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Abstract: Thiazinanes and its isomeric forms represent one of the most important heterocyclic
compounds, and their derivatives represented a highly potent drug in disease treatment such as,
1,1-dioxido-1,2-thiazinan-1,6-naphthyridine, which has been shown to have anti-HIV activity by a
mechanism that should work as anti-AIDS treatment, while (Z)-methyl 3-(naphthalen-1-ylimino)-
2-thia-4-azaspiro[5 5]undecane-4-carbodithioate showed analgesic activity, cephradine was used as
antibiotic and chlormezanone was utilized as anticoagulants. All publications were interested in
the chemistry of thiazine (partially or fully unsaturated heterocyclic six-membered ring containing
nitrogen and sulfur), but no one was dealing with thiazinane itself which encouraged us to shed
new light on these interesting heterocycles. This review was focused on the synthetic approaches of
thiazinane derivatives and their chemical reactivity.

Keywords: biologic activity; fused-heterocycles; spiro compounds; structures; thiazinanes

1. Introduction

Nitrogen–sulfur containing heterocycles represent a widespread group of heterocyclic compounds.
These types of heterocycles constructed a large number of drugs used in the treatment of a variety of
diseases. Thiazinane resembles a compound containing nitrogen and sulfur on its structure. It is a
fully saturated thiazine six-membered ring containing two hetero-atoms nitrogen and sulfur in a three
isomeric structures [1,2]thiazinane, [1,3]thiazinane and [1,4]thiazinane as mentioned below (Figure 1).
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1. Introduction 

Nitrogen–sulfur containing heterocycles represent a widespread group of heterocyclic 
compounds. These types of heterocycles constructed a large number of drugs used in the treatment 
of a variety of diseases. Thiazinane resembles a compound containing nitrogen and sulfur on its 
structure. It is a fully saturated thiazine six-membered ring containing two hetero-atoms nitrogen 
and sulfur in a three isomeric structures [1,2]thiazinane, [1,3]thiazinane and [1,4]thiazinane as 
mentioned below (Figure 1) 
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Figure 1. Isomeric forms of thiazinane. 

1,3-Thiazine framework represented an important structural motif presented in natural 
products (bretschneiderazines A & B) [1] (Figure 2) and bioactive compounds [2–4]. The well-known 
antibiotics, cephamycin and cephradine (cephalosporin class of β-lactam antibiotics) containing a 
1,3-thiazine skeleton [2] (Figure 2). 

Figure 1. Isomeric forms of thiazinane.

1,3-Thiazine framework represented an important structural motif presented in natural products
(bretschneiderazines A & B) [1] (Figure 2) and bioactive compounds [2–4]. The well-known antibiotics,
cephamycin and cephradine (cephalosporin class of β-lactam antibiotics) containing a 1,3-thiazine
skeleton [2] (Figure 2).
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In addition, several synthetic 1,3-thiazine derivatives shown various biologic activities such as 
analgesic [3], antihypotensive [4] and NOS (nitric oxide synthases) inhibiting activities (Figure 2) [4]. 

1,1-Dioxido-1,2-thiazinan-1,6-naphthyridine is an HIV integrase inhibitor currently undergoing 
evaluation for the treatment of AIDS (acquired immune deficiency syndrome) (Figure 3) [5]. 

 
Figure 3. Structure of 1,1-dioxido-1,2-thiazinan-1,6-naphthyridine chlormezanone. 

Chlormezanone (Figure 3) is a centrally acting muscle relaxant [6]. It was introduced into 
human therapy as a racemic monosubstance, later also in combination with codeine phosphate and 
paracetamol. Chloromezanone (Figure 3) was widely used as anticoagulant [7]. Other derivatives 
have shown wide range activities as antimicrobial [8,9] and peptic ulcer treatment [10] and 
anti-inflammatory [11]. 

Figure 2. Natural products and bioactive molecules with the 1,3-thiazine framework.

In addition, several synthetic 1,3-thiazine derivatives shown various biologic activities such as
analgesic [3], antihypotensive [4] and NOS (nitric oxide synthases) inhibiting activities (Figure 2) [4].

1,1-Dioxido-1,2-thiazinan-1,6-naphthyridine is an HIV integrase inhibitor currently undergoing
evaluation for the treatment of AIDS (acquired immune deficiency syndrome) (Figure 3) [5].
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Chlormezanone (Figure 3) is a centrally acting muscle relaxant [6]. It was introduced into human
therapy as a racemic monosubstance, later also in combination with codeine phosphate and paracetamol.
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Chloromezanone (Figure 3) was widely used as anticoagulant [7]. Other derivatives have shown wide
range activities as antimicrobial [8,9] and peptic ulcer treatment [10] and anti-inflammatory [11].

Eflornithine (α-difluoromethylornithine), an ornithine decarboxylase inhibitor, is active against
second-stage Trypanosoma brucei gambiensis [12] and has been used in conjunction with nifurtimox
against Trypanosoma brucei [13,14] (Figure 4). In addition, 2-nitromethylene-1,3-thiazinan-3-yl-
carbam-aldehyde was used as an insecticide [15] (Figure 4).
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Figure 4. Molecular structure of some bioactive thiazinane derivatives.

On the other hand, thiazinanones, are very interesting compounds due to their important
role in medicinal chemistry [16–18]. It has been reported that, substituted thiazinanones exhibited
antitumor [19], antifungal activity [20] and antimalarial activity [21], as well as antioxidant activity [22].
Reactions of amine, carbonyl compounds and a mercapto acid in one-pot three-component condensation
or a two-step process afforded thiazinanone derivatives [20].

2. Chemistry of Thiazinanes

2.1. Synthesis of Thiazinanes

2.1.1. Synthesis of 1,2-thiazinanes

1,2-Thiazinane-1,1-dioxide derivatives 5a–d (yields 10–50%) and 6a–d (yields 22–28%) as
diastereoisomers were synthesized from the corresponding amino-halides 1 or amino-alcohols 2.
The sultam rings were constructed according to the method of Lee et al. [23] Compounds 1 were
reacted with phenylmethanesulfonyl chloride in presence of triethylamine (Et3N) gave the secondary
sulfonamides, treatment with base facilitate cyclization to the sultam ring intermediates 3. Similar to
1, derivatives of compound 2 were reacted with phenylmethanesulfonyl chloride and triethylamine,
followed by treatment with NaCl yielded the alkyl bromide intermediates. The latter were treated
with a base gave the sultam ring intermediates 3. Treatment of 3 with sodium hydride and 4-bromo-1-
(bromomethyl)-2-fluorobenzene gave N-benzyl sultam intermediates 4. Intermediates 4 were subjected
to Buchwald–Hartwig amination by reacting 2-dicyclohexyl phosphino-2′,6′-diisopropoxybiphenyl
(RuPhos) (as a reagent in palladium-catalyzed cross-coupling) [24] with N-acetylpiperazine to give the
sultam products as mixtures of enantiomers and diastereomers 5 and 6, which has been separated
using chiral supercritical fluid chromatography (SFC) (Scheme 1) [11].
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Scheme 1. Diasereoselective synthesis of 1,2-thiazinane-1,1-dioxide derivatives 5,6a–d. (a) BnSO2Cl,
Et3N, THF, 0–23 ◦C; (b) n-BuLi, (i–Pr)2NH, phenanthroline, THF,−78 ◦C, 42.59% over 2 steps; (c) BnSO2Cl,
Et3N, THF, 0–23 ◦C; (d) NaCl, DMF, 80 ◦C; (e) n-BuLi, (i–Pr)2NH, phenanthroline, THF, −78 ◦C, 21.42%
over 3 steps; (f) 4-bromo-1-(bromomethyl)-2-fluorobenzene, NaH, DMF, 0 ◦C; (g) Pd(OAc)2, RuPhos,
Cs2CO3, N-acetyl-piperazine, 1,4-dioxane, 80 ◦C, 16–73% over 2 steps; (h) chiral column SFC purification.

Homo-allylic sulfamate ester 7 and sulfonamide 9 were useful substrates for the Tethered
Aminohydroxylation (TA) reaction. The sulfamate ester 7 was underwent the TA reaction giving
1,2,3-oxathiazinane product 8 (yields 53–68%). In contrast, the sulfonamide (pent-4-ene-1- sulfonamide) 9
gave 1,2-thiazinane product (1,1-dioxo-[1,2]thiazinan-3-yl) methanol) 10 (yields 35–59%) under the same
conditions (Scheme 2) [25].
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But-3-ene-1-sulfonamide 11 underwent intramolecular aziridination to give the bicyclic aziridines
12. Reaction of 5-hexenyl-substituted sulfonamide 14 only furnished the product derived from allylic
insertion 3-vinyl [1,2]thiazinane-1,1-dioxide 15 (yield 70%). Treatment of azabicyclic sulfonamide
12 (2-thia-1-azabicyclo-[3,1,0]hexane-2,2-dioxide) with p-toluenesulfonic acid (p-TsOH) resulted in
ring-opening of the aziridine 12 at the more substituted position affording the six-membered ring
product 4-methoxy-1,2-thiazinane-1,1-dioxide (13) (yield 60%). The aziridination ring-opening was
facilitated in the presence of Lewis acid (Scheme 3) [26].
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Unsaturated sulfonamide (hex-5-ene-1-sulfonamide) (14) underwent intramolecular aziridination
catalyzed by Rh2(OAc)4 with PhI(OAc)2 and Al2O3 to give the corresponding 3-vinyl-1,2-thiazinane-
1,1-dioxide (15) (yield 90%) (Scheme 4) [27].
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(1.5 equiv.), Al2O3 (2.5 equiv.), CH2Cl2, 40 ◦C, 3 h.

Reactions of ethyl 2-(chlorosulfonyl) acetate (16) with amines furnished sulfonamides 17a–c.
Upon treatment of 17a–c with 1-bromo-3-chloropropane in DMF and in presence of K2CO3 gave the
six-membered cyclic sulfamoyl acetamide esters (ethyl 2-aryl-1,2-thiazinane-6-carboxylate-1,1-di-oxide)
18a–c. Hydrolysis of 18a–c using methanolic KOH gave 19a–c. Coupling of 19a–c with 4-(4-amino-2-
fluorophenoxy)-3-chloropicolinamide (20), under 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
(EDC)/HCl and N,N-dimethylpyridin-4-amine (DMAP) conditions in THF yielding intermediates
2-substituted-1,2-thiazinane-6-carboxamide-1,1-dioxide 21a–c (yields 43–55%). Compound 21a–c
underwent Hoffman rearrangement using iodobenzenediacetate furnished 2-amino-3-chloropyridin
2-substituted-1,2-thiazinane-6-carboxamide-1,1-dioxides 22a–c in yields 58–68% (Scheme 5) [28].
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22a–c. (a) THF, Et3N, 0 ◦C, then at rt 1 h; (b) 1-bromo-3-chloropropane, K2CO3, DMF; (c) NaOH,
MeOH/H2O, 3 h; (d) EDC, HCl, DMAP; (e) ethyl acetate/CH3CN/H2O (2:2:1), PhI(OAc)2, rt, 2 h.

In addition, the isomeric six-membered sulfamoyl acetamides 27a–c were obtained from coupling
between chloroacetyl chloride and substituted anilines to give compounds 23a–c, which were converted
to sulfamoyl chlorides 24a–c in the presence of sodium sulfite followed by phosphorous pentachloride
(PCl5). Coupling of substituted anilines (4-(4-amino-2-fluorophenoxy) -3-chloropicolinamide) 20a–c with
sulfamoyl chlorides 24a–c gave sulfamoyl acetamides 25a–c in presence of N,N-diisopropylethylamine
(DIPEA) in dry THF. Treatment of 25a–c with 1,3-bromochloropropane in the presence of potassium
carbonate gave cyclic sulfamoyl acetamides 26a–c (yields 52–59%). Hoffman rearrangement in compounds
26a–c using PhI(OAc)2 as a mediator yielded sulfamoyl acetamides 27a–c in moderate yields 58–68%
(Scheme 6) [28].
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Scheme 6. Synthesis of sulfamoyl acetamides 27a–c. (a) Et3N, toluene; (b) (i) Na2SO3, EtOH, (ii) PCl5;
(c) DIPEA THF, 1 h; (d) 1-bromo-3-chloropropane, K2CO3, DMF, 60 ◦C; (e) ethyl acetate/CH3CN/H2O,
PhI(OAc)2, rt. 2 h.

ω-Alkene-1-sulfonamides 14a–d was prepared by aminolysis of ω-alkene-1-sulfonyl chlorides 28a–d.
Allylsulfonamide (29a) did not lead to the highly strained bicyclic [2.1.0] structure 30. In contrast,
the higher homologues 14b,c gave bicyclic aziridines 31 and 32, respectively. However, sulfonamide 28d
under the same conditions gave rise to the allylic insertion product (3-vinyl-1,2- thiazinane-1,1-dioxide)
15. Using different types of nucleophiles (alcohol, thiophenol, allyl magnesium bromide, benzylamine)
afforded aziridine ring-opened products in good yields with C–O, C–S, C–C or C–N bond formation.
Ring-opening of the aziridine at the more substituted site take place in case of compounds 31 and 32,
leading to six- and seven-membered ring products 4-methoxy-1,2-thiazinane-1,1-dioxide (33a) (Yield 65%),
4-(phenylthio)-1,2-thiazinane-1,1-dioxide (33b) (Yield 62%) and 4-methoxy-1,2-thiazepan-1,1-dioxide (34)
(yield 92%), respectively using copper (I) or (II) trifluoromethanesulfonate (Cu (I or II) OTf) and sodium
hydride as reagents (Scheme 7) [29].
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4-(4-Bromo-3,5-dimethylphenoxy)-1,2-thiazinane-1,1-dioxide (35) was prepared in 66% yield,
from the reaction between 2-thia-1-aza-bicyclo[3.1.0]hexane-2,2-dioxide (31) and 4-bromo-3,5-
dimethylphenol in N,N-dimethylacetamide (DMAc) via ring opening–ring closure interaction.
The thiazinane 35 when treated with NaH in N,N-dimethylacetamide and iodomethane gave
4-(4-bromo-3,5-dimethylphenoxy)-2-methyl[1,2]thiazinane-1,1-dioxide (36) (yield 32%) (Scheme 8) [30].
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(a) DMAc, 130 ◦C, 5 h; (b) DMAc, NaH, CH3I, rt., 3 h.

The sulfonamide (N,N-bis(4-methoxybenzyl)methanesulfonamide) (37) was treated with lithium
hexamethyldisilazide (LiHMDS), followed by addition of diethyl chlorophosphate and quenched
with 5-bromo-2-methoxybenzaldehyde to form alkenyl sulfonamide 38 in 80% yield. Compound 38
was subjected to Michael-addition using dimethyl malonate to form the diester. Decarboxylation
and sulfonamide deprotection of 38 formed the sulfonamide 39 (yield 46%). Cyclisation of 39 using
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standard NaOMe furnished 5-aryl-1,2-thiazinan-3-one-1,1-dioxide 40 in good yield 74%, after Suzuki
coupling with phenylboronic acid (Scheme 9) [31].Molecules 2020, 25, x FOR PEER REVIEW 9 of 56 
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Scheme 9. Synthesis of 5-aryl-1,2-thiazinan-3-one-1,1-dioxide 40. (a) LiHMDS (2 equiv.), −20 ◦C, 30 min
then ClPO(OEt)2, 1 h then RCHO,−20 ◦C to r.t., 1 h, 80%; (b) (i) dimethyl malonate, NaOMe-MeOH,
MeCN, 18 h, reflux, 85%; (ii) DMF, NaCl, H2O, reflux, 5 h; (iii) TFA–CH2Cl2 (1:1), 18 h, r.t.,
46% (2 steps); (c) (i) NaOMe–MeOH, r.t., 1 h, 93%; (ii) PhB(OH)2, DME–H2O (2:1), Pd(PPh3)4

(5 mol%), Cs2CO3 (4 equiv.), 74%.

Terminal alkenes and hydroamination of inactivated alkenes have been isomerized using
phosphine gold (I) complexes as a catalyst under both thermal and microwave conditions. Sulfonamides
14a,b readily underwent intramolecular hydroamination to give thiazinane-1,1-dioxides 41a,b
(yields 95% and 88%), respectively (Scheme 10) [32].
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2.1.2. Syntheses of 1,3-thiazinanes

Syntheses of N-tosyl-1,3-thiazinanes

N-Tosyldiazoketamine 42 was converted to the corresponding E (5%)/Z (95%)-α-phenyl-β-enamino
ester 43 via decomposition of 42 through losing of N2 to form carbine followed by 1,2-phenyl migration
under two different catalytic conditions, Rh2(OAc)4 and p-TsOH. For the reaction catalyzed by
Rh2(OAc)4, E-isomer 43b (91%) was found to be the major product along with the formation of very
small quantities of the Z-isomer of 1,2-phenyl migration product 43a (5%) and 1,2-hydride migration
product 44 (4%). The ratio of 43a/43b/44 was found to be 5:91:4. In contrast, the 1,2-hydride migration
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product 44 could not be detected in reactions catalyzed by p-TsOH. Moreover, in the latter case,
the Z-α-phenyl-β-enamino ester 43a was formed as the major product (43a/43b = 95:5). Mitsunobu
adduct 46 was obtained via premixing DEAD (Diethyl azodicarboxylate) and PPh3, followed by
addition of Z-α-phenyl-β-enamino ester 43a and alcohol 45. The cyclized products 47 (yield 79%)
were obtained from alkenylthiols 46 in one pot using trifluoroacetic acid (TFA) in diastereoselectivities
(86:14) (Scheme 11) [33].
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rt, 30 min, 89%; (b) Rh2(OAc)4, CH2Cl2; (c) Ph3P, DEAD; (d) TFA,CH2Cl2.

Synthesis of Epipyridazinoanthracen-1,3-thiazinane Propanenitrile

Reaction between thiocarbamoyl derivative 48 and 1,3-dibromopropane in
presence of Et3N furnished the stereoselective product cyclic ketene S,N-acetal((E)
-3-((9s,10s)-12,15-dioxo-9,11,12,14,15,16-hexahydro-9,10-[4,5]epipyridazinoantracen-13(10H)-yl)-3-oxo-2-
(3-phenyl-1,3-thiazinan-2-ylidene)propanenitrile) (49) in 70% yield (Scheme 12) [34].
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Cornia et al. [35] utilized Berzelius reagent P4S10 (phosphorus decasulfide or phosphorus
pentasulfide) for thionation. 3-Hydroxypropane amide 50 combined with hexamethyldisiloxane
(HMDO) gave thioamide 51. Cyclization of intermediate 51 to 1,3-thiazine 52 (59%), which acylated
using 2,2-dichloropropanoyl chloride to give (Z)-2,2-dichloro-1-(2-propylidene-1,3-thiazinan-3-yl)
butan-1-one 54a and (Z)-1-(2-benzylidene-1,3-thiazinan-3-yl)-2,2-dichloropropan-1-one 54b in 56% and
90% yield, respectively. In addition, 2-ethyl-5,6-dihydro-4H-1,3-thiazines 52a,b (57% and 75%) were
prepared via the treatment of the N-(2-hydroxyethyl)propionamide 53 with the Lawesson’s reagent
followed by exposure to a solution of K2CO3 (Scheme 13) [35,36].
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Synthesis of 2-imino-1,3-thiazinane Derivatives

Chemoselective synthesis of ferrocene-containing 1,3-thiazinan-2-imines 58a–m via the
reaction between 3-aryl-amino-1-ferrocenylpropan-1-ols 55a–m and phenyl isothiocyanate in acidic
medium. The intermediate β-hydroxy thioureas 56 were generated in situ using ultrasound
irradiation and the cyclizations were achieved by the addition of acetic acid to give the
corresponding 3-aryl-6-ferrocenyl-N-phenyl-1,3-thiazinan-2-imines 58a–m (yields 52–90%) instead of
3-arylamino-1-ferrocenylpropan-1-ols 57 (Scheme 14) [37].
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The mechanism for the formation of ferrocenyl 1,3-thiazinane-2-imine 58a–m was illustrated in
Scheme 15. Thiourea derivatives 56 were via nucleophilic attack of the amine 55 on the isothiocyanate.
Under acidic conditions, the thiourea cyclized via the thione-group with the elimination of H2O
molecule to give intermediate 61 through intermediates 59 and 60, respectively. Intermediate 61 was
deprotonated to give 58 (Scheme 15).

Molecules 2020, 25, x FOR PEER REVIEW 12 of 56 

 

The mechanism for the formation of ferrocenyl 1,3-thiazinane-2-imine 58a–m was illustrated in 
scheme 15. Thiourea derivatives 56 were via nucleophilic attack of the amine 55 on the 
isothiocyanate. Under acidic conditions, the thiourea cyclized via the thione-group with the 
elimination of H2O molecule to give intermediate 61 through intermediates 59 and 60, respectively. 
Intermediate 61 was deprotonated to give 58 (Scheme 15). 

 
Scheme 15. Mechanism for the formation of 3-aryl-6-ferrocenyl-N-phenyl-1,3-thiazinan-2-imines 
58a–m. 

2.1.2.4. Synthesis of 1,3-thiazinane-4-one Derivatives 

A variety of methods were made to synthesize 2-imino-1,3-thiazinane, based on the cyclization 
of acyl thioureas containing an α,β-unsaturated acid fragment. Reactions of acryloyl chloride with 
thiourea or with N-substituted thioureas, no N-acryloylthioureas 62 were isolated and 
hydrochlorides of 3-substituted-1,3-thiazinane-4-one 63a–d were obtained. 2-Imino-1,3-thiazinane 
-4-one 65a,b with a substituent on the exocyclic N-atom, were synthesized via thermal cyclization of 
methacryloyl thioureas 64a,b (Scheme 16) [38]. 

 
Scheme 16. Synthesis of 3-substituted-1,3-thiazinane-4-one hydrochlorides 63a–d and 
2-Imino-1,3-thiazinane-4-one 65a,b. (a) CH3CN, 12 h, r.t.; (b) heating 100 °C, 4–6 h. 

Scheme 15. Mechanism for the formation of 3-aryl-6-ferrocenyl-N-phenyl-1,3-thiazinan-2-imines
58a–m.

Synthesis of 1,3-thiazinane-4-one Derivatives

A variety of methods were made to synthesize 2-imino-1,3-thiazinane, based on the cyclization
of acyl thioureas containing an α,β-unsaturated acid fragment. Reactions of acryloyl chloride with
thiourea or with N-substituted thioureas, no N-acryloylthioureas 62 were isolated and hydrochlorides
of 3-substituted-1,3-thiazinane-4-one 63a–d were obtained. 2-Imino-1,3-thiazinane -4-one 65a,b with
a substituent on the exocyclic N-atom, were synthesized via thermal cyclization of methacryloyl
thioureas 64a,b (Scheme 16) [38].
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The syntheses of 3-unsubstituted 2-imino-1,3-thiazinan-4-ones 68 and 69, were based on the
reaction of α,β-unsaturated carboxylic esters 66 with thioureas, including isolation and subsequent
cyclization of hydrochlorides or sulfates 67 in the presence of aqueous ammonia or sodium acetate [39].
In the case of maleic or fumaric acids, hydrochlorides of 2-imino-thiazinans 69 were obtained in one-pot
synthesis (Scheme 17) [40].
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Scheme 17. Synthesis of 3-unsubstituted 2-imino-1,3-thiazinan-4-ones 68 and 69.

6-Unsubstituted 2-imines-1,3-thiazinane-4-one 72, were synthesized via reaction of β-propiolactone
70 [41,42] and its derivatives with thioureas. At the first step, acids 71 were isolated; the cyclization of 71 in
acetic anhydride or its mixture with pyridine gave thiazinan-4-ones 72. Thiosemicarbazones reacted similarly
to give 1,3-thiazinan-4-ones ((E)-2-((E)-((5-nitrofuran-2-yl) methylene)hydrazono)-1,3-thiazinan-4-one) (73)
(51%) in one pot procedure [43] (Scheme 18).
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Scheme 18. Synthesis of 6-Unsubstituted 2-imines-1,3-thiazinane-4-one 72 2-hydrazono-1,3-thiazinan-
4-one 73. (a) Thiourea, H2O, 30 ◦C, standing 2 h at 10 ◦C (90%); (b) Ac2O/pyridine; (c) Thiosemicarbazones,
EtOH, AcOH, 75 ◦C, then reflux 30 min.
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Thiazinanones 76a–n were synthesized via three-component reactions between aldehydes,
2-morpholinoethanamine (74) and 3-mercaptopropionic acid under both thermal and ultrasonication
conditions. The products were formed via the intermediates 75a–n [44] (Scheme 19).
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Scheme 19. Synthesis of N-morpholinoethane-1,3-thiazinane-4-one 76a–n. (a) Toluene, 110 ◦C, 3 h;
(b) HSCH2CH2COOH, 110 ◦C, 16 h. OR (c) Toluene, HSCH2CH2COOH, ultrasound, r.t., 25 min.

(Z)-2-[(2,4-Dimethylphenyl)imino]-1,3-thiazinan-4-one 78 was prepared according to the procedure
reported by Mansuroğlu et al.[45]. 3-Chloropropionyl chloride was reacted with potassium thiocyanate
and 2,4-dimethylaniline, after acidification N-(3-chloropropionyl)-N’-(2,4-di-methylphenyl)thiourea (77)
was formed. The substituted thiourea 77 was refluxed in toluene/acetone media to afford (Z)-2-[(2,4-
dimethyl-phenyl)imino]-1,3-thiazinan-4-one (78) (Scheme 20) [46].
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3-Mercaptopropionic acid reacted with ammonia or primary amines and aryl aldehydes to give 2-
and 2,3-substituted-1,3-thiazinan-4-ones 79a–s. The corresponding 1,3-thiazinan-4-one-1,1-dioxide
derivatives 80 (27–95%) were obtained from the synthesized substituted 1,3-thiazinan-4-ones 79
(11–74%) via oxidation using KMnO4 (Scheme 21) [6].
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Azeotropic reflux of (E)-methyl 4-oxo-octadec-2-enoate (86) [48] with methyl 
3-mercaptopropionate and ammonium carbonate afforded the thiazinane, as a mixture of isomers 87 
and 88 (Scheme 23) [49]. 

Scheme 21. Synthesis of 1,3-thiazinan-4-one-1,1-dioxide derivatives 80. (a) aldehyde (R1C6H4CHO),
primary amine (R2NH2), benzene, reflux 48 h; (b) AcOH, KMnO4, >30 ◦C; (c) NaHCO3.

The reaction of keto fatty acids and long-chain aldehydes with 3-mercapto-propionic acid
in the presence of ammonium carbonate resulted in the formation of thiazanone derivatives.
The treatment of methyl 10-oxoundecanoate 81a, methyl 9-oxostearate 81b and octadecanal 81c with
3-mercaptopropionic acid in the presence of ammonium carbonate ((NH4)2CO3) the thiazanone
derivatives were obtained, 9-(2-methyl-4-oxo-1,3-thiazinan-2-yl)nonanoic acid 82a, 8-(2-nonyl-4-
oxo-1,3-thiazinan-2-yl)octanoic acid 82b and 2-heptadecyl-1,3-thiazinan-4-one 82c, respectively.
Under the same conditions thiazanones 84a,b and 85a,b were obtained from the vicinal-dioxo ester
83a,b (Scheme 22) [47].
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Azeotropic reflux of (E)-methyl 4-oxo-octadec-2-enoate (86) [48] with methyl 3-mercaptopropionate
and ammonium carbonate afforded the thiazinane, as a mixture of isomers 87 and 88 (Scheme 23) [49].Molecules 2020, 25, x FOR PEER REVIEW 16 of 56 

 

 
Scheme 23. Synthesis of 1,3-thiazinane-4-one derivatives 87 and 88. (a) (NH4)2CO3, benzene, 
azeotropic reflux. 

Dialkyl phosphites 89 reacted with difluoro- or trifluoroacetonitriles in the presence of a 
catalytic amount of nitrogen base to form iminophosphonates 90 and 91 as diastereoisomers. 
Cyclo-condensation of iminophosphonates 90 and 91 with 3-mercaptopropionic acid furnished 
1,3-thiazinan-4-ones 92a–c in good yields 79%–88% (Scheme 24) [50]. 

 
Scheme 24. Synthesis of diethyl phosphonate of 1,3-thiazinan-4-ones. (a) Et3N, rt., 7 days; (b) 
3-mercaptopropionic acid, benzene, reflux 2–4 h. 

Three-component reactions between amines or amino acids, aldehydes and 
3-mercaptopropionic acid were catalyzed dicyclohexylcarbodimide (DCC) afforded 
metathiazanones 93a–d in yields 51%–92% (Scheme 25) [51]. 

 
Scheme 25. Synthesis of thiazinanones 93a–d. (a) N,N-dicyclohexylcarbodimide (DCC)/THF, 0 °C. 

Scheme 23. Synthesis of 1,3-thiazinane-4-one derivatives 87 and 88. (a) (NH4)2CO3, benzene, azeotropic
reflux.

Dialkyl phosphites 89 reacted with difluoro- or trifluoroacetonitriles in the presence of a catalytic
amount of nitrogen base to form iminophosphonates 90 and 91 as diastereoisomers. Cyclo-condensation
of iminophosphonates 90 and 91 with 3-mercaptopropionic acid furnished 1,3-thiazinan-4-ones 92a–c
in good yields 79–88% (Scheme 24) [50].
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Three-component reactions between amines or amino acids, aldehydes and 3-mercaptopropionic
acid were catalyzed dicyclohexylcarbodimide (DCC) afforded metathiazanones 93a–d in yields 51–92%
(Scheme 25) [51].
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The ring enlargement of 2,3-diphenylcyclopropenone 94 using 1-amino-2-substituted alkene-
1-thiols 95a–c afforded different 5,6-diphenyl-2-(substituted-2-ylidene)-1,3-thiazinan-4-one 96a–c
(68–93%) (Scheme 26) [52].
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N1-(7-Chloroquinolin-4-yl)alkane diamines 102a–c reacted with aldehydes in THF under 
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Coupling of bis-5,5′-methylenebis(2-hydroxybenzaldehyde) (97) with bromo-acetaldehyde
diethyl ether furnished the desired diacetal (5,5′-methylenebis(2-(2,2-diethoxyethoxy)benzaldehyde))
(98) in 74% yield. Deacetylation the diacetal 98 followed by intramolecular aldol condensation
and acid-catalyzed dehydration afforded benzofuran-2-al dimer (5,5′-methylenebis(benzofuran-2-
carbaldehyde)) 99 (88%). Condensation of 99 (in excess) with alkyl-, cycloalkyl-, aryl- and aralkyl amines
gave bis-imines 100a–j (83–94%). Subsequent cyclization of bis-imines 100a–j through condensation
with 3-mercaptopropionic acid furnished bis-(benzofurane-1,3-thiazinan-4-one) derivatives 101a–j
(Scheme 27) [53].
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120 ◦C; (b) AcOH, 110 ◦C; (c) arylamine, MeOH, 75 ◦C; (d) 3-mercaptopropionic acid, DCC/THF.

N1-(7-Chloroquinolin-4-yl)alkane diamines 102a–c reacted with aldehydes in THF under
ice-cold conditions, followed by addition of 3-mercaptopropanoic acid in presence of
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dicyclohexylcarbodimide (DCC) or in toluene under reflux afforded 2-(alkyl/aryl)-3-(2-((7-chloro
quinolin-4-yl)amino)ethyl)-1,3-thiazinan-4-one derivatives 103a–i in 48–67% yields (Scheme 28) [54].
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The reaction of 2,4-dichlorobenzoic acid with p-methoxyaniline gave diphenylamine 104 on
treatment with POCl3 cyclized to 6,9-dichloro-2-methoxyacridine (105) (85%). The acridine 105
reacted with 1,3-propandiamine afforded N1-(6-chloro-2-methoxyacridin-9-yl)propane-1,3-diamine
(106). Compound 106 reacted with aldehydes and 3-mercaptopropionic acid in the presence of
dicyclohexylcarbodimide (DCC) as a dehydrating agent furnished quinacrine[1,3]-thiazinan-4-one
derivatives 107 in yields 60–78% (Scheme 29) [55].
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3-Alkyl-2-aryl-1,3-thiazinan-4-one derivatives 109a–c were synthesized via the routes outlined in
Scheme 30. Treatment of amines with 4-methylthiobenz-aldehyde and thioglycolic acid in dry toluene
in the presence of p-TsOH under reflux afforded 3-alkyl-2-(4-methylthiophenyl)-1,3-thiazinan-4-one
(108). Oxidation of 108 using 30% H2O2 in methanol in the presence of trace amount of tungsten
oxide (WO3) gave 3-alkyl-2-(4-methylsulfonylphenyl)-1,3-thiazinan-4-one 109a–c (35–75%). For low
boiling point amines, the intermediate imine products 110-were obtained by the reaction with
4-methylthiobenzaldehyde in anhydrous DMF. Subsequent oxidation 110 with hydrogen peroxide
and WO3 in methanol solution afforded the (E)-N-(4-(methylsulfonyl benzylidene)alkyl-1-amine 111.
Reaction of 111 with mercaptopropionic acid under reflux gave 109d–f (12–45%) (Scheme 30) [56].

3-Hydroxy-N-(4-oxo-2-phenyl-1,3-thiazinan-3-yl)-8-(trifluoromethyl)quino-line-2-carboxamide
derivatives 113a–j were synthesized by one-pot three component cyclocondensation reaction between
quinoline hydrazide 112, substituted benzaldehyde and 3-mercaptopropionic acid in the presence of
1-ethyl-3-(3-dimethylamino-propyl)carbodiimide EDC (Scheme 31) [57].
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Hydrazinecarboxamides 114a–d reacted with 3-mercaptopropionic acid in presence of SiCl4 gave
1,3-thiazinan-4-one as urea derivatives 115a–d (39–43%), (Scheme 32) [58].
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Hassan et al. reported that diastereoselective reaction between 4-substituted 1-(2,4-dinitrophenyl)
thiosemicarbazides 116a–e and 2,3-diphenylcycloprop-2-enone 94 under refluxing ethanol furnished
racemic 2-(2,4-dinitrophenyl)hydrazono)-5,6-diphenyl- 1,3-thiazinan-4-ones 117a–e (79–83%) as a
major product and (Z)-N‘-(2,4-dinitrophenyl)- 2,3-diphenylacrylo hydrazide 118 (8–12%) as minor
product (Scheme 33) [59].
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The mechanism for the formation of products 117a–e is presented in Scheme 34. The sulfur
atom attacks the conjugate double bond of 94 forming the intermediate 119. The intermediate 119
underwent ring opening to compound 120. Intramolecular nucleophilic attack of N-4 on C=O afforded
the intermediate 121 which rearranged to give 117a–e. On the other hand, N-4 attacks the carbonyl
group of 94 with the formation of 117a–e via intermediates 122 and 123 (Scheme 34).
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One-pot, three-component reactions of fluoro substituted benzaldehydes 124a,b with amines and
mecaptopropanoic acid afforded 1,3-thiazinan-4-one 125a,b. Under microwave-assisted palladium-
catalyzed coupling reactions in presence of boronic acid, thiazinanone 125a,b gave the biaryl
thiazinanones 126 and thioarylthiazinanones 127. The microwave-assisted reactions were carried
out using Pd(dppf)Cl2 [(1,1′-bis(diphenylphosphino)ferrocene) dichloro palladium(II)] as a catalyst,
K2CO3 as a base and 4:4:1 acetone/toluene/water as a co-solvent (Scheme 35) [60].

Polyfluoroalkanethioamides using BF3 in diethyl ether and ethyl acrylate were reacted and
afforded 1,3-thiazinan-4-one 130a–c (25–50%) through the formation of intermediates 128 and 129
(Scheme 36) [61].

4-Oxo-1,3-thiazinan-11-oxoundecensulfanyl propanoic acid 134 was prepared in two steps:
The hydrazine (N’-(3-nitrobenzylidene)undec-10-enehydrazide) (132) was first prepared by refluxing
10-undecenoic acid hydrazide 131 with m-nitrobenzaldehyde in anhydrous benzene. The compound
132 was then reacted with 3-mercaptopropionic acid, uncyclized adduct 133 (58%) was formed as aside
product along with 4-oxo-1,3-thiazinan-11-oxoundecyl thiopropanoic acid 134 (26%) (Scheme 37) [62].
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Isonicotinohydrazide (135) was reacted with aldehydes and 3-mercaptopropionic acid in 
presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) gave 1,3-(thiazinan-3-yl)- 
isonicotinamides 136a–f’ in moderate to high yields 60%–93% (Scheme 38) [63]. 

 
Scheme 38. (a) 1-ethyl-3-(3-dimethylaminoprop-yl)carbodiimide (EDC), THF, 0-rt, 5–6 h. 

Similarly 4-(2-(methyl(pyridin-2-yl)amino)ethoxy)benzaldehyde (137) was reacted with 
appropriate primary amines (RNH2) and 3-mercaptopropinoic acid in presence of 
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) at room temperature to give 
thiazinan-4-ones 138a–f (25%–54%) (Scheme 39) [64]. 
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Isonicotinohydrazide (135) was reacted with aldehydes and 3-mercaptopropionic acid in presence
of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) gave 1,3-(thiazinan-3-yl)- isonicotinamides
136a–f’ in moderate to high yields 60–93% (Scheme 38) [63].
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On the other hand, 4,5-dibromo-1-methyl-N-(4-oxo-2-aryl-1,3-thiazinan-3-yl)-1H-pyrrole-2-
carboxamide 140a–h were synthesized in a quantitative yields via one-pot three component
condensation between 4,5-dibromo-1-methyl-1H-pyrrole-2-carbohydrazide (139), aromatic aldehydes
and 3-mercaptopropionic acid in the ratio 1:2:3 in the presence of 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC) (Scheme 40) [65].
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4-(4-Oxo-6-phenyl-1,3-thiazinan-2-ylideneamino)benzoic acid (142) were obtained during the
stirring of (E)-4-(3-cinnamoylthioureido) benzoic acid (141) with sodium ethoxide at room temperature,
then the reaction mixture was neutralized by HCl (Scheme 41) [66].
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The base-catalyzed reactions of β-oxonitriles (ethyl 2-cyanoacetate) with ethyl
3-mercaptopropanoate were illustrated in Scheme 42. The more reactive β-oxonitrile reacted
with β-mercaptoester afforded ethyl (E)-4-oxo-[1,3]thiazinan-2-ylidene)ethanoate (144), after the
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The reaction of acyl thiourea 145 with potassium thiocyanate via an unusual thiocyanic
acid elimination through the formation of intermediates 146–148 afforded 2-imino-3-phenyl
-1,3-thiazinan-4-one (149) (Scheme 43) [68].
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Allylic bromides 151a–h were prepared from 150a–h and reacted with thiourea in a 3:1 mixture of
acetone:water at room temperature then reacted with an aqueous base of isothiouronium salts 152
gave 2-amino-1,3-thiazin-4-ones 153 as insoluble solids [69,70]. Transformation of 2-aminothiazin-
4-one 153a into thiazinane-2,4-dione 158a was achieved by hydrolysis in an acidic medium [71].
The development of this method was achieved via a two-step (one-pot) method, initially: acetylation
of 2-amino-thiazinan-4-one 153a followed by mild hydrolysis of the acetylated intermediates.
2-Iminothiazinan-4-one 153a was acetylated using acetic anhydride to give an approximately 1:1
mixture of two (out of four) possible acetylated isomers 154–157. Acetylation/hydrolysis protocol was
then extended to other thiazine-4-ones 153 with the formation of the expected 1,3-thiazinane-2,4-diones
158a–h (58–85%) (Scheme 44) [72].Molecules 2020, 25, x FOR PEER REVIEW 26 of 56 
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The condensation of 4-(3-isopropyl-4-methoxyphenoxy)-3,5-dimethylbenz-aldehyde (159) with
thiazolidine-2,4-dione (160) under basic conditions gave the rearranged thiazinane-2,4-dione 162 (12%)
in addition to thiazolidine-2,4-dione (161) (62%) (Scheme 45) [73].
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Scheme 45. Synthesis of thiazinane-2,4-dione 162. (a) piperidine, benzoic acid, toluene and reflux.

Under ice-condition reactions of oxazolidinethiones 163 with 3-bromo-propionyl chloride in
methylene chloride gave 1,3-thiazinane-2,4-diones 164a–d (23–78%) (Scheme 46) [74].

Molecules 2020, 25, x FOR PEER REVIEW 26 of 56 

 

 
Scheme 44. Synthesis of 1,3-thiazinane-2,4-diones 158a–h. (a) RCHO, DABCO; (b) LiBr, H+, CH3CN; 
(c) H2NCSNH2, acetone/H2O; (d) NaHCO3, H2O; (e) Ac2O, EtOH, 25 °C, then HCl (1 M), rt 1–3 h. 

The condensation of 4-(3-isopropyl-4-methoxyphenoxy)-3,5-dimethylbenz-aldehyde (159) with 
thiazolidine-2,4-dione (160) under basic conditions gave the rearranged thiazinane-2,4-dione 162 
(12%) in addition to thiazolidine-2,4-dione (161) (62%) (Scheme 45) [73]. 

 
Scheme 45. Synthesis of thiazinane-2,4-dione 162. (a) piperidine, benzoic acid, toluene and reflux. 

Under ice-condition reactions of oxazolidinethiones 163 with 3-bromo-propionyl chloride in 
methylene chloride gave 1,3-thiazinane-2,4-diones 164a–d (23%–78%) (Scheme 46) [74]. 

 
Scheme 46. 1,3-thiazinane-2,4-diones 164a–d. (a) NaH, CH2Cl2, 0 °C, 4 h. Scheme 46. 1,3-thiazinane-2,4-diones 164a–d. (a) NaH, CH2Cl2, 0 ◦C, 4 h.

The formation of 1,3-thiazinane-2,4-diones 164a–d took place through the formation of both,
the bromoamide 166 and S-alkylated intermediate 167 via N-acylation or intramolecular substitution
reaction, respectively. Both intermediates 166 and 167 gave the immonium salts 168, which lost HX
molecule with ring-opening to give 164a–d (Scheme 47).
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Synthesis of 1,3-thiazinane-2-thione-4-one Derivatives

Arylideneoxazalones 170a–g were added to (4-oxobutyl)carbamodithioic acid (169) and the mixture
was subjected to microwave irradiation in presence of montmorillonite K10 (SiO2/Al2O3), basic and
neutral alumina and silica gel-forming Michael adducts 171 which were cyclized to 1,3-thiazinane
derivatives 172a–g in yields 76–91% (Scheme 48) [75].
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Pseudo-peptide containing 4-oxo-2-thioxo-1,3-thiazinane 175 in 65% yield, was obtained via
Isocyanide-based six-component reactions with itaconic anhydride 173 (Scheme 49) [76].
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Initially, carbamodithioic acid was formed from a primary amine and carbon disulfide. Then,
Michael addition of carbamodithioic acid (in situ prepared) to itaconic anhydride 173 afforded the
intermediate 176, which underwent an intramolecular cyclization to give 174. The addition of the
carbenoid-C atom of the isocyanides onto the iminium group followed by the addition of the carboxylate
ion onto the C -atom of the nitrilium ion leads to the formation of the adduct 178, which underwent
intramolecular acylation (Mumm rearrangement) [77] to give 175 (Scheme 50).Molecules 2020, 25, x FOR PEER REVIEW 29 of 56 
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Similarly, one-pot three-component reaction of primary amines (RNH2), carbon disulfide
(CS2) and itaconic anhydride (173) in water resulted in the formation of 2-(3-alkyl-4-oxo-2-thioxo-
1,3-thiazinan-5-yl) acetic acid derivatives 174a–i in 68–95% yields (Scheme 51) [78].
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Carbamodithioic acid was formed from a primary amine and carbon disulfide. Then it underwent
Michael addition to itaconic anhydride 173 to give intermediate 176, which underwent an intramolecular
cyclization to afforded 174 (Scheme 52).
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Scheme 52. The mechanism for the formation of 2-(3-alkyl-4-oxo-2-thioxo-1,3-thiazinan-5-yl) acetic
acid derivatives 174a–i.

On the other hand, the one-pot reaction between primary amines and carbon disulfide in the
presence of acryloyl chloride afforded 2-thioxo-1,3-thiazinane-4-one derivatives 179 in 70–89% yields
(Scheme 53) [79].
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Synthesis of 1,3-thiazinane-2-thione Derivatives

Allylamines 181, which easily, obtained via the reaction of acetates 180 of Baylis–Hillman alcohols
with appropriate primary amines. The allylamine 181 was transformed into cis-5,6-disubstituted-
1,3-thiazinane-2-thione derivatives 182 (82–94%) via the reaction with carbon disulfide in the presence
of dimethylaminopyridine (DMAP) (Scheme 54) [80].
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A plausible mechanism for the formation of thiazinanes 182a–m, with 5,6-cis-stereochemistry,
is presented in Scheme 55. Nucleophilic attack of amine 181 onto CS2 gave the intermediate
thiocarbamate ion (S=C–S−) 183, which underwent Michael addition to the α,β-unsaturated nitrile
moiety to give the carbanion 184. Then protonation of the carbanion species 184 from the less hindered
side, gave the thiazinanes 182 with 5,6-cis-stereoselectivity.
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Solvent-free one-pot stereoselective synthesis of 1,3-thiazinane-2-thione derivatives 186 (85–89%)
was achieved through the interaction between primary amines, carbon disulfide and α,β-unsaturated
aldehydes (Scheme 56) [81].
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aldehyde to form intermediate 188, which underwent intramolecular nucleophilic cyclization on the
carbonyl group to afforded thiazinane-2-thione 186 (Scheme 57).Molecules 2020, 25, x FOR PEER REVIEW 32 of 56 
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obtained from dithiocarbamic acids with 1,3-dibromopropane [84] (Scheme 58) [85]. 
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Dithiocarbamates were reacted with 1,3-dibromopropane in basic medium gave 3-bromopropyl 
alk/arylcarbamodithioate 189, which cyclized to both 1,3-thiazinan-2-thione derivatives 188a–h (30–
73%) and 2-imino-1,3-dithian derivatives 190a–h (5–34%) (Scheme 60) [85]. 
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N-Alkyl-1,3-thiazine-2-thiones 188 was prepared from the reaction of 3-bromopropylamines [82]
or substituted thiourea via iminothiazines 189 [83] with carbon disulfide. In addition, it was obtained
from dithiocarbamic acids with 1,3-dibromopropane [84] (Scheme 58) [85].

Molecules 2020, 25, x FOR PEER REVIEW 32 of 56 

 

 
Scheme 57. The mechanism for the formation of 1,3-thiazinane-2-thione derivatives 186. 

N-Alkyl-1,3-thiazine-2-thiones 188 was prepared from the reaction of 3-bromopropylamines 
[82] or substituted thiourea via iminothiazines 189 [83] with carbon disulfide. In addition, it was 
obtained from dithiocarbamic acids with 1,3-dibromopropane [84] (Scheme 58) [85]. 

 
Scheme 58. Synthesis of N-Alkyl-1,3-thiazine-2-thiones 188. (a) CS2, base; (b) CS2, heat; (c) 
1,3-dibromopropane, base. 

1,3-Thiazinane-2-thione 188 (50% yield) was prepared via the treatment of 3-aminopropan-1-ol 
with sulfochloridic acid followed by carbon disulfide (CS2) (Scheme 59) [86]. 

 
Scheme 59. Synthesis of 1,3-Thiazinane-2-thione 188. (a) ClSO3H, CCl4, MeOH, 0 °C; (b) CS2, NaOH, 
EtOH (50%), 0 °C, then reflux 30–40 min. 

Dithiocarbamates were reacted with 1,3-dibromopropane in basic medium gave 3-bromopropyl 
alk/arylcarbamodithioate 189, which cyclized to both 1,3-thiazinan-2-thione derivatives 188a–h (30–
73%) and 2-imino-1,3-dithian derivatives 190a–h (5–34%) (Scheme 60) [85]. 

Scheme 58. Synthesis of N-Alkyl-1,3-thiazine-2-thiones 188. (a) CS2, base; (b) CS2, heat; (c)
1,3-dibromopropane, base.

1,3-Thiazinane-2-thione 188 (50% yield) was prepared via the treatment of 3-aminopropan-1-ol
with sulfochloridic acid followed by carbon disulfide (CS2) (Scheme 59) [86].

Molecules 2020, 25, x FOR PEER REVIEW 32 of 56 

 

 
Scheme 57. The mechanism for the formation of 1,3-thiazinane-2-thione derivatives 186. 

N-Alkyl-1,3-thiazine-2-thiones 188 was prepared from the reaction of 3-bromopropylamines 
[82] or substituted thiourea via iminothiazines 189 [83] with carbon disulfide. In addition, it was 
obtained from dithiocarbamic acids with 1,3-dibromopropane [84] (Scheme 58) [85]. 

 
Scheme 58. Synthesis of N-Alkyl-1,3-thiazine-2-thiones 188. (a) CS2, base; (b) CS2, heat; (c) 
1,3-dibromopropane, base. 

1,3-Thiazinane-2-thione 188 (50% yield) was prepared via the treatment of 3-aminopropan-1-ol 
with sulfochloridic acid followed by carbon disulfide (CS2) (Scheme 59) [86]. 

 
Scheme 59. Synthesis of 1,3-Thiazinane-2-thione 188. (a) ClSO3H, CCl4, MeOH, 0 °C; (b) CS2, NaOH, 
EtOH (50%), 0 °C, then reflux 30–40 min. 

Dithiocarbamates were reacted with 1,3-dibromopropane in basic medium gave 3-bromopropyl 
alk/arylcarbamodithioate 189, which cyclized to both 1,3-thiazinan-2-thione derivatives 188a–h (30–
73%) and 2-imino-1,3-dithian derivatives 190a–h (5–34%) (Scheme 60) [85]. 

Scheme 59. Synthesis of 1,3-Thiazinane-2-thione 188. (a) ClSO3H, CCl4, MeOH, 0 ◦C; (b) CS2, NaOH,
EtOH (50%), 0 ◦C, then reflux 30–40 min.



Molecules 2020, 25, 5610 32 of 54

Dithiocarbamates were reacted with 1,3-dibromopropane in basic medium gave 3-bromopropyl
alk/arylcarbamodithioate 189, which cyclized to both 1,3-thiazinan-2-thione derivatives 188a–h (30–73%)
and 2-imino-1,3-dithian derivatives 190a–h (5–34%) (Scheme 60) [85].Molecules 2020, 25, x FOR PEER REVIEW 33 of 56 
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DL-Homocysteine was reacted with benzaldehyde in absolute ethanol for three days, afforded 
the stereoisomers (2S,4R)-, (2S,4S)-, (2R,4R)-, (2R,4S)-2-phenyl-1,3-thiazinane-4-carboxylic acid (197) 
(Scheme 62) [88]. 

Scheme 60. Synthesis of 1,3-thiazinan-2-thione derivatives 188a–h and 2-imino-1,3-dithian derivatives
190a–h. EtOH, base, reflux.

2-Oxo-thiophen acetamide 192 was reacted with aryl isothiocyanates 191a–c yielding butyric
acid derivatives 193a–c. Cyclization of 193a,b in the presence of dicyclohexylcarbodimide (DCC) and
4-pyrrolidinopyridine yielded 1,3-thiazipane derivatives 194, which underwent ring transformation to
afford 1,3-thiazinan-2-thione derivatives 196a,b (78% and 54%) (Scheme 61) [87].
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widely used to design fluorescent probes for the detection of the concentration of Cys and HCys in
living tissues.

DL-Homocysteine was reacted with benzaldehyde in absolute ethanol for three days, afforded
the stereoisomers (2S,4R)-, (2S,4S)-, (2R,4R)-, (2R,4S)-2-phenyl-1,3-thiazinane-4-carboxylic acid (197)
(Scheme 62) [88].Molecules 2020, 25, x FOR PEER REVIEW 34 of 56 

 

 
Scheme 62. Synthesis of (2S,4R)-, (2S,4S)-, (2R,4R)-, (2R,4S)-2-phenyl-1,3-thiazinane-4-carboxylic acid 
(197). (a) EtOH/H2O, 3 d, r.t. 

The reaction of Ir(pba)2(acac) 198 (Hpba = 4-(2-pyridyl)benzaldehyde; acac = acetylacetone) 
with homocysteine under stirring for 12 days in mixture of CH2Cl2/MeOH as solvent (2:1 v/v) 
afforded Iridium complex of thiazinane 199 (16%) (Scheme 63) [89]. 

 
Scheme 63. Synthesis of Iridium complex of 1,3-thiazinane-4-carboxylic acid 199. (a) CH2Cl2 and 
MeOH (2:1v/v), 12 h. 

Homocysteine was reacted with 2′-((2-hydroxyethyl)amino)-[1,1′:4′,1′’-terphenyl]- 
4,4′’-dicarb-aldehyde 200 bearing electron-donating group (-NH(CH2)2OH) and electron 
withdrawing group (-CHO) gave 2,2′-(2′-((2-hydroxyethyl)amino)-[1,1′:4′,1′’-terphenyl 
]-4,4′’-diyl)bis(1,3-thiazinane-4-carboxylic acid) 201 (Scheme 64) [90]. 

 
Scheme 64. Synthesis of 2,2′-(2′-((2-hydroxyethyl)amino)-[1,1′:4′,1′’-terphenyl]-4,4′′-diyl) 
bis.(1,3-thiazinane-4-carboxylic acid) 201. DMSO, r.t. 
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The reaction of Ir(pba)2(acac) 198 (Hpba = 4-(2-pyridyl)benzaldehyde; acac = acetylacetone) with
homocysteine under stirring for 12 days in mixture of CH2Cl2/MeOH as solvent (2:1 v/v) afforded
Iridium complex of thiazinane 199 (16%) (Scheme 63) [89].
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Homocysteine was reacted with 2′-((2-hydroxyethyl)amino)-[1,1′:4′,1′′-terphenyl]-4,4′′-dicarb
-aldehyde 200 bearing electron-donating group (-NH(CH2)2OH) and electron withdrawing group
(-CHO) gave 2,2′-(2′-((2-hydroxyethyl)amino)-[1,1′:4′,1′′-terphenyl]-4,4′′-diyl)bis(1,3-thiazinane-4-
carboxylic acid) 201 (Scheme 64) [90].
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4-(6,11-Dioxo-6,11-dihydro-1H-anthra[1,2-d] imidazol-2-yl)benzaldehyde (203) was synthesized
through condensation between 1,2-diaminoanthraquinone (202) and terephthalaldehyde. In addition,
imidazophenanthrolin benzaldehyde 206 was obtained by refluxing a mixture of 1,10-phen
anthroline-5,6-dione 205 and terephthalaldehyde. The two ligands 202 and 206 were cyclized
with homocysteine furnished anthra[1,2-d]imidazolyl-1,3-thiazinane-4-carboxylic acid 204 and
imidazophenanthrolin-1,3-thiazinane-4-carboxylic acid 207, respectively (Scheme 65) [91].
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Ruthenium (II( complexes containing aldehyde groups 208 were characterized to recognize
homocysteine via the formation of thiazinane 209. A strong luminescence response was found upon
the reaction of the ruthenium (II) chromophore 208 with homocysteine (Scheme 66) [92].
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Tetraphenylethylenedialdehyde (210) was used for the detection of homo-cysteine via the formation
of ((E)-2,2′-((1,2-diphenylethene-1,2-diyl)-bis(4,1-phenylene))bis(1,3-thiazinane-4- carboxylic acid)) 211
in DMSO under buffering conditions (pH = 7.4) as shown in Scheme 67 [93].
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The trialdehyde 212 showed high selectivity for homocysteine at pH = 6.0 via the formation of
thiazinane 213 (Scheme 68) [94].
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Suzuki–Miyaura–cross-coupling [95] of 4-chloro-7-nitrobenzo[1,2,5]-oxadiazole 214 with
4-formylphenylboronic acid 215 yielded (4-(7-nitrobenzo-[c][1,2,5]oxadiazol-4-yl)benzaldehyde)
(216), which was reacted with homocysteine afforded a highly fluorescent compound
oxadiazolyl-1,3-thiazinane-4-carboxylic acid 217 through the cyclization with the aldehydic group
(Scheme 69) [96].
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The azo dyes 4-[[40-(N,N-dimethylamino)phenyl-10-]azo]benzaldehyde 218 and 4-[[4′-(bis(2-
hydroxyethyl)amino)phenyl-10-]azo]-3-nitrobenzaldehyde 220 were reacted with cysteine and
homocysteine. The reaction of 218 and 220 with homocysteine afforded very stable derivatives
thiazinane 219 and 221 under neutral pH conditions (Scheme 70) [97].
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1,10-Bi-2-naphthol 224 based dialdehyde was found to exhibit selective fluorescent response 
towards cellular thiols, cysteine and homocysteine. 2,2′-Dihydroxy-[1,1′-binaphthalene]-3,3′-dicarb 
aldehyde (224) reacted with homocysteine, resulted in the formation of thiazinane 225 (Scheme 72) 
[99]. 

 
Scheme 72. Synthesis of thiazinane 225. (a) MeOH, Zn(OAc)2, r.t. 

Scheme 70. Synthesis of thiazinane 219 and 221. (a) DMF-H2O v/v (9:1), buffer pH 7.0, r.t.

Quinoline derivative 222 was also used to detect homocysteine depending on, the formation of
thiazinane 223 ring through cyclization reaction (Scheme 71) [98].
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1,10-Bi-2-naphthol 224 based dialdehyde was found to exhibit selective fluorescent response
towards cellular thiols, cysteine and homocysteine. 2,2′-Dihydroxy-[1,1′-binaphthalene]-3,3′-dicarb
aldehyde (224) reacted with homocysteine, resulted in the formation of thiazinane 225 (Scheme 72) [99].
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The addition of homocysteine into 5-(benzothiazol-2-yl)-4-hydroxyiso-phthalaldehyde (226)
o-aldehyde group was transformed into (2S,4R)-benzo[d]thiazol-1,3-thiazinane-4-carboxylic acid
derivatives 227 (Scheme 73) [100].



Molecules 2020, 25, 5610 37 of 54

Molecules 2020, 25, x FOR PEER REVIEW 38 of 56 

 

The addition of homocysteine into 5-(benzothiazol-2-yl)-4-hydroxyiso-phthalaldehyde (226) 
o-aldehyde group was transformed into (2S,4R)-benzo[d]thiazol-1,3-thiazinane-4-carboxylic acid 
derivatives 227 (Scheme 73) [100]. 

 
Scheme 73. Synthesis of (2S,4R)-benzo[d]thiazol-1,3-thiazinane-4-carboxylic acid derivatives 227. (a) 
H2O, HEPES buffer pH 7.4. 

6-((4-(Dimethylamino)phenyl)ethynyl)quinoline-2-carbaldehyde (228) showed high selectivity 
in the detection of cysteine and homocysteine, because of the formation of thiazolidine and 
thiazinane derivatives. The quinoline-2-carbaldehyde 228 was reacted with homocysteine afforded 
2-(6-((4-(dimethylamino)-phenyl)ethynyl)quinolin-2-yl)-1,3-thiazinane-4-carboxylic acid 229 
(Scheme 74) [101]. 

 
Scheme 74. Synthesis of 2-(6-((4-(dimethylamino)-phenyl)ethynyl)quinolin-2-yl)-1,3-thiazinane 
-4-carboxylic acid 229. DMSO-H2O, PBS buffer pH 7.4. 

2.1.3. Synthesis of 1,4-thiazinane Derivatives 

2.1.3.1. From Diazabutadiene and Butylaminoethanethiol 

Addition of 2-(butylamino)ethanethiol 231 to 1,2-diaza-1,3-butadiene 230 resulted in the 
formation of hydrazone 1,4-adduct intermediate 232. The reaction between 231 and 
1,2-diaza-1,3-butadienes 230 containing an ester group in position 4 of the heterodiene system gave 
2-[1-(4-butyl-3-oxo-1,4-thiazinan-2-yliden)ethyl]-1-hydrazinecarboxylates 234a,b (96% and 63%) via 
intermediates 232 and 233 (Scheme 75) [102]. 

Scheme 73. Synthesis of (2S,4R)-benzo[d]thiazol-1,3-thiazinane-4-carboxylic acid derivatives 227.
(a) H2O, HEPES buffer pH 7.4.

6-((4-(Dimethylamino)phenyl)ethynyl)quinoline-2-carbaldehyde (228) showed high selectivity in
the detection of cysteine and homocysteine, because of the formation of thiazolidine and thiazinane
derivatives. The quinoline-2-carbaldehyde 228 was reacted with homocysteine afforded 2-(6-((4-
(dimethylamino)-phenyl)ethynyl)quinolin-2-yl)-1,3-thiazinane-4-carboxylic acid 229 (Scheme 74) [101].
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From Cyclic Sulfamidates

Cyclic sulfates and cyclic sulfamidates represented a versatile class of functionalized and
enantiomerically pure electrophiles. A six-ring N-heterocycle ((S)-4,5-dibenzyl-1,4-thiazinane-3-one)
237 (94%) was formed through a regioselective nucleophile displacement on 235 via reaction with
methyl 2-mercaptoacetate and subsequent lactamization of (S)-benzyl(1-((2-methoxy-2-oxoethyl)
thio)-3-phenylpropan-2-yl)sulfamate (236) (Scheme 76) [103].
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Scheme 76. Synthesis of ((S)-4,5-dibenzyl-1,4-thiazinane-3-one) 237. (a) Na2CO3, THF; (b) toluene,
5-M HCl.

From Diethyl 2,2-sulfonyldiacetate

Diethyl 3,5-diphenyl-1,4-thiazinane-2,6-dicarboxylate 1,1-dioxide 239a–m (79–91%) were formed
by reacting diethyl 2,2-sulfonyldiacetate (238) and aryl/heteroyl aldehydes in water, in the presence of
ammonium acetate (Scheme 77) [104].
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From Ethyl 2-[(2-oxo-2-arylethyl)sulfonyl]acetate

The reaction of sulfonylacetate 240, aromatic aldehydes and amines in presence of L-proline (241)
as green catalyst furnished 1,1-dioxo-1,4-thiazinane-2-carboxylates 242a–a’ (72–90%) (Scheme 78) [105].
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L-Proline catalyzed the reaction between sulfonyl acetate and aromatic aldehyde via the formation
of enamine-imine intermediates 243 and 244, respectively, followed by dehydration of 244 to give
intermediate 245. Losing of, proline moiety of 245 via the attack of the amine result in the formation
of intermediate 246, which was condensed with another molecule of the aldehyde followed by
intramolecular cyclization with deprotonation to furnish 242 (Scheme 79).Molecules 2020, 25, x FOR PEER REVIEW 41 of 56 
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2.1.4. Synthesis of Fused Thiazinane Derivatives

Synthesis of Tetrahydrocyclopenta[e][1,3]thiazinan-2,4-dione

Tetrahydrocyclopenta[e][1,3]thiazinan-2,4-dione 250 was formed by reacting 2-thio
cyanatocycIopent-1-ene-1-carboxylic acid (248) and thionyl chloride at room temperature via ring
closure of the intermediate carboxylic acid chloride 249 (Scheme 80) [106].
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Synthesis of 1,3-benzothiazinan-4-one Derivatives

4-Methylsulfonylbenzaldehyde (251) was reacted with aromatic amines and thiosalicylic acid
(252) in the presence of p-TsOH gave 2-(4-methylsulfonylphenyl)-3-substituted-1,3-benzothiazinan-
4-one 253a–f (33–73/5) (Scheme 81) [107].Molecules 2020, 25, x FOR PEER REVIEW 42 of 56 
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Synthesis of Tetrahydropyrido[2,1-b]-[1,3]thiazine-7-carboxylate

In multicomponent reactions, ethyl 6-amino-8-(4-methoxy phenyl)-9-nitro-2,3,4,8-tetrahydro-
pyrido[2,1-b][1,3]thiazine-7-carboxylate 256 were synthesized. Initially, 3-aminopropanethiol
was reacted with (2-nitroethene-1,1-diyl)bis-(methylsulfane) (254) in dry ethanol afforded
2-(nitro-methylene)-1,3-thiazinane (255). In the second step, compound 255 reacted with ethyl
cyanoacetate and p-methoxybenzaldehyde furnished ethyl 6-amino-8-(4-methoxyphenyl)-9-nitro-
2,3,4,8-tetrahydropyrido[2,1-b][1,3]thiazine-7-carboxylate (256) (Scheme 82) [108].
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Synthesis of [1,3]thiazino[3,2-a]indole

Thiazinane[3,2-a] indole 261 was synthesized from 1-(3-(acetylthio)propyl)-2,3,3-trimethyl-3H-
indol-1-ium iodide (258). N-Substituted-3H-indoles (258) were obtained via nucleophilic substitution
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of 2,3,3-trimethyl-3H-indole (257) with alkyl halides (S-(3-iodopropyl)ethanethioate). Condensation
of 258 with the reactive cyanine derivative ((E)-1-ethyl-3,3-dimethyl-2-(2-(N- phenylacetamido)
vinyl)-3H-indol-1-ium chloride) (259) afforded protected 1-(3-(acetylthio)propyl)-2-((1E,3E)-
3-(1-ethyl-3,3-dimethylindolin-2-ylidene)prop-1-en-1-yl)-3,3-dimethyl-3H-indol-1-ium iodide) (260).
After deprotection under basic conditions [1,3]thiazino[3,2-a] indole 261 was obtained in high yield
93% (Scheme 83) [109].
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Synthesis of [1,3]dioxolo[4′,5′:3,4]pyrido[2,1-b][1,3]thiazinanone

Microwave-assisted one-pot Staudinger/aza-Wittig/cyclization reaction using 262a and 262b as
the starting materials afforded two diastereoisomers of the bi/tricyclic azasugars 263a,b and 264 in
satisfying yields with low stereoselectivity (in total yields 62%) (Scheme 84) except the case of the
reaction of 262b with 3-mercaptopropionic acid stereospecifically afforded a single diastereoisomer
((3aS,4R,5R,-10aR,10bS)-4-hydroxy-5-((trityloxy)methyl)hexahydro-[1,3]dioxolo-[4′,5′:3,4]pyrido-[2,1-b]
[1,3]-thiazin-7(3aH)-one) (263b, 71%), possibly due to the synergistic hindrance effects of the cis
neighboring cyclic 2,3-isopropylidene and 5β-group in 262b, which made a dominant exo-attack of the
sulfur atom to the intermediate imine (Scheme 84) [110].
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The aza-sugar 262 was cyclized to intermediate 265 in presence of PPh3 with losing of N2 and
Ph3P=O. Nucleophilic attack of the thiol–group of the mercaptopropionic acid on the imine carbon of
265 gave intermediate 266. Intramolecular cyclization of intermediate 266 afforded 263 (Scheme 85).Molecules 2020, 25, x FOR PEER REVIEW 44 of 56 
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and 264.

Synthesis of Octahydrobenzo[f][1,3]thiazino[2,3-b]quinazoline

Unsymmetrical quinazoline-3-thione (1-(4-chlorophenyl)-1,2,5,6-tetrahydro-benzo[f ]quinaz
oline-3(4H)-thione) 268 (78%) was obtained from one-pot condensation of 2-tetralone 267,
p-chlorobenzaldehyde and thiourea in acidic medium. Condensation of quinazoline-3-thione 268 with
3-chloropropionic acid and 1,3-dibromopropane furnished thiazinoquinazoline derivatives 269 and
271 in 60% and 52% yield, respectively, instead of their regioisomers 270 and 272 (Scheme 86) [111].
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2.1.5. Synthesis of Spirothiazinane Derivatives

Condensation of fluorinated indole-2,3-diones 273a and 1-acetylindole-2,3-diones 273b with
fluorinated aniline afforded 3-arylimino-2H-indol-2-ones 274, which, in situ, were cyclized with
3-mercaptopropanoic acid to afford the spiro compounds 275. In a few cases, intermediates
isatin-3-anil 274 were isolated (Scheme 87) [112–114]. In addition, it was reported that fluorinated
spiro[indoline-3,2′-[1,3]thiazinane]-2,4′-diones 275, were synthesized via one-step synthesis through
the formation of Schiff’s bases followed by cyclization with 3-mercaptopropanoic acid, both thermally
and under microwave irradiation. The reactions were studied under different reaction conditions.
It was observed that the yield was improved when the reaction was carried out under microwave
irradiation [115]. Furthermore, Dandia et al. reported, a one-pot solvent-free synthesis of spiro[indole-
3,2-[1,3]thiazinane]-2,4-diones 275a (4 min, 140 ◦C (85%); 6 min, 135 ◦C (93%)) [108] from the reaction
of intermediate 274 with 3-mercaptopropionic acid (Scheme 87) [112–117].
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2.2. Reactions of Thiazinanes

2.2.1. Reactions of 1,2-thiazinanes

N-Arylation of 1,2-thiazinane

N-Arylation reaction of 1,2-thiazinane-1,1-dioxide 41c using Cu2O and Cs2CO3 in water gave
N-arylmethanesulfonamide (2-phenyl-1,2-thiazinane-1,1-dioxide) 276 (82%) (Scheme 88) [118].

Molecules 2020, 25, x FOR PEER REVIEW 45 of 56 

 

isatin-3-anil 274 were isolated (Scheme 87) [112–114]. In addition, it was reported that fluorinated 
spiro[indoline-3,2′-[1,3]thiazinane]-2,4′-diones 275, were synthesized via one-step synthesis through 
the formation of Schiff`s bases followed by cyclization with 3-mercaptopropanoic acid, both 
thermally and under microwave irradiation. The reactions were studied under different reaction 
conditions. It was observed that the yield was improved when the reaction was carried out under 
microwave irradiation [115]. Furthermore, Dandia et al. reported, a one-pot solvent-free synthesis of 
spiro[indole-3,2-[1,3]thiazinane]-2,4-diones 275a (4 min, 140 °C (85%); 6 min, 135 °C (93%)) [108] 
from the reaction of intermediate 274 with 3-mercaptopropionic acid (Scheme 87) [112–117]. 

 
Scheme 87. Synthesis of spiro[indole-3,2-[1,3]thiazinane]-2,4-diones 275a–j. (a) solvent-free, MW 30 
s, 640 W; (b) MW 4 min, 640 W (85%) or montmorillonite KSF, MeOH, MW 6 min, 640 W (93%). 

2.2. Reactions of Thiazinanes 

2.2.1. Reactions of 1,2-thiazinanes 

N-Arylation of 1,2-thiazinane 

N-Arylation reaction of 1,2-thiazinane-1,1-dioxide 41c using Cu2O and Cs2CO3 in water gave 
N-arylmethanesulfonamide (2-phenyl-1,2-thiazinane-1,1-dioxide) 276 (82%) (Scheme 88) [118]. 

 
Scheme 88. Synthesis of N-arylmethanesulfonamide (2-phenyl-1,2-thiazinane-1,1-dioxide) 276. (a) 
Cu2O (2 mol.%), CsCO3 (2 equiv.), H2O, 130 °C. 

2-(4-Bromobenzyl)-1,2-thiazinane-1,1-dioxide 276b was prepared via direct sulfonamidation of 
(4-bromophenyl)methanol. The reaction between (4-bromophenyl)methanol and 1,2-thiazinane- 
1,1-dioxide 41c was carried out using 2,3,4,5-tetrafluorophenylboronic acid, oxalic acid dihydrate 
and HFIP (hexafluoroisopropanol)/nitromethane mixture to afford 276b (Scheme 89) [119]. 

Scheme 88. Synthesis of N-arylmethanesulfonamide (2-phenyl-1,2-thiazinane-1,1-dioxide) 276.
(a) Cu2O (2 mol.%), CsCO3 (2 equiv.), H2O, 130 ◦C.



Molecules 2020, 25, 5610 44 of 54

2-(4-Bromobenzyl)-1,2-thiazinane-1,1-dioxide 276b was prepared via direct sulfonamidation
of (4-bromophenyl)methanol. The reaction between (4-bromophenyl)methanol and 1,2-thiazinane-
1,1-dioxide 41c was carried out using 2,3,4,5-tetrafluorophenylboronic acid, oxalic acid dihydrate and
HFIP (hexafluoroisopropanol)/nitromethane mixture to afford 276b (Scheme 89) [119].Molecules 2020, 25, x FOR PEER REVIEW 46 of 56 
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2.2.2. Reactions of 1,3-thiazinanes

Ring-opening of N-substituted 1,3-thiazinanes and Synthesis of Thioesters

1,3-Thiazinane-4-ones 130a–c relatively stable in aqueous alkaline medium and are easily
hydrolyzed under acidic conditions. Treatment of 130a–c with conc. HCl resulted in, the formation of
thioester derivatives 277a–c. The possible reaction mechanism includes the elimination of ethanol from
130a–c catalyzed by HCl with its subsequent addition to 278 giving intermediate 279. Hydrolysis of
the latter led to acyclic imine 280, which was converted into 277a–c (63–82%) under acidic conditions
(Scheme 90) [61].
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N-Alkylation of 1,3-thiazinane-2-thione

1,3-Thiazinane-2-thione (188) reacted with 1,2-dichloro-4-(1-chloroethyl)-benzene in presence of
sodium hydride afforded 3-substituted 1,3-thiazinane-2-thione 281 (Scheme 91) [120].
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Similarly, 1,3-thiazinane-2-thione (188) was reacted with 1-chloro-4-(1-chloroethyl)benzene in
presence of K2CO3 afforded 3-[1-(4-chlorophenyl)ethyl]-1,3-thiazinane-2-thione 282 (Scheme 92) [121].
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In addition, 1,3-thiazinane-2-thione 188 [82] was condensed with 1-(1-hydroxyalkyl) benzotriazoles
in the presence of boron trifluoride gave 3-(1-benzotriazolylalkyl)thiazine-2-thiones 283. Nucleophilic
substitution of benzotriazolyl group in 3-(1-benzotriazolyl alkyl)-1,3- thiazinane-2-thiones 283 using thiol
compounds and in the presence of ZnBr2, 3-[1-(substituted sulfanyl)alkyl]-1,3-thiazinane-2-thiones 284a–c
were formed (78; 77; and 79%). On the other hand, 1,3-thiazinane-2-thiones 283 reacted with triethyl phosphite
catalyzed by ZnBr2 in CH2Cl2 under reflux furnished 1-(2-thioxo-1,3-thiazinan-3-yl)alkylphosphonates
285a,b (72; 77%) (Scheme 93) [85].
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Synthesis of Bis-pyrrol and Bis-pyrrolothiazole

(Z)-2,2-Dichloro-1-(2-ethylidene-1,3-thiazinan-3-yl)butan-1-one 54a underwent stereoselective
copper-catalyzed radical cyclization (RC) under reaction conditions: CuCl with TMEDA or PMDETA
in MeCN to give a 9:1 mixture of dimers 286 and 287, respectively. Only traces of thioester 289 were
indicated with the absence of dimer 288 (Scheme 94) [122].
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Synthesis of Maleic Anhydride

Radical cyclization of (Z)-3-(2,2-dichloropropanoyl)-2-pentadecylidene-1,3-thiazinane 54 giving,
thioacetal 286 and disulfide 288 (Scheme 94) [37]. Acetal 286 was oxidized to disulfide 287 using KI in
water via the liberation of iodine (I2) as illustrated in scheme b. N-(3-Hydroxypropyl)-undec-10-enamide
was applied in the reaction yield enhancement, which subjected to radical cyclization, followed by
hydrolysis to furnish maleic anhydride 291 (60%) (Scheme 95) [123].
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The liberation of iodine catalyzed radical oxidation of S,S-acetal 286 by accelerating ring-opening
of intermediate 292 to 293. In presence of H2O as a nucleophile attacked the imine-carbon in 293 to give
the hydroxylated intermediate 294. The liberation of HI from 294 gave disulfide 287, which hydrolyzed
to maleic anhydride 291 (Scheme 96).
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thieno[3,2-b][1,5]thiazocin-6(3H)-one) (299) was prepared from with the synthesis of 296 and 297
via the ring opening of 1,3-thiazinane-2-thione (188). Aminothiol 296 and 297 was isolated as a
thiol/disulfide mixture and used directly in the aforementioned cyclo-condensation-deprotection
sequence with methyl 5-(benzyloxy)-3-chlorobenzo[b]thiophene-2-carboxylate (298) to provide
the desired 8-membered thiazepinone analogs (10-(benzyloxy)-4,5-dihydro-2H-benzo[4,5]thieno-
[3,2-b][1,5]thiazocin-6(3H)-one) 299 (42%) (Scheme 98) [125].
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