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We aimed to determine whether multiresolution fractal analysis of voxel-based dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) parametric maps can provide early prediction of breast cancer
response to neoadjuvant chemotherapy (NACT). In total, 55 patients underwent 4 DCE-MRI examinations
before, during, and after NACT. The shutter-speed model was used to analyze the DCE-MRI data and gener-
ate parametric maps within the tumor region of interest. The proposed multiresolution fractal method and the
more conventional methods of single-resolution fractal, gray-level co-occurrence matrix, and run-length matrix
were used to extract features from the parametric maps. Only the data obtained before and after the first
NACT cycle were used to evaluate early prediction of response. With a training (N � 40) and testing (N �
15) data set, support vector machine was used to assess the predictive abilities of the features in classifica-
tion of pathologic complete response versus non-pathologic complete response. Generally the multiresolution
fractal features from individual maps and the concatenated features from all parametric maps showed better
predictive performances than conventional features, with receiver operating curve area under the curve
(AUC) values of 0.91 (all parameters) and 0.80 (Ktrans), in the training and testing sets, respectively. The dif-
ferences in AUC were statistically significant (P � .05) for several parametric maps. Thus, multiresolution
analysis that decomposes the texture at various spatial-frequency scales may more accurately capture
changes in tumor vascular heterogeneity as measured by DCE-MRI, and therefore provide better early pre-
diction of NACT response.

INTRODUCTION
Breast cancer is the second leading cause of cancer death among
all cancers occurring in American women (1). The survival rate
and prognosis of a patient with breast cancer is dependent on
the stage of cancer at diagnosis. Locally advanced breast cancers
(generally with tumor size �2 cm) are often treated with neo-
adjuvant chemotherapy (NACT) before surgery to reduce the
tumor size for breast-conserving surgery (2, 3). A pathological
complete response (pCR) to NACT is considered a surrogate
marker for overall and long-term disease-free survival (4). How-
ever, the pCR rate is only 6%–45% depending on breast cancer
subtypes and treatment regimen (5, 6, 7, 8). It is therefore
important to identify the nonresponders at an early stage so that
their treatment regimen can be modified, sparing them the long-
and short-term toxicities from ineffective chemotherapies. Cur-

rently, in standard of care, the response to NACT is evaluated
based on the histological examination of a surgical specimen
taken after the completion of NACT. Noninvasive or minimally
invasive methods that can predict therapy response at the early
stages of NACT can potentially play an important role in the
emerging era of precision medicine to help guide regimen de-
escalation/alteration in NACT treatment of breast cancer (9).

A significant change in the microenvironment of the tumor,
such as perfusion/permeability and metabolism, usually pre-
cedes a reduction in tumor size as response to chemotherapy
(10-13). As a noninvasive imaging method for assessment
of microvascular perfusion/permeability, dynamic contrast-en-
hanced magnetic resonance imaging (DCE-MRI) is increasingly
used in research and early-phase clinical trial settings to predict
and evaluate cancer response to treatment (9, 10). Several stud-
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ies (9, 14-22) have shown that changes in quantitative param-
eters estimated from pharmacokinetic modeling of DCR-MRI
data can be useful markers for early prediction of breast cancer
response to NACT.

When compared to normal tissue vasculature, tumor vas-
culature exhibits greater spatiotemporal heterogeneity. The het-
erogeneity of the tumor vasculature reflects the tumor stage and
the disease progression (23). The aforementioned DCE-MRI
studies (9, 14-22) generally reported changes in mean parameter
values of the entire breast tumor, masking the potential changes
in spatial heterogeneity of the microvasculature in response to
NACT. Image texture features that can capture the heterogeneity
of tumor vasculature from DCE-MRI images or voxel-based
parametric maps could be highly useful in assessing tumor
response to therapy. Several texture analysis methods such as
gray-level co-occurrence matrix (GLCM) and gray-level run
length matrix (RLM) have been frequently used in DCE-MRI
analysis (24, 25). They were initially used on DCE-MRI images
directly. Teruel et al. (24) analyzed T1-weighted DCE-MRI im-
ages using GLCM features to predict breast cancer response to
NACT. They extracted 16 textural features at each time point of
a DCE-MRI acquisition, and the most significant feature yielded
a receiver operating curve (ROC) area under the curve (AUC) of
0.77 for prediction of pCR versus stable disease. Similarly,
Golden et al. (25) used GLCM features from pre- and post-NACT
2-dimensional (2D) DCE image slices to evaluate NACT re-
sponse. The pre-NACT features were able to predict pCR with an
AUC of 0.68. Although the post-NACT features showed more
favorable performances in predicting pCR, these were obtained
after the completion of NACT and were not useful for early
prediction of pCR. Several studies have performed the same
texture analysis on voxel-based maps of pharmacokinetic pa-
rameters estimated from pharmacokinetic modeling of DCE-MRI
data. Banerjee et al. (26) extracted a combination of intensity,
texture, shape, and edge-based features from 2D maps of phar-
macokinetic parameters before and after NACT to assess treat-
ment response. Their best model obtained an AUC of 0.83, using
a concatenation of Riesz and first-order statistical features.
However, the use of only pre- and post-NACT data limits the
utility of this model for early prediction of NACT response. In
our previous study, we (27) have extracted multiple statistical
texture features from 3-dimensional (3D) pharmacokinetic para-
metric maps before and after 1 cycle of NACT, and found that 3D
GLCM features were most effective for early prediction of NACT
response through correlation with index values of residual can-
cer burden (RCB) using a regression model.

In all the analysis methods described above, texture has
been studied on a statistical level, by analyzing the spatial
distribution of the gray-level values. Textures can also be char-
acterized by fractals, which describe irregular structures that
show self-similarity at various scales. Fractal-based texture
analysis correlates texture heterogeneity to fractal dimension
(FD), which is a mathematical descriptor of a structure’s geo-
metrical complexity, based on the concept of spatial pattern
self-similarity. Rose et al. (28) showed that fractal analysis could
be used to quantify spatial heterogeneity in DCE-MRI paramet-
ric maps and differentiate between low- and high-grade tumors.

Several other studies (29, 30) have used fractal analysis of breast
DCE-MRI images to classify benign versus malignant tumors.

Another important aspect while considering textures is the
scale. It has been shown that human visual system processes
information in a multiscale approach (different cells in the
visual cortex respond to different frequencies and orientations)
(31). Owing to the highly heterogeneous nature of the tumor
vasculature, analyzing images at a single resolution may not be
able to capture the entire complexity of the tumor vasculature. A
multiresolution approach can decompose an image into differ-
ent levels of resolution, giving an opportunity to extract infor-
mative features at each level. Lower resolution levels best rep-
resent large structures or high contrast, while higher resolutions
describe small size or low-contrast objects (32). Multiresolution
analysis gives the advantage of analyzing both small- and
large-object characteristics in a single image at several resolu-
tions and therefore may be better suited to describe the highly
heterogeneous tumor vasculature structure. Multiresolution
methods, such as the wavelet analysis, transform images into a
representation containing both frequency and spatial informa-
tion (33). The mean and entropy values extracted from the
subimages resulting from wavelet decomposition of DCE-MRI
images have been used to classify malignant and benign breast
tumors (34, 35). Braman et al. (36) used Gabor wavelet, co-
occurrence measures and energy measures to generate 1980
features from DCE images to predict breast cancer response to
NACT. A feature selection step was carried out to select top 10
features for final classification. Al-Kadi et al. combined wavelet
analysis with fractal analysis and used multiresolution fractal
descriptors on ultrasonography images to characterize the tis-
sue and showed that tumor heterogeneity described by this
feature improved prediction of response to therapy and dis-
ease characterization (37). To the best of our knowledge,
fractal analysis at multiple resolutions has not been con-
ducted on breast MRI images for prediction of response to
NACT. In this preliminary study, we evaluated the potential of
multiresolution fractal analysis of volumetric DCE-MRI phar-
macokinetic parametric maps for early prediction of breast
cancer response to NACT, and compared it with the conven-
tional methods of GLCM, RLM and single-resolution fractal
analysis.

MATERIALS AND METHODS
Patient Cohort and Study Schema
In total, 55 patients diagnosed with locally advanced breast
cancer received standard-of-care NACT. They were consented to
participate in a longitudinal research DCE-MRI study approved
by the local IRB. The NACT regimen typically consists of 4 cycles
of doxorubicin–cyclophosphamide administration every 2 weeks
followed by 4 cycles of taxane every 2 weeks, or 6 cycles of the
combination of all 3 drugs every 3 weeks (9, 27). The targeted
agent trastuzumab was added to the regimen for tumors with
positive HER2 (human epidermal growth factor receptor 2) re-
ceptor status. A full NACT course therefore would normally last
4–5 months.

In total, 4 DCE-MRI examinations were performed before,
during, and after the NACT course: pre-NACT (visit-1), after the
first NACT cycle (visit-2), at NACT midpoint (visit-3; usually
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after 3 or 4 cycles of NACT, or before the change of NACT
agents), and after the completion of NACT but before surgery
(visit-4). Except for the visit-1 examination, all examinations
were performed at least a week after administering the latest
cycle of NACT agents to allow time for the drugs to take effect.
Pathological analysis of the post-NACT surgical specimens was
performed to determine the status of pathologic response to
NACT. The values of cross-sectional size of the tumor in 2D,
tumor cell density, number of lymph nodes involved, and the
greatest dimension in the largest involved node were measured
and used in the equation given by Symmans et al. (38) to
compute the RCB. A pCR is defined as the absence of residual
invasive tumor, indicated by RCB � 0. Non-pCR includes all
cases with RCB � 0.

In this preliminary study, only data from the visit-1 and
visit-2 DCE-MRI studies were used for image feature analysis
and correlations with response endpoint of pCR versus non-pCR
to assess the capability for early prediction of breast cancer
response to NACT.

DCE-MRI Data Acquisition and Analysis
DCE-MRI data acquisition was performed using a Siemens 3 T
system (Siemens, Erlangen, Germany) with the body coil as the
transmitter and a 4-channel bilateral phased-array breast coil as
the receiver. During each MRI session, following pilot scans and
precontrast axial T1- and T2-weighted MRI acquisitions, axial
bilateral DCE-MRI images with full breast coverage were ac-
quired using a 3D gradient echo-based Time-resolved angiog-
raphy With Stochastic Trajectories (TWIST) sequence (9). DCE-
MRI acquisition parameters included the following: flip angle �
10°, echo time/repetition time � 2.9/6.2 milliseconds, parallel
imaging acceleration factor of 2, field of view � 30 to 34 cm,

in-plane matrix size � 320 � 320, and slice thickness � 1.4
mm. About 32–34 image volume sets of 104–128 slices each
were acquired over a period of about 10 minutes with a temporal
resolution of 14–20 seconds. The contrast agent gadolinium
(HP-DO3A) was injected intravenously (0.1 mmol/kg at 2 mL/s)
using a programmable power injector after acquisition of 2
baseline image volumes, followed by a 20-mL saline flush at the
same injection rate.

Three experienced breast radiologists manually delineated
the tumor region of interest (ROI) on postcontrast (90–120
seconds after the injection of the contrast agent) DCE-MRI
image slices that contained the contrast-enhanced tumor. To
minimize interobserver variability in tumor ROI drawing for the
same patient, 1 radiologist drew ROIs for the entire longitudinal
study of a single patient. With only 2 patients having multifocal
disease, ROIs were drawn for the primary breast tumors only.
Figure 1 shows an example of postcontrast DCE images from a
pCR patient, drawn tumor ROIs, and ROI mean signal intensity
ratio time-courses at visit-1 and visit-2. For pharmacokinetic
analysis, precontrast tissue T1 value, T10, was determined using
a proton density method (9) by acquiring proton density images
just before DCE-MRI that were spatially coregistered with the
DCE images. The DCE time-course data from the voxels within
the tumor ROI was fitted with a 2-compartment—3-parameter
shutter-speed model (9, 39), using a population-averaged arte-
rial input function from the axillary artery (9). This pharmaco-
kinetic analysis yielded the following 4 parameters: Ktrans

(volume transfer rate constant), ve (volume fraction of extravas-
cular and extracellular space), kep (�Ktrans/ve, efflux rate con-
stant), and �i (mean intracellular water lifetime). Figure 2 shows
examples of voxel-based parametric maps of these 4 parameters
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Figure 1. The visit-1 and visit-2
postcontrast dynamic contrast-
enhanced magnetic resonance
imaging (DCE-MRI) image slice (A
and C, respectively) through the
center of the primary breast tumor
of a pathologic complete re-
sponse (pCR) patient [35 years,
grade 2 invasive ductal carci-
noma, 2.9 cm in the longest di-
ameter at visit-1, ER (estrogen re-
ceptor) �, PR (progesterone re-
ceptor) �, HER2 � receptor
status]. The tumor ROI boundaries
are shown in yellow. The time
courses of mean signal intensity
ratio, S/S0, in the tumor ROI are
shown in B and D for visit-1 and
visit-2, respectively. S0: signal
intensity at baseline before con-
trast injection.
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for a pCR (Figure 2A) and a non-pCR (Figure 2B) tumor at visit-1
and visit-2. The parametric maps from the visit-1 and visit-2
studies of all patients were subjected to multiresolution fractal
analysis described in detail below, as well as the traditional
texture analysis methods of GLCM, RLM and single-resolution
fractal analysis.

Multiresolution Fractal Analysis
Each of the parametric maps was decomposed into a multireso-
lution representation using wavelet analysis, and subsequently,
FDs were calculated at each resolution level.

Wavelet Analysis for Multiresolution Decomposition. Wavelet
analysis is used to decompose the parametric maps into a set of
frequency sub-bands based on small basis functions of varying
frequency and limited time duration called wavelets, enabling
the characterization of texture at appropriate frequency levels.
The wavelet is scaled and translated to cover the time-frequency
domain. The discrete wavelet transform for a function f(x, y, z)
of size (M, N, K) can be represented as:
W�(j0, m, n, k)
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where W�(j0, m, n, k) is the approximation of f(x, y, z) at scale j0,
W�

i �j, m, n, k� coefficients define the horizontal (H), vertical (V,
and diagonal (D) details for scales j � j0, � is the scaling
function, and � is the wavelet function (40). The wavelet trans-
form depends mainly on the scaling (�) and wavelet (�) func-
tions, but it is not necessary to define their explicit form. Instead, a
low-pass and high-pass filter that characterize the interaction of
these functions are used. The process of decomposing the paramet-
ric maps can be viewed as passing them through a series of low-
pass and high-pass filters and down-sampling successively. The 3D
volume is first filtered along the columns resulting in a low-pass-
filtered subvolume and a high-pass-filtered subvolume. These re-
sulting subvolumes are further filtered along rows and slices re-
sulting in 8 decomposed subvolumes. We have used Daubechies
wavelets, as these filters have been designed to account for signal
discontinuities and self-similarity, which make them the most suit-
able wavelet for describing signals exhibiting fractal patterns (41).
Unlike Haar wavelet, they use overlapping windows that help
capture changes in high frequency, and they also demonstrate

Figure 2. The visit-1 and visit-2 parametric maps of Ktrans, kep, ve, and �i of the tumor ROI on an image slice through
the center of the tumor: a 27-year-old pCR patient with a grade 3 invasive ductal carcinima (5.0 cm in the longest diam-
eter at visit-1) and ER �, PR �, HER2 � receptor status (A); a 45-year-old non-pCR patient with a grade 2 invasive
mammary carcinoma (11.9 cm in the longest diameter at visit-1) and ER �, PR �, HER2 � receptor status (B).
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better recognition of fine characteristic structures (40). One level of
decomposition results in 8 subvolumes. The FD for each of these
subvolumes is calculated.

Multiresolution Fractal Analysis. The FD is calculated based
on the power spectrum analysis of the 3D Fourier transforma-
tion of the subvolumes (42). The 3D discrete Fourier transform is
defined as:

F(x, y, z) � �
m�0

M�1

�
n�0

N�1

�
k�0

K�1

I(m, n, k)e
�j2��x

m

M
	y

n

N
	z

k

K
	

(3)

where I(m, n, k) is the 3D volume of size (M, N, K) and x, y, and
z are the spatial frequencies. The power spectral density (P) is
estimated as:

P(x, y, z) � 
F(x, y, z)
2 (4)
The frequency space is evenly divided into 12 zenith and 24

azimuth directions, and 30 points are uniformly sampled along
the radial component in each of these directions. The power
spectral density is plotted against sampled radial frequency in a
log-log plot. The slope � of a least-squares regression line of the
log-log plot is related to the FD as:

FD �
11 � �

2
(5)

In standard wavelet analysis, the energy of the subvolume is
used to guide further decomposition, but this value is highly
dependent on the intensity values of the subvolume. In this
work, instead of using energy, the subvolume with the highest
FD was selected for further decomposition.

Each parametric map was decomposed down to 4 levels, using
FD to guide the sub-band tree structure. Finally, we concate-
nated the highest and the lowest FD at each level of decompo-
sition to form a feature vector. Therefore, for each parametric
map an 8-dimensional feature vector is generated from multi-
resolution FD analysis.

Conventional Texture Feature Analysis
We compared the performance of multiresolution fractal anal-
ysis features with that of GLCM, RLM, and single-resolution
fractal analysis. GLCM is a second-order statistical method,
which estimates the joint probability P(i, j | d �), where 2 voxels
with intensity i and j are separated by distance d and direction �.
A GLCM matrix was constructed by averaging the matrices
obtained over 13 directional offsets at distance d � 1 (27).
Twelve Harlick features (43) were derived from this GLCM ma-
trix. RLM P(i, r | �) is defined as the number of pixels with
gray-level i and run-length r, for a given direction �. RLM was
computed by adding all possible run lengths in the 13 directions
of the 3D space and 13 statistical features were derived from this
matrix (44). Fractal analysis describes the roughness or smooth-
ness of the texture through the FD measure. Here, single-reso-
lution fractal analysis refers to the estimation of FD of the tumor
ROI from 3D parametric maps directly (39).

Evaluation of Predictive Performance for NACT
Response
For each of the features obtained from the GLCM, RLM, multi-
resolution, and single-resolution fractal analysis, the percentage
change in the feature values was calculated between the visit-1
and visit-2 DCE-MRI studies. These percentage changes were
given as input to support vector machine (45), a robust classifier,

to generate a predictive model for classification of pCR versus
non-pCR. The performances of the models were evaluated using
the ROC AUC, sensitivity and specificity analysis. Sensitivity
here refers to the proportion of pCRs correctly identified as pCRs,
while specificity refers to the proportion of non-pCRs correctly
identified as non-pCRs.

The support vector machine classification performance was
evaluated by calculating the average over 10 random partitions
of the data for training and testing. For each partition, pCRs and
non-pCRs were randomly divided into training and testing data
sets as described below. The mean and standard deviation of
AUC, sensitivity, and specificity values obtained over the 10
partitions of training and testing data sets are reported. The
predictive performance was assessed for the features extracted
from each of the 4 parametric maps as well as those constructed
by concatenating the texture features from all 4 parametric
maps of Ktrans, kep, ve, and �i, designated as “All.”

The ROC AUC values of the multiresolution fractal features
were compared with those of the conventional features by cal-
culating the critical ratio according to the Hanley and McNeil
formula (46). The statistical significance was set at P � .05.

RESULTS
Among the 55 patients in the study cohort, 14 achieved pCR to
NACT, while the other 41 patients were non-pCRs based on
pathological analysis of the surgical specimens. Table 1 shows
the clinicopathological characteristics of the pCR and non-pCR
groups. Nine pCRs/31 non-pCRs and 5 pCRs/10 non-pCRs were

Table 1. Clinicopathological Characteristics
of pCR and non-pCR Groups

pCR non-pCR

(n � 14) (n � 41)

Age at Diagnosis (years) 27–63 27–79

Tumor Type 14–IDC

34–IDC

3–ILC

4–IMC

Tumor Grade

1 1 4

2 7 16

3 6 21

Tumor Size in Longest Diameter (cm) 1.0–6.9 1.2–12.8

ER

Positive 2 24

Negative 12 17

PR

Positive 3 26

Negative 11 15

HER-2

Positive 12 25

Negative 2 16

Abbreviations: IDC, invasive ductal carcinoma; ILC, invasive lobular
carcinoma; IMC, invasive mammary carcinoma.
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selected randomly to form the training and testing sets, respec-
tively. Figure 3 shows the ROC AUC values for classification of
pCR versus non-pCR using the GLCM, RLM, single-resolution
fractal, and multiresolution fractal features from parametric
maps of different DCE-MRI parameters considered individually
and the concatenated feature from all 4 parametric maps. GLCM
and RLM features seemed to overfit on the training data, as they
had high training AUCs but low testing AUCs. For example, the
AUC values were 0.76 and 0.75 from the training Ktrans maps,
and 0.47 and 0.40 from the testing Ktrans maps for the GLCM and
RLM methods, respectively. Overall, the multiresolution fractal
features from each DCE-MRI parametric map and the concate-
nated features performed the best in prediction of pCR versus
non-pCR in both the training and testing data sets with AUC �
0.85, 0.86, 0.87, 0.86, 0.91 (for Ktrans, kep, ve, �i, and All, respec-
tively), and 0.80, 0.63, 0.74, 0.70, 0.78 for the training and
testing data sets, respectively. The only exception was from the
kep maps in the testing data sets, where the single-resolution
fractal analysis provided the highest AUC of 0.71 among the 4
feature analysis methods. Within the testing or training sets, the
predictive performances of multiresolution fractal features were
significantly better than the GLCM features from the Ktrans map
(AUC � 0.47, P � .022) in the testing set, RLM features from the
�i map (AUC � 0.71, P � .012) in the training set, RLM features
from the Ktrans (AUC � 0.40, P � .013), and “All” (AUC � 0.47,
P � .049) maps in the testing set, and single-resolution fractal
features from the ve (AUC � 0.71, P � .012) and �i (AUC � 0.67,
P � .037) maps in the training set.

We evaluated the specificities of the classification models at
2 levels of sensitivities for the testing data sets: 60% (3 out of 5

pCRs were classified correctly) and at 80% (4 out of 5 pCRs were
classified correctly), as shown in Table 2. At both sensitivity
levels, with a few exceptions, fractal features presented higher
specificities than the GLCM and RLM features, with the multi-

Table 2. Specificity Values [Mean (Standard
Deviation)] in the Testing Data Set for GLCM,
RLM, Single-Resolution Fractal, and
Multiresolution Fractal Methods With
Sensitivity Set at 60% and 80%

GLCM RLM

Single-
Resolution

Fractal

Multi-
Resolution

Fractal

Sensitivity � 60

Ktrans 49.3 (22.3) 34.7 (27.5) 84.0 (16.1) 89.3 (11.4)

kep 73.3 (9.4) 67.3 (17.9) 84.0 (7.2) 70.7 (23.3)

ve 64.0 (31.6) 82.0 (14.4) 75.3 (7.1) 80.7 (12.4)

�i 40.7 (28.4) 44.0 (21.6) 57.3 (27.6) 68.7 (25.0)

All 49.3 (21.6) 42.0 (18.1) 82.0 (15.7) 82.7 (17.0)

Sensitivity � 80

Ktrans 19.3 (16.2) 25.3 (14.7) 63.3 (25.4) 68.7 (13.7)

kep 49.3 (19.9) 45.3 (19.1) 55.3 (29.3) 49.3 (27.8)

ve 22.0 (30.0) 67.3 (19.7) 56.0 (20.7) 62.0 (17.2)

�i 18.0 (23.1) 30.0 (24.6) 47.3 (24.2) 62.0 (37.7)

All 32.0 (21.5) 28.7 (16.3) 62.0 (26.9) 62.0 (17.8)
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Figure 3. The ROC AUC values for classification of pCR from non-pCR patients in the training (A) and testing (B) data
sets using the GLCM (red), RLM (blue), single-resolution fractal (yellow), and multiresolution fractal (black) features ex-
tracted from the Ktrans, kep, ve, and �i parametric maps. The final column “All” represents the concatenated features from
all 4 parametric maps. The error bars represent the standard deviation obtained over the 10 different partitions of train
and test data. *: significant (P � .05) difference in AUC compared to that of multiresolution fractal features.
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resolution method generally outperforming the single-resolu-
tion method (except when they were applied to the kep map).

Figure 4 shows the ROC AUC values (for the training and
testing data sets) for each level of decomposition of the concat-
enated feature vectors obtained by combining multiresolution
fractal features extracted from the Ktrans, kep, ve, and �i maps.
The combination of features from all 4 levels and all 4 paramet-
ric maps is represented by the black bar “All.” It can be observed
that the first level of decomposition alone achieved a predictive
performance (AUC � 0.87 and 0.82 for the training and testing
sets, respectively) comparable to that of the combined features
from all levels (AUC � 0.91 and 0.78 for the training and testing
sets, respectively), while features from levels 2, 3, and 4 indi-
vidually had rather poor performances in the test set with
AUC � 0.57, 0.45, and 0.54, respectively.

DISCUSSION
This preliminary study shows that multiresolution fractal anal-
ysis has the potential to better capture the heterogeneity in the
breast tumor vasculature as measured by DCE-MRI, and the
extracted features from voxel-based DCE-MRI parametric maps
are good early predictors of breast cancer response to NACT. In
general, the concatenated features extracted from parametric
maps of all the DCE-MRI parameters provide the best predictive
performance. Multiresolution analysis filters out irrelevant fea-
tures and noise at different resolutions, rendering more empha-
sis on distinct features, and fractal analysis at each level appears
to be able to capture these distinct features. The GLCM and RLM

features reflect the overall correlation between adjacent voxels
in terms of second-order and higher-order statistical features,
respectively (27). For the small data set used in this study, the
generally higher AUC values from the multiresolution fractal
analysis when compared to GLCM and RLM methods suggest
that decomposing the texture may give further insights into
the heterogeneity of the tumor microvasculature shown on
DCE-MRI parametric maps and help capture the subtle varia-
tions in the texture which cannot be assessed by the single-
resolution approach. However, this observation needs to be
validated with a larger patient cohort. Consistent with the stud-
ies reporting mean parameter changes (9, 14-22), the results
from this study provide further proof that changes in vascular
perfusion/permeability represented by DCE-MRI imaging bio-
markers are important features in identifying responders and
nonresponders at the early stage of NACT.

On inspecting the AUC values from Figure 3, it can be
observed that single-resolution fractal features performed con-
sistently well in prediction of response for both the training and
testing sets, although not as well as the multiresolution ap-
proach. The higher AUCs for fractal-based features suggest that
they provide a richer representation of the heterogeneity in the
tumor when compared to GLCM and RLM methods. The low
dimensionality (d � 1) of single-resolution fractal feature is less
likely to cause overfitting for the small sample size of our data
set and therefore could lead to a good discriminative model. This
could be one of the reasons that contributed to its effectiveness.
On the other hand, in spite of increased dimensionality (d � 32),
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(B)       Testing data
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Figure 4. The receiver operating curve (ROC) area under curve (AUC) values for classification of pCR from non-pCR
patients in the training (A) and testing (B) data sets using concateneted feature vectors obtained by combining multireso-
lution fractal features extracted from the Ktrans, kep, ve and �i maps. The green, orange, teal, and magenta columns rep-
resent the first, second, third, and fourth levels of decompositions, respectively, while the black column corresponds to
the combination of features from all 4 levels. The error represents the standard deviation obtained over the 10 different
partitions of train and test data.
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multiresolution fractal features exhibited better predictive per-
formance, suggesting that analyzing heterogeneity at multiple
resolutions provides a more comprehensive measure of the tex-
ture and thus increases the discriminative power of the feature.
At each level of decomposition, the approximation coeffi-
cient [W� from equation (1)] represents the low-frequency
component, which characterizes the coarse structure of the
data, and the detail coefficients [W�

i from equation (2)] rep-
resent the high-frequency components, which capture the
discontinuities and singularities in the data. Therefore, com-
bination of features from different scales and frequencies
gives a richer representation of the overall underlying tex-
ture. The advantages of multiresolution fractals can be ex-
pected to be even more significant when the data set is large
enough to offset their high dimensionality.

The tumor heterogeneity appears to be captured well at the
first level of decomposition as shown by Figure 4. Each decom-
position level analyzes the signal at a particular band of fre-
quencies. Higher decomposition levels have better frequency
resolution. The first level of decomposition encompasses the
entire frequency band of the input data in its subvolumes.
Thereafter, we select the subvolume with the highest FD and
perform multiresolution fractal analysis on that sub-band alone.
By doing this we are effectively looking at finer frequency
resolutions of the selected sub-band frequencies alone. Con-
sidering features from these finer frequency resolutions in
isolation do not appear to have as much discriminative power
as the first level of decomposition, but combining the finer
frequency resolutions features with the features from first
level appears to enrich the representation and provide incre-
mental improvement.

As shown in Table 2 for the test data set, at fixed sensitivity,
the higher AUC values from the multiresolution fractal features
generally resulted in higher specificity values compared to those
from other features. It is important to have high sensitivities so
that most pCR patients will be correctly identified and con-
tinue with the original or de-escalated NACT regimen. At 80%

sensitivity, the �60% specificity (except for the kep features)
of the multiresolution fractal features implies that were this
method used in clinical care, more than half of the non-pCRs
would be correctly classified after the first NACT cycle, po-
tentially enabling alteration of treatment plans for these
nonresponders at the early stage of NACT to receive more
personalized care.

This study has several limitations. The first being the
small size of the data set used. The preliminary results ob-
tained need to be evaluated on a larger patient cohort. Also
due to the small size of the data set, dimensionality increase
in feature vectors impedes the performance of the classifier.
Larger data set can enable the choice of a richer feature vector
from different levels in the multiresolution fractal decompo-
sition, which might consistently outperform the other fea-
tures. Finally, the DCE-MRI parametric maps used for feature
analysis were obtained with the shutter-speed model, which
is not commonly used in pharmacokinetic analysis of DCE-
MRI data. In future studies, parametric maps obtained with
the widely used standard Tofts model (47, 48), which gener-
ates only the Ktrans

, ve, and kep parameters and thus results in
reduced dimensionality of the feature vector, will be used for
feature extractions and the results will be compared with
those presented here.

CONCLUSION
In this preliminary study, we have demonstrated that multireso-
lution fractal analysis of voxel-based DCE-MRI parametric maps
could be a promising tool for early prediction of breast cancer
response to NACT. The multiresolution fractal features generally
have better predictive performances than those extracted with
the more conventional methods of GLCM, RLM, and single-
resolution fractal analysis. Furthermore, compared to features
extracted from individual DCE-MRI parametric maps, the use of
concatenated features from all DCE-MRI parameters generally
further improves prediction of NACT response.
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