NF-kB activation in
Ucp2K/K islets as well as iNOS expression. However,
further experiments to test this hypothesis more
directly are required. In situ examination of NF-kB
expression patterns by immunohistochemistry did
not confirm increased translocation to the nucleus.
Thus, like the changes seen in TNFAIP3, islet isolation
may be the initial precipitating factor leading to
increased RelA detected in the nucleus. Likewise, the
lack of effect of STZ on the cellular distribution of
NF-kB is possibly due to the extended sampling period
of 14 days post-treatment.

In most studies of islets, NF-kB is associated with an
increase in apoptosis but a growing amount of data
(Laybutt et al. 2002, Hagerkvist et al. 2007, Kim et al.
2007), including the current report, suggest that
longer-term or constitutive activation of NF-kB confers
a pro-proliferative, anti-apoptotic phenotype in b-cells.
The failure to detect a significant elevation in apoptosis
in isolated Ucp2K/K islets may be due to strong
induction of TNFAIP3 during islet isolation and
suppression of Myc and Jun. Over-expression of
TNFAIP3 in islets protected from NF-kB activation
and cytokine-mediated apoptosis (Grey et al. 1999) and
increased islet survival after transplantation (Grey et al.
2003). Cytokine-treated human islets also had increased
expression of TNFAIP3 and other anti-apoptotic genes
(Sarkar et al. 2009). NF-kB activation is also required for
induction of other anti-apoptotic genes in mouse islets,
including XIAP and c-FLIP, two inhibitors of caspases
(Kim et al. 2007), which merits further investigation in
our model. While concomitant up-regulation of
TNFAIP3 and activation of NF-kB appear paradoxical,
we concur with the suggestion of others (Laybutt et al.
2002) now generally accepted in multiple cell types
(Hymowitz & Wertz 2010) that TNFAIP3 is working as a
brake under these conditions and, possibly combined
with increased expression of other anti-apoptotic genes,
is protective. Of interest is the finding that TNFAIP3 is a
substrate of IKKb (Hutti et al. 2007). With an increase
in IKKb expression, as documented here, TNFAIP3
phosphorylation at serine 381 is predicted to be
increased, which would increase its ability to inhibit
the NF-kB pathway (Hutti et al. 2007). TNFAIP3 acts
upstream of IKKb to deubiquitinate substrates involved
in NF-kB signaling, such as RIPK1 and TRAF6
(Hymowitz & Wertz 2010).

In conclusion, we find that isolated islets from
Ucp2K/K mice display increased transactivation of
NF-kB, which may contribute to enhanced expression
of anti-apoptotic genes such as Tnfaip3 and pro-
proliferative genes such as Ccnd2. This phenotype
appears to be revealed by stressful events such as islet
isolation because nuclear localization of NF-kB was not
observed in intact pancreatic tissue. One possible
www.endocrinology-journals.org
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mechanism is up-regulation of NO-dependent IKKb
activity. TNFAIP3 is of particular interest because of its
ability to exert negative feedback on NF-kB signaling
pathways to modulate apoptosis and other downstream
events. Interestingly, TNFAIP3 had altered cellular and
sub-cellular distribution in the islets from Ucp2K/K

mice. This phenotype may contribute to the so-called
paradoxical improved outcomes of Ucp2K/K mice to
stressors such as cytokines, as shown here, or high-fat
diet challenge (Joseph et al. 2002, 2004). Furthermore,
the localization of TNFAIP3 in non-b-cells in situ has not
previously been reported but may be of importance to
islet function.
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