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Abstract

Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly
contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK) in the
genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a
K+-uptake-system deficient E.coli strain, was able to recover growth of these organisms. The protein functions as a
potassium selective ion channel when expressed in Chinese Hamster Ovary cells. The location of SynK in cyanobacteria in
both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated
membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K+ channel) family
member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel
cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel,
opening the way to functional studies.
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Introduction

Cyanobacteria, the first organisms capable of performing

oxygenic photosynthesis during evolution, still today give major

contribution to the maintenance of the biosphere [1]. The

unicellular photoheterotrophic transformable cyanobacterium

Synechocystis sp. PCC6803, characterized by an intracellular

thylakoid membrane, where both photosynthesis and respiration

take place, is the first photosynthetic organism for which the

complete genome sequence has been published [2].

In vitro or in vivo function is not known for any of the putative

potassium channels identified in the genomes of over ten species of

cyanobacteria [3,4]. The only cyanobacterial ion channels

characterized up to now are the prokaryotic glutamate receptor

GluR0 [5] and the ligand-gated channel GLIC [6]. In general, the

physiological role of bacterial channels is still largely unknown,

except for bacterial chloride channel ClC [7], mechanosensitive

channels [8] and H. pylori HpKchA, a putative potassium channel

[9]. Potassium is the major intracellular cation in bacteria [10].

However, membrane potential adjustment rather than K+ uptake

has been hypothesized to be the major function of K+ channels in

prokaryotes, although direct proof is still missing [3]. In

Synechocystis a Ktr-like system encoded by slr1509, rather than a

bona fide channel, seems to be the main responsible for potassium

uptake [4,11].

In higher plant thylakoids several potassium-conducting cation

channel activities have been described [12–15]. Furthermore, a

putative potassium channel protein has been found in thylakoids of

spinach [16]. Unfortunately, the molecular identity of the

protein(s) responsible for these activities is unknown, as is the

nature of the putative channel protein.

In the present study we characterized a novel cyanobacterial

potassium channel. Furthermore, our work identifies its homolog

in higher plants from molecular point of view and indicates its

localization in the thylakoid membrane.

Results

Bioinformatic analysis of SynK putative potassium
channel

We identified in the genome of Synechocystis sp. PCC 6803, a

hypothetical protein of unknown function (slr 0498) by homology

search using the highly conserved selectivity filter [17,18] amino

acid sequence (T-X-G-[Y-F-L]-G-D) as a query sequence. SynK

was predicted to harbour six membrane-spanning segments (S1–

S6) and a pore region between helices S5 and S6 (Figure 1A). The

aminoacid sequence of two other well-characterized prokaryotic 6

TM potassium channels, KvAP [19] and KvLm [20], is also

shown for comparison. Although sequence homology between

SynK, KvAP and KvLm is not high, some residues known to be
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Figure 1. SynK protein permits potassium flux, as revelaed by its expression in K+-uptake deficient E. coli strain LB2003. A) SynK
(Synechocystis sp. PCC 6803; gi:16331771) is characterized by selectivity filter sequence (bold characters) in pore region (brown characters) and by six
predicted transmembrane segments (S1–S6 represented by different colours). ClustalW (1.83) alignments of SynK sequence with KvAP from
Aeropyrum pernix (gi:14601099) and KvLm from Listeria monocytogenes (gi:16411529), two depolarization-activated prokaryotic potassium channels, is
shown. ‘‘*’’ - identical residues in all aligned sequences; ‘‘:’’–conserved and ‘‘.’’ - semi-conserved substitutions. Definition of S1–S6 segments in latter
proteins is shown according to [19] and [20], in different colours. In SynK S1–S6 segments were defined according to secondary structure predictions
(Porter, SPLIT4, TMHMM2 algorithms) and adjusted taking into account delimitation of a-helices as inferred from crystal structure of KvAP (according
to [20]). Conserved residues, functional in Kv gating, are shaded grey. Please note the presence of some of the highly conserved residues in the sensor
sequence of Kv channels, such as K63 in S2 and P86 in S3 in SynK. Polar residues (S and Q) in S4 are shaded yellow. B) Complementation growth test
of E. coli LB2003 cells by SynK. E. coli LB2003 was transformed with plasmid harbouring pPAB404-SynK or empty vector. KAT1, an Arabidopsis K
channel, was also included as a positive control. Transformants were grown on media supplemented with different concentration of KCl. C)
Potassium uptake by K+-depleted E.coli containing SynK or empty vector. Net K+ uptake by SynK-expressing E. coli LB2003 cells and control cells
harbouring empty vector were measured at 20 mM KCl. Data are averages 6SD of results from four independent experiments.
doi:10.1371/journal.pone.0010118.g001
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important for channel gating are also conserved in SynK

(Figure 1A). Positive charges present in the S4 helix of KvAP

determine voltage-dependent gating [19]. KvLm has only two

positive charges in S4, but shows strong voltage-dependence [20].

SynK does not display evenly spaced positive charges in the

predicted S4 segment, nor does it contain regulatory domains. On

the basis of bioinformatic analysis, SynK may be classified as a

‘‘core-only’’, six-TM, putative potassium channel protein (see also

ref.3). The closest homologues of SynK are found in other

cyanobacteria species (Figure S1).

SynK forms functional, potassium-conducting protein,
when expressed in a K+-uptake-system deficient E.coli
strain

An E.coli K+ uptake–deficient mutant has been successfully

used to study potassium transport activity of transporter systems

from plants [21] as well as from Synechocystis [22]. Here we

cloned the Synechocystis SynK gene into the E. coli strain LB2003,

carrying mutations in genes encoding the three major K+ uptake

systems, Kdp, Trk, and Kup [23]. Thus, LB2003 does not grow

at K+ concentrations #10 mM, due to negligible K+ uptake

activity at potassium concentrations in the low millimolar range.

Complementation test on solid media shows that SynK-express-

ing E. coli LB2003 cells grew well on a medium supplemented

with 15 mM KCl, whereas E. coli cells harbouring empty vector

did not (Figure 1B). Time course uptake experiment shows that

K+ influx by SynK-expressing cells was higher compared to that

of cells containing empty vector (Figure 1C). Net potassium

uptake measurements by K+-depleted E. coli cells in the presence

of 10 to 80 mM KCl revealed Vmax values of 553 and

460 nmol min21 g21 dry weight for SynK-expressing cells and

for the control cells, respectively (Figure S2). These data suggest

that SynK may mediate K+ uptake when expressed in E. coli.

Expression of SynK in CHO cells gives rise to potassium-
conducting current

Additional functional characterization was performed in a

mammalian cell system, given that SynK did not express in

oocytes (Uozumi et al, unpublished). No electrophysiological

studies have been performed on any cyanobacterial membrane

until now. However, cloned prokaryotic channels have previously

been shown to function in both heterologous expression systems

e.g. [5,6,20,24] and in artificial lipid bilayers e.g. [19,25].

The sequence of SynK was isolated from the Synechocystis

genome by PCR and a SynK-EGFP (enhanced green fluorescent

protein at C-terminus) fusion protein was expressed in CHO

(Chinese hamster ovary) cells. Mammalian HEK and CHO cells

do not have significant endogenous potassium current, and are

suitable for the expression of prokaryotic and even the viral

channel Kcv e.g. [5,26]. Green fluorescence of SynK-GFP was

clearly associated with the plasma membrane (PM) (Figure 2A

and Figure S3). Immunoblotting with anti-GFP antibody as well

as by a specific anti-SynK antibody (Figure S4) revealed the

presence of a product with the expected molecular weight of the

fusion protein (for SynK and SynK-EGFP fusion proteins

predicted MWs are 26445 and 53979 Da, respectively)

(Figure 2B). However, lower MW products, corresponding to

either EGFP alone (28 kDa), to SynK alone (27 kDa) or to

degradation products of the fusion protein, were also observed

and may account for the fluorescent signal observable in the

cytosol of some cells (Figure S3 and not shown). Western blot of

separated membrane and soluble fractions from transfected cells

showed the presence of the 54 kDa fusion protein exclusively in

the former one indicating that the correctly translated product is

inserted into the membrane (Figure 2C). The same protein was

also recognized by another antibody which was developed against

the common selectivity filter sequence of potassium channels

(anti-KPORE, Figure S5 for details), confirming that anti-SynK

recognizes a potassium channel protein.

Transfected CHO cells were identified by green fluorescence

and analyzed by patch clamping in whole-cell configuration.

SynK gave rise to an outwardly rectifying current (Figure 3A and

B) (n = 32). Cells either left untransfected or transfected with

control plasmids never displayed such a current (Figure 3C)

(n = 40). The SynK current had an instantaneous and a slowly

activating component (Figure 3A), the latter having an activation

voltage of +67 mV as determined from the Boltzman fit of the G/

Gmax curve (Figure 3D). SynK activity was selective for cations as

indicated by the fact that it was observed in the presence of

potassium gluconate (Figure 3F, and not shown). Tail current

analysis revealed a reversal potential (Erev) of 22164 mV (n = 4)

which is consistent with potassium selectivity (the predicted Erev

for a perfectly selective channel in our ionic conditions is

223 mV) (Figure 3E). Furthermore, SynK was blocked by

15 mM cesium (Figure 3F) and could not be observed with

solutions containing tetraethylammonium chloride (n = 10, not

shown), a general potassium channel blocker [17]. To further

prove that the activity observed was due to SynK, we also

transfected CHO cells with SynK bearing a single point mutation

in the selectivity filter GYGD (in the mutant tyrosine 181 was

changed to alanine). K+ channels with GAGD sequence are

known to be expressed, but are unable to conduct a current e.g.

[27]. The mutant SynK was efficiently expressed and targeted to

PM in CHO cells (Figure S3) but did not give rise to current

(n = 6) (not shown). These data indicate that SynK does form a

potassium selective channel.

SynK is located to both thylakoid and plasmamembrane
in cyanobacteria

Determination of the subcellular localization of a protein is an

important step toward understanding its function. To address this

point, we obtained a polyclonal antibody against a recombinant

protein expressed in E.coli, comprising the first 144 amino acids

but not the pore region (Figure S4). The antibody recognized a

band with the predicted molecular weight of 26 kDa (Figure 4A)

with an efficiency comparable to that of the commercially

available anti-ATP-ase antibody (Figure S6). Under certain

solubilization conditions, known to permit visualization of SDS-

resistant multimeric forms of prokaryotic potassium channels e.g.

[28], bands with apparent molecular weights of 26, 52, 76 and

110 kDa were detected (Figure 4A). These values match the

predicted masses for the monomeric (26445 Da) and multimeric

forms of SynK, and point to a tetrameric organization. The use of

anti-KPORE antibody further confirmed that anti-SynK recog-

nized a potassium channel in cyanobacteria. To investigate the

location of SynK protein, cytoplasmic and thylakoid membranes

were isolated. Control blots performed with antibodies against

marker proteins of the various fractions (Figure 4B) indicated that

the cross-contamination in our preparation is low. At equal loaded

protein quantity of plasmamembrane (PM), soluble (SOL),

thylakoid (THYL) and outer membrane (OM) fractions, both

anti-SynK and anti-KPORE antibodies recognized a 26 kDa

band in the PM fraction as well as a 26 kDa band and a 24.5 kDa

band in the thylakoid fraction (Figure 4C). These proteins are

integral membrane proteins as they are resistant to alkaline

extraction (not shown). Immunogold electron microscopy con-

firmed localization of the channel in the thylakoid and in the

Thylakoid Membrane Channel
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plasmamembrane (Figure 4D). As a positive control we used a

specific antibody against CP43 protein of Photosystem II

(Figure 4E), known to be located exclusively in the thylakoid

membrane [29] and as negative control we used gold-coupled

secondary IgG (Figure S7). Please note that the position of the

anti-CP43-coupled gold particles with respect to the thylakoid

membrane (white membraneous structure) is comparable to that

obtained with anti-SynK antibody.

A homolog of SynK is present in the thylakoid membrane
of Arabidopsis

The closest homolog of SynK in Arabidopsis is TPK3 (Score:

41,2; expect value: 3e-08, 36% identity, 51% positivities; Figure

S8), which has a consensus prediction for localization in

chloroplasts (http://aramemnon.botanik.uni-koeln.de/). TPK5

also shows some sequence similarity to SynK, and has a very

strong predicted targeting for chloroplast according to several

Figure 2. Expression of SynK in Chinese Hamster Ovary cells. A) SynK-EGFP fusion protein expression in CHO cell plasma membrane,
revealed by fluorescence microscopy. Fusion protein (left image) and PM-specific Vybrant DiI dye (central image) co-located as indicated by
overlapping image (right). Representative images are shown. Bars: 10 mm. Unequal distribution of Vybrant DiI may be due to preferential
concentration of dye in rafts or to rapid vesicular uptake. B) SynK-EGFP is expressed with predicted molecular weight in CHO cells. Untransfected
cells (lane 1) and CHO cells transfected with pEGFP-N1 (lane 2) or pSynK-EGFP (lanes 3, 4) were lysed 72 h after transfection, and 50 mg (lanes 1, 2,
4) or 100 mg (lanes 3) total proteins were loaded. Membranes were developed with anti-GFP (lanes 1–3) or anti-SynK (lane 4) primary antibodies.
Arrows: positions of EGFP (28 kDa), SynK (27 kDa) and SynK-EGFP (54 kDa) proteins. C) SynK fusion protein is revealed in membraneous fraction.
The purity of soluble and membrane fractions obtained from transfected CHO cells was checked by antibodies against marker proteins of the
plasmamembrane (PMCA) (140 kDa), endoplasmatic reticulum (SERCA) (110 kDa) and cytosol (actin) (42 kDa) (upper panels). Actin is found also in
the membraneous fraction because it is in part associated to organelles and cytoskeletron. SynK-EGFP fusion protein is present in the
membraneous fraction (lower panels). Equal volumes of pellet and supernatant fractions, obtained as described in the Material and Method
section, were loaded on SDS-PAGE (25 ml for samples developed with anti-SynK and anti-KPORE and 15 ml for those developed with anti-GFP
antibody).
doi:10.1371/journal.pone.0010118.g002
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Figure 3. SynK functions as a potassium channel in CHO cells. A) Representative whole-cell currents in a pSynK-EGFP-transfected fluorescent
cell, elicited by application of voltage steps of 300 ms duration, from 2140 to + 100 mV in 20-mV steps, from a holding potential of 250 mV. Pulses
were applied every 45 seconds, allowing complete deactivation of the channel. Different colours refer to different applied voltages. B) Current-
voltage relationship. Peak currents normalized to current measured at +100 mV (n = 6, SEM values are reported). C) as in A), but from a control,
pEGFP-N1-transfected cell. D) Boltzman fit of G/Gmax (n = 6). E) Determination of selectivity from tail currents, elicited by stepping voltage for 400 ms
to +60 mV, followed by application of 2100 to + 100 mV in 20-mV voltage steps for 400 ms. Tail currents are reported as function of voltage.
Reversal potential is 22164 mV (n = 4). In A) to E) bath and pipette solutions contained 150 mM NaCl, 70 mM KCl and 134 mM KCl, respectively. F)
Current recorded in K+-gluconate solution at +100 mV, before (black) and after (red) addition of 15 mM Cs+ to bath. Results are representative of 4
experiments.
doi:10.1371/journal.pone.0010118.g003
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algorithms. Although electrophysiological and biochemical evi-

dence suggest the presence of potassium-conducting channel(s) in

higher plant thylakoid membrane, the molecular nature of this(ese)

protein(s) is unknown. Given that the SynK antibody was

developed against the first 144 amino acids of the protein, i.e. a

region comprising stretches of amino acid sequences which are

conserved also in TPK5 and TPK3, we predicted that a priori, the

anti-SynK antibody might recognize both proteins in Arabidopsis

thylakoids, if these proteins were located in that membrane system.

Anti-SynK antibody revealed a protein with an apparent MW of

54 kDa in thylakoids isolated from Arabidopsis (Figure 5A).

Membrane proteins often display a migration resulting in different

MW from that predicted. Since an MW of 54 kDa is somewhat

higher than that predicted for TPK5 and TPK3 (46,3 and

48,7 kDa, respectively), we developed a monoclonal antibody

(3A8) against a region conserved in Arabidopsis TPK3/5 but not in

other members of the TPK family. 3A8 gave visible reaction

already with 100 ng of the immunogenic peptide in dot blot (not

shown). The 54 kDa band was recognized by both anti-SynK and

3A8 (Figure 5A) and also by other two monoclonal antibodies

developed against the same peptide and by anti-KPORE (not

shown). The specificity of the recognition by 3A8 is indicated by

the significant decrease of the intensity of the band when the

antibody was pre-incubated with its immunogenic peptide prior to

blot development (Figure 5B). The identified protein is an integral

membrane protein (Figure S9). Furthermore, the 54 kDa protein,

pulled down by anti-SynK antibody from Arabidopsis thylakoid, was

recognized by the monoclonal anti-TPK3/5 antibody (Figure 5C).

To further prove the nature of the 54 kDa band, we performed

Western blots on thylakoids isolated from TPK5-knock-out

Arabidopsis mutant (Figure 5D). The intensity of the 54 kDa band

was not significantly altered in the thylakoid membrane isolated

from the knock-out plant with respect to that observed in WT

thylakoids. Given that in the TPK5-knock-out plants transcripts of

TPK5 were absent (not shown), the 54 kDa band in the mutant

plant was attributed to TPK3. Therefore we checked for the

presence of this band in plants with a t-DNA insertion in the

TPK3-encoding gene. t-DNA insertion mutants are only available

in the UTR or in the promoter regions for TPK3. UTR

(untranslated regions) may affect efficiency of translation and the

lifetime of transcripts. The transcript level of TPK3 was slightly

reduced in the UTR-insertion mutant with respect to that found in

wild-type (not shown). In thylakoids isolated from these plants

there was a decrease of the intensity of the 54 kDa band, but

complete disappearance could not be observed, being compatible

with the presence of a reduced amount of TPK3. Given that most

Figure 4. Localization of SynK in Synechocystis. A) Whole-cell cyanobacterial lysates containing 0.1 mg chlorophyll/lane were loaded on SDS-
PAGE without urea and blotted with anti-SynK (1:2500 dilution) (lane 1) and anti-KPORE (1:10000) (lane 2) polyclonal antibodies. Apparent MWs of
monomer, SDS-resistant dimer trimer and tetramer forms correspond to 26, 52, 76 and ca. 110 kDa. The anti-KPORE antibody, as expected, given the
predicted presence of various potassium channels in this organism, recognized other proteins as well (lane 2). B) Plasmamembrane (PM), soluble
(SOL) and thylakoid membrane (THYL) fractions were isolated from Synechocystis. The resulting fractions were checked for purity by using antibodies
against markers of the plasmamembrane (NrtA), of the soluble fraction (PBS: allophycocyanin; LSU: large subunit of Rubisco) and of Thylakoid (ATP-
ase and CP43). Cross-contamination to small extenct can be observed. 20 mg of proteins/lane. C) The obtained fractions were assayed for SynK
content by using anti-SynK (left panel) and anti-KPORE (right panel) antibodies. 20 mg of proteins loaded/lane. The apparent MWs of the observed
bands are 26 kDa (arrow) in the PM fraction and 26 and 24.5 kDa in the THYL fraction. D) Anti-SynK antibody used for immunogold electron
microscopy confirms location of SynK protein in thylakoids (white membraneous structures). Arrows emphasize some of the gold particles. Bar:
200 nm. E) As control, anti-CP43 was used. Bar: 500 nm.
doi:10.1371/journal.pone.0010118.g004
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TPK channels, including TPK1, have been proposed to be located

in the membrane around the vacuole, i.e. in tonoplast in plant cells

[30], we checked for contamination of our thylakoid preparation

by tonoplast. In Figure 5E the anti-TIP1.1 antibody raised against

an aquaporin located to tonoplast [31], recognized a 28 kDa band

in isolated tonoplasts, but not in thylakoids. As a further control,

the localization of TPK1 in Arabidopsis cells was assayed by using a

specific anti-TPK1 monoclonal antibody. Western blot analysis of

vacuolar and thylakoid fractions revealed the presence of a 51 kDa

band only in vacuoles isolated from WT but not in those obtained

from TPK1 knock-out plants, confirming tonoplast location of

TPK1 and indicating that TPK proteins might migrate with a

higher than predicted MW (Figure S10).

Discussion

In the present work we report cloning and functional

characterization of a novel potassium channel of cyanobacteria.

The SynK protein, identified as putative potassium channel by

bioinformatics, was shown to mediate potassium transport when

expressed in E.coli LB2003 and gave rise to potassium-selective

current when studied in Chinese Hamster Ovary cells. Specific

anti-SynK antibody localized the channel protein both in

thylakoid and in plasmamembrane in Synechocystis cyanobacteria.

SynK is thus the first potassium channel identified in the

thylakoid membrane from molecular point of view. Furthermore,

SynK seems to be the ancestor of a TPK family member in

Arabidopsis, which we show to be located in thylakoids of higher

plants.

SynK is shown here to function as potassium-conducting

channel when expressed in heterologous systems (Figures 1–3),

although structural determinants of voltage sensitivity in SynK and

factors determining the instantaneous component remain to be

clarified. Data of Figure 4 indicate SynK to be located in both

plasma and thylakoid membranes in Synechocystis. Recently, we

have identified another ion-conducting pathway, a sodium/proton

antiporter, in the thylakoid membrane of the same organism [32].

Dual localization of several proteins and ion channels have been

described in eukaryotic systems e.g. [33–35]. The targeting

mechanisms are not well known in cyanobacteria, but according

to one model, proteins may be initially targeted to either

membrane and sorted afterwards, possibly by vesicle transport

[29]. Recently, the Tat protein transport system was described to

function in both membrane systems [36]. In the thylakoid

membrane fraction the anti-SynK antibody detected two bands,

one with a slightly lower MW than that predicted (Figure 4C).

Whether this lower MW band corresponds to a mature form of the

thylakoid-targeted protein or to a partially degraded protein

remains to be determined.

Chloroplasts are descendents of an ancestral endosymbiont of

cyanobacterial origin e.g. [37,38]. Nuclear genes coding for

chloroplast proteins involved in photosynthesis and organelle

biogenesis have been identified. A recent work identified other

nuclear-encoded chloroplast proteins of endosymbiont origin by

using functional orthogenomics [35]. Our data suggest that SynK

may be an ancestor of TPK3 which is a member of the two-pore

potassium channel family in Arabidopsis [39]. When BLAST

analysis is performed, TPK3 is the closest homolog of SynK in

the whole Arabidopsis genome and vice versa, according to

Aramemnon. The evolutionary origin of eukaryotic tandem-pore

channels is still elusive but according to one hypothesis, 6TM

prokaryotic PNBD-less potassium channels (like SynK) might have

given origin to TPK channels [40]. A conserved pore region

feature (presence of YF residues) in both SynK and plant TPK

Figure 5. SynK homolog TPK3 is located in the thylakoid membrane of Arabidopsis. A) SynK and the monoclonal antibody 3A8 against
TPK3/5 recognize the same, 54 kDa band in Arabidopsis wild-type thylakoids (proteins corresponding to 30 mg chorophyll were loaded). B) Intensity
of the 54 kDa band decreased when the antibody was preincubated with 300 mM immunogenic peptide. The two lanes (30 mg Chl/lane) are from the
same blot and were processed together. C) Thylakoids isolated from WT Arabidopsis plants were immunoprecipitated with anti-SynK antibody and
blotted with 3A8 monoclonal antibody. D) Thylakoids (30 mg Chl/lane) isolated from wild type and TPK5-knock-out (left panel) and TPK3-knock-down
(right panel) plants were loaded and assayed with the monoclonal antibody. The same membranes were stripped and reblotted with anti-ATP-ase to
check for equal loading. E) Tonoplast and thylakoid fractions (20 mg of total protein of each) were loaded and developed with anti-TIP1.1 antibody
(TIP1.1 is indicated by arrow at 28 kDa). In A, C and E nitrocellulose membranes and the BCIP/NBT (Sigma) development system, while in B and D
PVDF membrane and ECL system was used.
doi:10.1371/journal.pone.0010118.g005
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channels further point to an evolutionary link between the two

proteins (Figure S11).

Our findings indicate the presence of TPK3 protein in the

thylakoid membrane (Figure 5). Independently of whether SynK is

the precursor of TPK3 or not, this is the first thylakoid-located

cation channel identified from molecular point of view in higher

plants (in addition to proton-conducting F0/F1 ATP-ase). Given

that the electrophysiological activity of TPK3 has not been

described up to now, it is difficult to predict which of the previously

described electrophysiological activities [12–15] can be assigned to

TPK3 protein. In any case, the thylakoid localization of this

protein opens the way to functional characterization of this still

putative channel. Despite a consensus prediction for chloroplast

localization of TPK1, TPK2 TPK5 and TPK3 (see Aramemnon

site), these proteins have previously been shown to be targeted to

the vacuolar membrane of protoplasts from Arabidopsis cultured

cells that transiently expressed AtTPK in fusion with GFP or YFP

under the control of the cauliflower mosaic virus (CaMV) 35S

promoter [30]. Interestingly, AtTPK3 fusion protein accumulated

also in additional, non-identified internal membranes when using

this system (Figure 2b of ref. 30). We would like to point out that

we detect AtTPK3, shown to exhibit high transcript level [30], in

thylakoids obtained from genetically non-manipulated Arabidopsis

plants, by using a specific monoclonal antibody. Thus, observation

of the protein in thylakoids due to possible overexpression-induced

mistargeting can be excluded. Our results do not exclude

localization of TPK3 in other membranes as well, nor they

exclude the presence of other channels as well in thylakoids. SynK

and TPK3 might be involved counterbalancing cation fluxes from

the lumen towards the stroma during photosynthesis, which would

permit dissipation of the transmembrane potential but not that of

the pH gradient [12,15,41]. Presuming the same orientation of

SynK in the CHO plasma membrane and in thylakoids, at positive

voltages of the thylakoid (proposed to reach +70 mV on the

lumenal side during proton flux into the lumen [42]) SynK could

permit the quick exit of potassium from the lumen. Direct genetic

proof in favour of the ‘‘counterbalance’’ hypothesis is still missing,

due also to the fact that cation channels have not been identified

from a molecular point of view neither in cyanobacterial thylakoid

nor in that of higher plants.

In summary, we report the molecular identification of two

thylakoid-located potassium channels, SynK in cyanobacteria and

TPK3 in Arabidopsis. SynK represents the first cyanobacterial core-

only type potassium channel, and seems to be the anchestor of

TPK3 of the two-pore potassium channel family. Our results open

the way for understanding the physiological roles of these

thylakoid channels and for determining their role, if any, in the

regulation of photosynthesis.

Materials and Methods

Strains and growth conditions are described in supplementary

Text S1. Expression of SynK in E.coli and measurement of K+

uptake was performed according to [21] and [43]. Expression of

SynK in CHO cells was performed according to [44]. DNA

constructs and transformation of Synechocystis sp. PCC 6803 as well

as plant growth, genotyping and transcript analysis of Arabidopsis

are detailed in the suplementary material. Thylakoids from plants

were isolated as described [45]. Membrane fractionations of CHO

cells, cyanobacteria and Arabidopsis were performed according to

[46], [47] and [48], respectively. Immunoprecipitation, electron

microscopy and immunogold labelling were performed according

to [49] and [50], respectively. Patch clamp analysis is according to

[34,44] and is detailed in supplementary Text S1.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0010118.s001 (0.04 MB

DOC)

Figure S1 Closest homologues of SynK are found in cyanobac-

teria. A) The closest homologues of SynK (Syn, Synechocystis sp.

PCC 6803; gi:16331771) are found in other cyanobacteria species.

Sequence alignment (ClustalW (1.83) algorithm) of SynK, of a

hypothetical protein (Lyng, Lyngbya sp. PCC 8106; gi:119457762)

and K+ channel pore region (Croco, Crocosphaera watsonii WH

8501; gi:46119130). ‘‘*’’ - identical residues in all aligned

sequences; ‘‘:’’ - conserved and ‘‘.’’ - semi-conserved substitutions.

BLAST analysis revealed E values (number of hits expected to be

found by chance) of 2610–24 and 4610–19 and positivity over

length of aligned sequence of 55% (223 amino acids) and 56%

(207) when compared SynK with Lyngbya and Crocosphaera watsonii

proteins, respectively. Typical selectivity filter for potassium is in

green. Glycine in S6, important for gating is in yellow.

Found at: doi:10.1371/journal.pone.0010118.s002 (0.02 MB

DOC)

Figure S2 Potassium uptake by K+-depleted E.coli containing

SynK or empty vector. Net potassium uptake measurements by

K+-depleted E. coli cells in the presence of 10 to 80 mM KCl

revealed Vmax values of 553 and 460 nmol min21 g21 dry

weight for SynK-expressing cells and for the control cells,

respectively Lineweaver-Burk plot of K+ uptake data obtained

from four independent experiments is shown.

Found at: doi:10.1371/journal.pone.0010118.s003 (0.02 MB

PDF)

Figure S3 Expression of SynK and SynK mutant in Chinese

Hamster Ovary cells. SynK-EGFP WT and mutant (non-

conducting mutant with GAGD instead of GYGD in the pore

region) fusion protein expression in CHO cell plasma membrane

was revealed by confocal microscopy. Images with GFP fusion

proteins (left images) and FM4-64 dye (central images) and merged

signals (right images) are shown for WT SynK-GFP (upper panels)

and mutant SynK-GFP (lower panels). Graphics shown beside the

merged images represent profile plots of GFP (green) and FM4-64

(red) fluorescence intensity as a function of the distance for a

particular region of interest (ROI), from inside the cell (in) to

outside (out). Peaks falling in the same region correspond to co-

localization.

Found at: doi:10.1371/journal.pone.0010118.s004 (0.48 MB

PDF)

Figure S4 Anti-SynK antibody recognizes recombinant and

native SynK. Recombinant protein (144 N-terminal amino acids

of SynK fused with a 6 His-tag at C-terminus) was expressed in E.

coli and purified as described in Materials and Methods. Protein

was purified as a 30-kDa dimer (see lane 2). 30-kDa protein,

recognized by anti-His antibody (not shown), was used for

antibody production. Pre-immune antiserum did not recognize

either purified 30 kDa protein (lane 3) or proteins in cyanobacteria

whole-cell lysate (lane 4); serum from immunized rabbit clearly

reacted with the recombinant protein (lane 5) and recognized

SynK of 26 kDa in whole-cell lysate (in cells containing 0.1 mg

chlorophyll) even at 1:5000 dilution (lane 6).

Found at: doi:10.1371/journal.pone.0010118.s005 (0.16 MB

DOC)

Figure S5 Anti-KPORE antibody recognizes other potassium

channels. Anti-KPORE antibody was used at 1:10000 dilution on

whole-cell lysate of Jurkat lymphocytes, known to express Kv1.3
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channel with apparent MW of 65 kDa (Magic Marks loaded on

lane 1). Same bands were recognized by anti-KPORE (lane 2) and

by a specific antibody against Kv1.3 (1:200) (lane 3) in SDS-PAGE

with 6 M urea. 50 mg total proteins were loaded. Anti-KPORE

antibody also recognized purified GST-Kv1.3 protein (lane 4,

10 mg loaded, predicted MW 87 kDa) (production of GST-Kv1.3

is described in Gulbins et al, Biochim. Biophys. Acta, in press).

Anti-KPORE antibody also recognized KCa3.1 in HCT116 colon

cancer cell line (not shown), and monomeric as well as multimeric

forms of the purified Kcv viral potassium channel (not shown) and

of purified KvAP (kindly provided by P.Facci, not shown).

Found at: doi:10.1371/journal.pone.0010118.s006 (0.07 MB

DOC)

Figure S6 Anti-SynK antibody efficiently recognizes SynK in

whole-cell lysate of cyanobacteria. Cells corresponding to the O.D.

(at 730 nm) shown on the figure were solubilized in SB and loaded

on SDS-PAGE. The blot was first developed with anti-SynK

antibody and after re-stripping with anti-ATP-ase antibody

(Agrisera). Efficiency of anti-Synk and anti-ATP-ase antibodies is

comparable.

Found at: doi:10.1371/journal.pone.0010118.s007 (3.76 MB

PDF)

Figure S7 Secondary antibody does not label cyanobacteria in

immunogold electron microscopy. As control, only secondary IgG

was used. Bar: 500 nm.

Found at: doi:10.1371/journal.pone.0010118.s008 (0.05 MB

PDF)

Figure S8 Sequence homology between cyanobacterial SynK

and Arabidopsis TPK3 (At4g18160). Aminoacid sequence align-

ments obtained by T-COFFEE algorithm. ‘‘*’’ - identical residues

in all aligned sequences; ‘‘:’’ - conserved, ‘‘.’’ - semi-conserved

substitutions.

Found at: doi:10.1371/journal.pone.0010118.s009 (0.21 MB PDF)

Figure S9 The 54 kDa protein is an integral membrane protein.

Thylakoids (100 mg total proteins) were subjected to alkaline

extraction (0.2 M Na2CO3 for 30 minutes), pelleted and both pellet

and supernatants were loaded. The 54 kDa band is not present in the

supernatant fraction indicating that it is an integral membrane

protein. Blots were developed with the indicated antibodies.

Found at: doi:10.1371/journal.pone.0010118.s010 (0.10 MB

PDF)

Figure S10 TPK1 locates to tonoplast in Arabidopsis. A specific

monclonal antibody was used to reveal location of TPK1 in WT

and atkco1 plants. Cells were fractionated and loaded on

continuous sucrose gradient. Fractions positive for tonoplast

TIP1 (VAC) or for thylakoid membrane D2 (THYL) were loaded.

TPK1 is visible only in the vacuolar fraction of WT cells (at

50 kDa). An aspecific recognition is seen at approx. 35 kDa in

thylakoids in both WT and mutant organisms.

Found at: doi:10.1371/journal.pone.0010118.s011 (0.06 MB

PDF)

Figure S11 Pore region and YF residues are highly conserved

between SynK and TPK channels of Arabidopsis. Voltage-gated Kv

and KCNQ channels are characterized by a conserved pore

region feature, namely, the presence of two tryptophans in tandem

(W67 and W68 in KcsA) (Minor DL (2001) Potassium channels:

life in the post-structural world. Current Opinion in Structural

Biology, 11: 408–414). In plant shaker-like inward rectifier

channels, the second tryptophan is highly conserved and the first

is replaced by a tyrosine. These same positions are strongly

conserved within other families of potassium channels, however, as

different residues. Animal Kir channels harbour LF or SF residues

in the same position (Minor 2001). Instead, in animal two-pore

channels, in viral Kcv as well as in all plant two-pore channels the

same positions are occupied by tyrosine and phenylalanine (YF).

SynK has the same YF aminoacids in the corresponding position,

further suggesting that SynK might have given origin to two-pore

channels during evolution. Interestingly, GORK and SKOR

outwardly rectifying voltage-dependent channels, also harbour YF

residues in the corresponding position but, in contrast to TPK3,

do not show significant homology with SynK. Aminoacid

sequence alignments obtained by T-COFFEE algorithm. ‘‘*’’ -

identical residues in all aligned sequences; ‘‘:’’ - conserved, ‘‘.’’ -

semi-conserved substitutions. YF residues, typical of Kcv, animal

and plant two-pore potassium channels are indicated. At4g01840:

TPK5; Atg1g02510: TPK4; At4g18160: TPK3; At5g46370:

TPK2; At5g55630: TPK1.

Found at: doi:10.1371/journal.pone.0010118.s012 (0.03 MB

PDF)
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