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Abstract
Increasing the information depth of single kidney biopsies can improve diagnostic 
precision, personalized medicine and accelerate basic kidney research. Until now, in-
formation on mRNA abundance and morphologic analysis has been obtained from 
different samples, missing out on the spatial context and single- cell correlation of 
findings. Herein, we present scoMorphoFISH, a modular toolbox to obtain spatial 
single- cell single- mRNA expression data from routinely generated kidney biopsies. 
Deep learning was used to virtually dissect tissue sections in tissue compartments and 
cell types to which single- cell expression data were assigned. Furthermore, we show 
correlative and spatial single- cell expression quantification with super- resolved podo-
cyte foot process morphometry. In contrast to bulk analysis methods, this approach 
will help to identify local transcription changes even in less frequent kidney cell types 
on a spatial single- cell level with single- mRNA resolution. Using this method, we dem-
onstrate that ACE2 can be locally upregulated in podocytes upon injury. In a patient 
suffering from COVID- 19- associated collapsing FSGS, ACE2 expression levels were 
correlated with intracellular SARS- CoV- 2 abundance. As this method performs well 
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1  |  INTRODUC TION

High- precision analysis of kidney biopsies is key to providing diag-
nosis and targeted therapies for patients. Recently, several methods 
have been established to improve the analysis depth of formalin- 
fixed paraffin- embedded (FFPE) kidney biopsies.1– 3 Since the filtra-
tion barrier could be morphometrically analysed by 3D- structured 
illumination microscopy (3D- SIM),3 the determination of the filtra-
tion slit density by PEMP (podocyte exact morphology measurement 
procedure) emerged as a tool that can be combined with co- staining 
of multiple proteins.4,5 However, antibody- based quantification of 
spatial protein abundance has limitations as it depends on individual 
antibody availability and performance. Additionally, locally secreted 
factors are typically not captured by immunofluorescence tech-
niques. The use of bulk proteomics and transcriptomics is limited 
since the expression of frequent cell types like proximal tubule cells 
can mask transcriptional changes in less frequent cell populations. 
To circumvent this, tissue has been either manually dissected (e.g. 
glomeruli from tubulointerstitium),6 cell types were enriched by flow 
cytometry7 or single- cell- RNA sequencing has been performed.8 
Unfortunately, the contextual and/or morphological information 
is lost in all approaches due to mechanical dissociation. As biopsy 
material is typically limited and interpretation in a spatial context 
required, correlation of multiple techniques on single sections could 
increase the degree of information from a single biopsy.

An antibody- independent way to investigate spatial RNA abun-
dance is in situ hybridization (ISH) which since its first description9 
has been substantially improved in terms of sensitivity and multiplex-
ing.10 Recently, a multitude of methods for single- mRNA visualization 
and quantification (smFISH) are available.11– 13 A consistent prob-
lem for inter- sample comparability is that smFISH highly depends 
on preparation- dependent RNA integrity. This is due to delays be-
tween sampling and fixation, fixation time, quality of the fixative and 
paraffin- embedding. To rule out this problem, a stable on- slide in- cell 
reference gene would be required to normalize expression data for 
different parts of the same biopsy or even over different samples.

To assign transcripts to tissue compartments and individual cell 
types, reliable identification and segmentation of cellular regions 
of interest (ROIs) are required. Unfortunately, correlative antibody- 
based cell classification is challenging as smFISH requires tissue di-
gestion to liberate fixed mRNAs. Additionally, segmentation tasks 
are typical bottlenecks in image analysis workflows. To overcome 
this, deep learning (DL) has been used for segmentation and mor-
phometry of kidney biopsies.14

Herein, we present scoMorphoFISH (single- cell correlative 
Morphometric single- mRNA FISH), a DL- accelerated approach for 
imaging- based and digital single- cell single- mRNA quantification. For 
the first time, we combined spatial single- cell expression data with 
antibody- based super- resolved podocyte foot process morphom-
etry. We integrate spatial single- cell transcriptomic, (ultra- )mor-
phometric and classic histology over scales as large as whole FFPE 
sections down to individual foot processes. Early in the SARS- CoV- 
2- pandemic, it has been noted that besides the lung, the kidney is 
one of the organs that can be directly infected by the virus.15 On the 
functional side, it has been shown that the degree of albuminuria can 
predict disease severity in COVID- 19 patients.16 In vivo, albuminuria 
is typically mediated by morphological changes of a single- cell type, 
the podocyte. In this cell type, transcriptional changes directly influ-
ence cellular morphology, and every change of morphology leads to 
an impairment of the filtration barrier function. However, until now, 
no method is available that allows for evaluation of change of tran-
scription, ultrastructural morphometry and classic histology. Herein, 
we use scoMorphoFISH to evaluate single- cell mRNA abundance, 
single- cell SARS- CoV- 2 infection and ultramorphometry in a case of 
COVID- 19- associated kidney disease.

2  |  MATERIAL S AND METHODS

2.1  |  Sample preparation

After immersion fixation in 3% PFA overnight at room temperature, 
kidneys were embedded in paraffin using standard protocols. Care 
was taken that the temperature did not exceed 60°C. 5 µm FFPE tis-
sue sections were mounted on superfrost slides and air- dried at room 
temperature. Human renal tissue specimens were obtained from the 
Pathology Department of Hôpital Européen Georges Pompidou, 
Assistance Publique-Hôpitaux de Paris, Paris, France. Human tis-
sue was used after obtaining informed consent from all patients, and 
kidney biopsy collection was approved by the Institut National de la 
Santé et de la Recherche Médicale Ethics Committee (Institutional 
Review Board 00003888, approval 13–087; FWA00005831 National 
Institutes of Health, Office of Human Research Protection) and the local 
ethics committee (Comité de Protection des Personnes Ile de France 
IV, Institutional Review Board: 00003835. approval 2015/73NICB). 
Kidney biopsy specimens were collected in compliance with all relevant 
ethical regulations, and those with sufficient tissue for immunohisto-
chemical evaluation after the completion of diagnostic workup were 

with standard formalin- fixed paraffin- embedded samples and we provide pretrained 
deep learning networks embedded in a comprehensive image analysis workflow, this 
method can be applied immediately in a variety of settings.
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included. Similarly, kidney biopsies of the Departments of Pathology of 
Hannover, Graz and of the Department of Pediatric Nephrology Essen 
were used. Additionally, we used anonymized excess healthy kidney tis-
sue of tumour nephrectomies from the Department of Urology of the 
University Medicine Greifswald. Sample transfer adhered to all relevant 
local and national ethical guidelines. The transfer and use of sections of 
an anonymized COVID- 19 nephropathy kidney biopsy were approved 
by the ethics committee of the Medical University of Graz, Austria.

2.2  |  Multiplex fluorescence in situ 
hybridization and immunofluorescence staining

For multiplex smFISH, the ACDbio RNAscope Multiplex Fluorescent 
V2 Kit per manufacturer's description with following adaptations: 
For heat- induced epitope retrieval sections were boiled for 15 min 
in ACDbio antigen retrieval buffer after deparaffinization in xylene. 
After protease treatment for 15 min at room temperature, comple-
mentary probes were hybridized for 2 h at 40°C in the ACDbio HybEZ 
oven. Sections were stored in 5× SSC (Sigma) overnight. Hybridized 
probes were detected by complementary amplification probes after 
HRP- binding signals were detected using Opal 520, 570 and 690 dyes 
diluted 1:1500 in TSA amplification buffer (ACDbio). After the last 
detection step, sections were collected in 1× PBS, blocked with 1% 
normal goat serum, 1% foetal bovine serum, 1% bovine serum albu-
min and 0.5% cold fish gelatin for 45 min at room temperature. While 
blocking, primary affinity- purified rabbit anti- podocin antibodies were 
mixed with Alexa Fluor 488- conjugated secondary dual monoclonal 
recombinant alpaca anti- rabbit IgG VHH nanobodies (nano secondar-
ies, Chromotek) in blocking solution for a final concentration of 1:150 
primary and 1:1000 secondary nanobody. Sections were incubated 
with the antibody mix at 4°C overnight. For the collapsing FSGS sam-
ple, primary NPHS2 antibodies were detected using AlexaFluor 750 
secondary antibodies. Slides were washed in three changes of 1× PBS 
and nuclei counterstained with 0.1 mg/ml DAPI. Slides were rinsed in 
A.dest and mounted in Mowiol for microscopy (Carl Roth). Until being 
imaged, sections were stored at 4°C in the dark.

2.3  |  Correlative histology

After being whole- slide imaged, slides were immersed in 37°C 
1× PBS for 1 h. Coverslips were gently removed, and the mount-
ing medium washed out in 3 changes of 1× PBS. After that, routine 
PAS staining was performed as described before.3 Sections were 
mounted in Eukitt (Carl Roth).

2.4  |  Imaging

To obtain confocal laser scanning micrographs, a Leica TCS- SP5 
system was used. Micrographs were acquired using a 40× 1.2 NA 
oil immersion objective with a voxel size of 189 × 189 × 500 nm 

(xyz). For whole- slide near- infrared imaging, an Olympus FV3000 
system with a 20×, 0.8 NA air objective equipped with a 405, 488, 
561 and 640 nm laser lines and an external NIR- unit with a 730 nm 
laser line was used. The whole section was imaged as tiled stacks 
over 2 µm with a voxel size of 222 × 222 × 500 nm. Tile data were 
stitched within the Olympus FV3000 CellSense software. For super- 
resolution 3D- structured illumination microscopy, a Zeiss Elyra PS.1 
system (Carl Zeiss Microsystems) or a Nikon N- SIM- E was used as 
described before.3 Whole- slide images of PAS- stained sections 
were acquired on a Leica SCN400 slidescanner. SCN files were im-
ported and processed with QuPath (v0.3.0).

2.5  |  Deep learning

Using the Google Colab- based ZeroCostDL4Mic notebooks,17 
we trained a U- Net,18,19 a deep learning- based neural network. 
Glomerular tuft outlines determined by NPHS2+ glomerular capillar-
ies in stacks of confocal laser scanning micrographs were manually 
segmented and saved as ROIs in FIJI.20 The ROIs were then exported 
as binary 8- bit masks in a corresponding image stack in which glo-
merular area and background were coded as intensity 255 and 0, 
respectively. Both image stacks were exported as individual corre-
sponding 512 × 512 px tiff files with matching names and uploaded 
in two separate GoogleDrive- folders as source and template train-
ing files. After training, a separate set of files was used for quality 
control purposes. The UNet model was trained with 200 epochs on 
200 paired image patches (image dimensions: (1024, 1024 px), patch 
size: (512, 512 px)) and an initial learning rate of 3.0000002e- 36, 
using UNet 2D ZeroCostDL4Mic. Key python packages used include 
tensorflow (v 0.1.12), Keras (v 2.3.1), numpy (v 1.19.5) and cuda (v 
11.0.221Build cuda_11.0_bu.TC445_37.28845127_0). The training 
was accelerated using a Tesla K80 GPU. Following parameters were 
used: number_of_epochs 200; patch_size 512 × 512; batch_size 4; 
number_of_steps 23; percentage_validation 10; initial_learning_rate 
3.0000002e- 36. The readily trained network was exported and 
saved for subsequent predictions. Predictions were performed in 
the DeepImageJ plugin by installing the readily trained network. 
Predicted glomerular regions of interest (ROIs) are saved by the 
script to the respective source folder and called later by the macro 
script to define intra-  and extraglomerular cells and transcripts.

The StarDist21 2D model was trained from scratch for 400 epochs 
on 4 paired image patches (image dimensions: (2048, 2048 px), patch 
size: (2048, 2048 px)) with a batch size of 2 and a mae loss function, 
using the StarDist 2D ZeroCostDL4Mic notebook (v 1.12).20 Key py-
thon packages used include tensorflow (v 0.1.12), Keras (v 2.3.1), csb-
deep (v 0.6.1), numpy (v 1.19.5) and cuda (v 10.1.243). The training was 
accelerated using a Tesla P100GPU. The dataset was augmented by a 
factor of 10 using Augmentor.22 Following parameters were used: num-
ber_of_epochs 400; patch_size 2048 × 2048; batch_size 2; number_
of_steps 30.0; percentage_validation 10; n_rays 32; grid_parameter 2; 
initial_learning_rate 0.0003. The trained StarDist model was imported 
to Fiji and is automatically called by the scoMorphoFISH script.
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2.6  |  Script development

ImageJ macros were developed in the IJ1 macro language in 
FIJI.20 The script requires several different pre- installed plugins: 
BioFormats to import C- LSM data, StarDist which requires the 
CSBDeep, and StarDist update sites in Fiji, rsFISH,23 deepImageJ, 
and Read and Write Excel. Data in the multichannel tiffs should 
be ordered with the immunofluorescence channel in C1, smFISH in 
C2/3 and DAPI in C4.

The script can perform different tasks. If glomerular outlines are 
stained by immunofluorescence:

1. Glomerular vs. tubulointerstitial transcript counter: For two- 
channel smFISH + NPHS2 IF + DAPI. The script asks first 
for the source folder of the multichannel tiff stacks. The script 
uses the trained U- Net to predict the glomerulus segmentation 
mask from the glomerular staining, takes the outlines of the 
mask as an ROI, and calculates the intra-  and extraglomerular 
area. It then differentially segments intra-  and extraglomerular 
cells and counts transcript in the single- cell ROIs. Output is 
two- channel intra-  and extraglomerular single- cell transcripts, 
total transcripts intra-  and extracellular, intra-  and extraglo-
merular area. If no glomerular staining is present, the script 
will ask if glomerular outlines should be segmented manually. 
If nuclear IF is present, immunofluorescence positive cells are 
segmented using the trained StarDist network, and expression 
is differentially measured IF positive and negative cells. This 
part is established for podocytes but works with every strong 
nuclear marker.

2. Podocyte transcript counter: For two- channel smFISH + WT1 
IF + DAPI. The script asks first for the source folder of the multi-
channel tiff stacks and then manually creates the glomerular outline 
masks. Podocytes are identified by: intraglomerular position, WT1 
and DAPI positivity. Podocytes are segmented with the same model 
as all nuclei. Podocyte morphometric parameters: Total number/glo-
merular cross- section, Feret's diameter are exported for estimated 
glomerular morphometry (podocyte density). Output is intra- , extra-
glomerular, total, podocyte single- cell dual- channel transcripts.

Output data are exported in one accumulated.xls file per folder 
analysed. The script works in batch processing mode and processes 
all tiff files in a directory.

2.7  |  2D density plots

For the creation of 2D- density plots, the R spatstat package was 
used: After thresholding and binarization of the smFISH channels, 
xy- positions of the transcript spots were detected using RS- FISH 
and exported as csv files from ImageJ. XY positions were loaded to 
R- studio (version a1.3.1093) and plotted using the density plot func-
tion of the SpatStat library.

2.8  |  Statistics

Statistical analysis was performed in Prism 9.3.1 (GraphPad). 
Normality was checked with a Kolmogorov– Smirnov test. In 
the case of Gaussian distribution and two compared groups, a 
Student's t- test with Welch's correction for non- equal SDs was 
performed. For more than two groups, a Kruskal– Wallis test 
with Dunnett's multiple comparison test was performed for non- 
parametric data, one- way ANOVA with Dunnett's multiple com-
parisons for parametric data. Correlation analysis of co- expression 
data was performed with a simple linear regression analysis. The 
best fit line of the linear regressing including its 95% confidence 
band is plotted.

3  |  RESULTS

3.1  |  Spatially resolved normalized single- cell 
single- mRNA visualization

To account for RNA integrity differences in archived formalin- fixed 
and paraffin- embedded (FFPE) material and to normalize mRNA- 
expression levels, we wanted to identify an on- slide reference gene. 
Such genes should be constantly expressed and not regulated them-
selves. We screened the Nephroseq database for the reference 
genes ACTB, GAPDH, POLR2A, UBC and PPIB. In a glomerular dis-
ease microarray dataset (Figure 1A), PPIB was the most stable gene 
(Figure 1B). Performance of PPIB as a reference gene was exemplarily 
demonstrated for a dual smFISH together with ACE2 (Figure 1C,D). 
PPIB was homogeneously and strongly expressed (8.1 ± 4.5 tran-
scripts per cell) (Figure 1C). Negative controls did not show a signal 
(Figure 1E,F).

3.2  |  Immunofluorescence- based cell 
classification and Deep Learning- enabled tissue 
segmentation

To assign transcripts to tissue compartments or cell types, we es-
tablished immunofluorescence protocols that perform with sm-
FISH. Glomeruli were labelled with single- step anti- podocin staining 
(Figure 2A). Less abundant antigens like WT1 were amplified by fluo-
rescent tyramide signal amplification (TSA, Figure 2B).

To establish virtual DL- segmentation- based tissue- 
microdissection, we custom- trained the two DL networks UNet18,19 
and StarDist21 with datasets of 200 manually segmented glomeruli 
and 1033 cell nuclei, respectively (Figure S1). As shown in Figure 2C– 
H, outlines of glomeruli and cell nuclei of raw images were predicted 
with high reliability and accuracy by the trained networks. Compared 
to manually segmented ground truths, the trained networks reached 
a precision of 90% in the detection of cell nuclei (n = 76) and 93% in 
the detection of glomeruli (see validation data in Figure S2).
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3.3  |  scoMorphoFISH: Quantitative analysis of 
compartment and cell type- specific mRNA abundance

To spatially map mRNA transcripts in intact kidney tissue, we applied 
the RS- FISH algorithm that uses radial symmetry to approximate 
transcript localizations.23 As demonstrated in Figure S3, RS- FISH 
was more precise than the classic thresholding- based segmentation 
approach. To automatize normalized smFISH transcript annotation 
to DL- segmented cells and tissue compartments, we established an 

open- source ImageJ script including the trained DL networks and 
RS- FISH. As proof- of- principle, we quantified the spatial abundance 
of ACE2 and WT1, which showed ACE2 clustering in tubulointerstitial 
cells while WT1 was highly enriched in the glomerular cell fraction 
(Figure 3A– D).

Irrespective of cellular identity, mean ACE2 expression was 
0.251 normalized transcripts/unclassified cell versus 0.07 normal-
ized transcripts/podocyte (Figure 4A,B). Vice versa, WT1 was nine-
fold enriched in podocytes in comparison with all cells (Figure 4C,D). 

F I G U R E  1  Evaluation of an on- slide reference gene. The Nephroseq database was screened for the five reference genes GAPDH, ACTB, 
UBC, PPIB and POLR2A. The heatmap of microarray expression data of the Ju CKD dataset is shown in (A). These data were evaluated 
in terms of stability over samples using the Normfinder algorithm. With a stability value of 0.257, PPIB was identified as the most stable 
gene (B). Images in (C and D) show PPIB and ACE2 mRNA dual- labelling in FFPE human kidney sections. While ACE2 was predominantly 
expressed in tubular cells, PPIB is abundant in all cells. Single transcript spots can be clearly distinguished. Negative controls with a probe 
targeting the bacterial dapB gene (E and F) show specificity of the smFISH- signals. Scale bars represent 40 µm in the overview images and 
20 µm in the magnifications

(A)

(C) (D)

(E) (F)

(B)
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F I G U R E  2  Combination of smFISH and immunofluorescence. The micrograph in (A) shows combined dual- smFISH with podocin (NPHS2) 
immunofluorescence. Image (B) exemplarily shows smFISH combined with WT1 tyramide signal amplified- immunofluorescence. A UNet was 
trained to segment glomerular outlines of podocin- stained glomeruli as shown Figure S1A. As shown in (D and E), glomerular outlines were 
predicted from podocin immunofluorescence micrographs (C) which were used as segmentation masks (E). Panel (F– H) shows how cell nuclei 
were segmented by the predictions of the trained StarDist network (Figure S1B). The scale bars in a- g represent 40 and 5 µm in (H)

(A)

(C)

(F) (H)

(D) (E)

(B)

(G)
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Additionally, we quantified the abundance of VEGFA mRNA, a se-
creted factor for which immunostainings are typically not suitable 
for quantification. Shown in Figure 4E,F is single- cell expression 
data of VEGFA, which strongly clustered in the podocyte fraction. 
As shown in Figure 4G,H, a positive correlation of TCF21 and WT1 
single- cell expression is demonstrated (n = 40 podocytes of three 
glomeruli, R2 = 0.35, p > 0.0001).

3.4  |  Correlative super- resolution podocyte 
foot process morphometry, multiplex smFISH and 
standard histology

To correlate single- podocyte mRNA expression with changes of 
the local filtration slit morphology, we imaged multiplexed smFISH 
and podocin immunofluorescence stainings with 3D- SIM. For cor-
relation of smFISH and classic histology, sections were retrieved 
from the mounting medium after imaging, PAS- stained, and again 
whole- slide- imaged. To efficiently handle whole- slide data, above- 
described algorithms have been adapted to perform DL predictions 

and transcript quantification these data. As shown in Figure S4A, 
PAS morphology was sufficient for histopathological assessment, al-
though tissue has been smFISH- processed. As shown in Figure 5A,D, 
side- by- side evaluation of whole- slide widefield, 3D- SIM and PAS 
images allowed parallel evaluation of single- cell mRNA expres-
sion, filtration slit structure and classic morphology. Filtration slits 
were resolved with a mean resolution of 125 ± 12 nm together 
(Figure 5C). PEMP filtration slit morphometry did not differ between 
smFISH- processed and native kidney samples (Figure S4B– D). Local 
mRNA expression and podocyte ultrastructure can be correlated 
as exemplified for ACE2 transcript localization in Figure 5C where 
yellow dots (arrowheads) correspond to single ACE2 transcripts. 
Interestingly, besides tubular ACE2 expression (arrows in Figure 5B), 
glomerular ACE2 expression in this glomerulus was present but re-
stricted to podocytes in an area with cuboidal, likely activated pari-
etal epithelial cells (arrowheads in Figure 5C,E). A second glomerulus 
of the same section with normal parietal epithelial cells did not show 
any ACE2 expression (Figure S5). Remnant podocytes in globally 
sclerotic glomeruli showed podocyte foot process effacement but 
preserved VEGFA expression (Figure S6).

F I G U R E  3  Normalized single- cell expression of ACE2 and WT1 of glomerular versus extraglomerular cells. Micrographs in a show dual 
smFISH for ACE2 and PPIB combined with podocin (NPHS2) immunofluorescence. Violin plots in b show statistically significant higher 
expression of ACE2 in tubulointerstitial (TI) to glomerular (Glom) cells. ACE2: n = 329 cells WT1 n = 698 cells. p > 0.001, two- way Student's 
t- test for normal- distributed data. Scale bars represent 40 µm

(A)

(C)

(B)

(D)
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(C) (D)

(E) (F)

(G)
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3.5  |  ACE2 regulation in glomerular disease

SARS- CoV- 2 has been found in both tubular cells and podocytes.15,24 
This is surprising as podocytes express massively lower levels of the 
respective entry receptor ACE2 (Figure S7). However, since we have 
found local podocytic ACE2- upregulation in damaged glomeruli 
(Figure 5), we investigated its expression in different glomerulopa-
thies. As shown in Figure 6A, we analysed single- podocyte ACE2 
expression in 13 different biopsies of patients diagnosed for FSGS 
(primary and secondary), diabetic nephropathy (DN), membranous 
nephropathy (MN), Lupus nephritis (LN), IgA nephropathy, ANCA- 
positive glomerulonephritis and Goodpasture syndrome. While in 
general, ACE2 expression was very low, one single primary FSGS 
biopsy showed statistically significantly elevated podocyte ACE2 
mRNA levels (Figure 6B).

3.6  |  SARS- CoV- 2 RNA and ACE2 transcripts in a 
COVID- 19 nephropathy kidney biopsy

Early after the emergence of the COVID- 19 pandemic, a correla-
tion between SAS- CoV2 infection and collapsing glomerulopathy 
has been demonstrated.25 However, it is still unclear whether this 
entity is a reaction of a direct viral infection of glomerular cells or a 
secondary mechanism. While in autopsy material, viral RNA could be 
demonstrated in a subset of patients,15 the visualization of the virus 
in kidney biopsies of living patients failed in most cases.24

We applied the above- described method on FFPE sections of 
kidney biopsy of a patient diagnosed with COVID- 19- associated col-
lapsing FSGS. We visualized SARS- CoV- 2 RNA together with ACE2 
mRNA and TCF21 mRNA to detect podocytes combined with anti- 
podocin immunofluorescence. All negative controls for the SARS- 
CoV- 2 probe (SARS- CoV- 2 probe on healthy pre- COVID- 19 sections 
and a probe targeting the bacterial gene dapB) did not show a signal 
(Figure S8). A lot of SARS- CoV- 2 RNA could be located in the tubular 
compartment with a focus on proximal tubular cells (Figure 7A,B). 
Interestingly, viral RNA was not disseminated over the kidney tissue 
but rather restricted to single nephrons. In the nephrons affected, 
triple- positive (TCF21, ACE2 and SARS- CoV- 2) podocytes could be 
found (Figure 7B, arrowhead).

Using scoMorphoFISH, a total of 5394 cells of this single section 
were segmented and single- cell expression data for TCF21, ACE2 and 
SARS- CoV- 2 was quantified. Over all cells, intracellular SARS- CoV- 2 
abundance was positively correlated with ACE2 expression (simple 
linear regression, p < 0.0001, R2 = 0.2) while this correlation was not 
found for TCF21 (p = 0.4384, Figure 7C).

From this dataset, podocytes were selected by TCF21 expres-
sion and intraglomerular position (DL- segmentation of NPHS2 

immunofluorescence). Also, in this selective subset of cells, ACE2 
single- cell expression levels were positively correlated with intracel-
lular abundance of SARS- CoV- 2 RNA (p < 0.0001, R2 = 0.23, n = 300 
cells) while no correlation between TCF21 and SARS- CoV- 2 was 
found (p = 0.6154, Figure 7D).

PEMP analysis demonstrated a statistically significant lower fil-
tration slit density in comparison with healthy control tissue origi-
nating from tumour nephrectomies indicating significant podocyte 
foot process effacement (Figure 7E). The high variance of the FSD 
is a strong indicator for a rather focal than global foot process 
effacement.

4  |  DISCUSSION

Herein, we present scoMorphoFISH, a straightforward approach for 
automated digital spatial in situ mRNA quantification, Deep Learning- 
accelerated antibody- based tissue segmentation combined with 
correlative podocyte foot process morphometry (PEMP) in routine 
kidney biopsies. We used smFISH to in situ- visualize single mRNA 
transcripts inside intact FFPE kidney tissue. Besides smFISH, other 
techniques are used to investigate spatial mRNA abundance: Spatial 
transcriptomics with local reverse transcription and subsequent 
RNA sequencing provides a large number of transcripts per area. 
Unfortunately, it lacks performance with routinely generated clinical 
samples and is inferior to smFISH in terms of sensitivity and spatial 
resolution.26 The most significant limitation for the performance of 
smFISH is the initial preparation quality which can vary significantly 
among different centres. To overcome this, we have established 
PPIB as an on- slide reference gene to normalize target transcript 
expression levels across samples or even in different parts of the 
same sample. We used material derived from five different origins 
(hereof four centres that contributed archived samples). Sections 
from one centre posed a suboptimal RNA integrity, which could be 
due too short, too long fixation or too high embedding tempera-
ture which can be detrimental for in- tissue RNA integrity. We de-
liberately established scoMorphoFISH on rather challenging archived 
clinical samples with a higher degree of heterogeneity compared to 
standardized material generated in a basic- research context. Thus, 
the functionality of this method is not species- limited and read-
ily usable in rodent models for which we have already shown the 
performance of PEMP.4 Due to high sensitivity and specificity, this 
technique poses excellent functionality in routinely generated and 
archived formalin- fixed paraffin- embedded (FFPE) material with the 
potential to correlate spatial transcription and morphometric data 
with corresponding clinical data and disease history. Therefore, sco-
MorphoFISH enables hypothesis testing in sample repositories with 
archived medical records.

F I G U R E  4  Normalized single- cell expression and co- expression analysis. Normalized single- cell expression of ACE2 (A– B) WT1 (C– D) 
and VEGFA (E– F) of the podocyte fraction versus all cells. (ACE2: n = 324 cells, WT1: n = 377, VEGFA: n = 1447 cells). Panel G- H shows 
single- cell co- expression analysis of TCF21 and WT1. The positive correlation in the plot indicates TCF21 and WT1 co- expression (R2 = 0.35, 
p > 0.0001, 95% confidence interval in grey, data from n = 40 podocytes of 3 individual glomeruli)
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Although intense tissue digestion was required for smFISH, 
super- resolved podocyte filtration slit morphology was largely un-
affected and filtration slit density was in line with previously pub-
lished values.3 Even though we developed scoMorphoFISH focusing 
on glomerular diseases, it can be instantly applied to other tissue 
compartments and even other organs. Ideally, an antibody can be 
used to segment respective tissue compartments, which chances we 
significantly improved when using tyramide signal amplification. In 
cases in which such antibody is not available, antibody- independent 
smFISH expression levels can be used to identify respective cell 
types as we have shown with TCF21 or VEGFA for podocytes.

Typically, tissue segmentation tasks are demanding in hetero-
geneous sample sets (like kidney biopsies) and therefore traditional 
bottlenecks in image analysis workflows. DL has great potential 
to accelerate segmentation tasks and has already been applied to 
classify glomerulosclerosis27 or immunofluorescence- based glomer-
ular morphometry.14 We custom- trained two DL networks for the 
virtual microdissection of glomeruli, all cells by DAPI- fluorescence, 
and podocytes using nuclear IF- markers. The barriers to establishing 
this method in other settings are low as only commercially available 

reagents are used, high- quality imaging systems are widely available, 
data analysis is performed in the open- source image analysis plat-
form Fiji and the source code and pretrained DL networks are fully 
available.

Further, we found that although not expressed under healthy 
baseline conditions, we show that the SARS- CoV- 2 target ACE2 can 
be locally upregulated in damaged podocytes. As collapsing FSGS, 
a disease entity frequently associated with viral infections was also 
described in COVID- 19,28 we apply the developed workflow to in-
vestigate the localization of SARS- CoV- 2 RNA in a kidney biopsy 
of a patient suffering of a likely COVID- 19- associated collapsing 
FSGS. Herein, we found that the main SARS- CoV- 2 target were 
ACE2- positive proximal tubule cells. Additionally, to tubular cells, 
a subset of podocytes was SARS- CoV- 2 positive indicating direct 
infection of these cells. In this subset of cells, a positive correlation 
of SARS- CoV- 2 and ACE2 mRNA could be found. This is not only 
confirmative of previous work demonstrating that SARS- CoV- 2 has 
a tropism for the kidney, but also a first hint that podocyte- ACE2 
upregulation could be a prerequisite for SARS- CoV- 2 infection of 
podocytes.15,24

F I G U R E  5  Correlative single- cell transcript quantification, podocyte ultramorphometry and histology. Subsequent processing of the 
same FFPE section for scoMorphoFISH and classic histology enables correlative assessment of local mRNA- expression, podocyte foot 
process morphology and classic histologic aspects. FFPE sections were whole- slide scanned and aligned. Micrograph (A) shows a for- channel 
fluorescence overview over a whole section. Zoomed in (B) is a single glomerulus in wide field microscopy with ACE2 expression in tubular 
cells (arrows) and focally in the glomerulus (arrowheads). This area has been resolved with 3D- SIM (C), visualizing the NPHS2- positive 
filtration slit which showed broadened foot processes in areas with ACE2- expression. These data can be correlated with the histologic 
aspect in (D and E) that shows parietal basement membrane thickening and cuboidal parietal epithelial cells in this area (arrowheads in (E))

F I G U R E  6  Podocyte ACE2 expression in various biopsies of glomerular diseases. (A) Combined smFISH and WT1 immunofluorescence. 
The horizontal dashed line in (B) represents the mean expression over all samples. One primary FSGS biopsy shows elevated podocyte- ACE2 
expression (p < 0.05 in a Kruskal– Wallis test with Dunn's multiple comparison test for non- parametric data)

(A) (B)
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F I G U R E  7  Single- cell expression analysis of ACE2 and TCF21 mRNA and SARS- CoV- 2 RNA. A whole- slide scan of a kidney 
biopsy diagnosed for collapsing FSGS stained for TCF21 and ACE2 mRNA and SARS- CoV- 2 RNA together with podocin (NPHS2) 
immunofluorescence (A). As demonstrated in b, mainly proximal tubular cells showed double- expression of ACE2 and SARS- CoV- 2 RNA, but 
also SARS- CoV- 2- infected podocytes could be found (zoom insert in (B)). A positive correlation of single- cell ACE2 but not TCF21 mRNA 
expression with intracellular abundance of SARS- CoV- 2 RNA could be described for unclassified cells (C) and also for podocytes selected by 
TCF21 expression and intraglomerular position (D). The filtration slit density quantified by PEMP was statistically significantly decreased as 
compared with beforehand published values in healthy nephrectomy tissue (E).3 Scale bars represent 1 mm in A, 25 µm in B and 5 µm in the 
zoom insert

(A)

(B)

(C)
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As shown here, correlative assessment of spatial in situ single- 
cell single- mRNA abundance and local podocyte ultramorphology 
is now possible for the first time on scales as large as entire FFPE 
sections. We believe that scoMorphoFISH is a valuable addition to 
the kidney tissue analysis toolbox, can aid researchers in hypothesis 
testing and could be a possible step towards the high- precision eval-
uation of kidney biopsies in clinical settings.
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