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Abstract: We have characterized a homodimeric tRNA endonuclease from the euryarchaeota Ferro-
plasma acidarmanus (FERAC), a facultative anaerobe which can grow at temperatures ranging from
35 to 42 ◦C. This enzyme, contrary to the eukaryal tRNA endonucleases and the homotetrameric
Methanocaldococcus jannaschii (METJA) homologs, is able to cleave minimal BHB (bulge–helix–bulge)
substrates at 30 ◦C. The expression of this enzyme in Schizosaccharomyces pombe (SCHPO) enables the
use of its properties as effectors by inserting BHB motif introns into hairpin loops normally seen in
mRNA transcripts. In addition, the FERAC endonuclease can create proteins with new functionalities
through the recombination of protein domains.

Keywords: tRNA-splicing endonuclease; RNA processing; RNA recombination

1. Introduction

Nature employs various mechanisms to remove introns from mRNA, tRNA, and
rRNA. In bacteriophages, bacteria, chloroplasts and mitochondria, self-splicing group I
and II introns are found [1–3]. In the eukaryotic nucleus, mRNA introns are removed by
the spliceosome [4,5], and tRNA introns are removed by the combined action of the tRNA
endonuclease and the tRNA ligase [6–9].

In Archaea, unlike bacteria and eukaryotes, all introns, whether in pre-tRNA or else-
where, use an intron excision mechanism based solely on the tRNA-splicing endonuclease
and tRNA ligase [10–13]. This property is due to the ability of the archaeal tRNA endonu-
clease to recognize two distinct motifs: the first contains a 2 or 3 nt bulge separated by a 4 bp
helix (BHB motif), and the second contains a 3 nt bulge and an internal loop separated by a
4 bp helix (BHL-like motif), regardless of the presence of a tRNA mature domain [14,15].
These motifs can be found in pre-tRNA in the anticodon loop, as well as in non-canonical
positions such as the D-arm and T-arm loops [16–18], but they can also be found in primary
transcripts of the rRNA operon, which code for 16S and 5S rRNA [11,12,19].

These two types of substrates are processed by four different types of tRNA endonu-
clease: a homotetramer in some Euryarchaea, a homodimer in other Euryarchaea, and a
heteroteramer in Crenoarchaea and Nanoarchaea [17,20–23]. Based on the phylogenetic dis-
tribution of the motifs at exon–intron junctions and endonuclease architectures, it has been
concluded that all the different forms of the enzyme can cleave the canonical BHB and that
only the homodimeric and heterotetrameric forms can cleave the BHL-like motif [17,18].

The current study aims to use specific RNA products produced by the expression
of an exogenous archaeal tRNA endonuclease to target genes implicated in genetic and
multifactorial pathogenesis in eukaryotes. Our findings show that it is unique in that it
does not involve altering the unwanted gene’s DNA sequence, transcriptional regulation,
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or mRNA maturation. Moreover, the FERAC endonuclease is a promising method for
synthetic biology and might be used to build chimera combinations of diverse transcripts.

2. Materials and Methods
2.1. tRNA-Splicing Endonuclease Purification

The enzymes, a homodimer from METJA, a heterotetramer from FERAC, and a
heterotetramer from SCHPO, were purified as previously described [24]. Molecular con-
centration of the purified proteins was determined by measuring the protein concentration
using absorbance at 280 nm and the calculated extinction coefficients.

2.2. RNA Synthesis In Vitro and RNA Cleavage Reactions

Synthesized DNA templates were used in T7 RNA polymerase transcription reac-
tions carried out with the Ambion T7-Megashortscript kit. [α-32P]UTP (800 Ci/mmol;
Perkin–Elmer, Waltham, MA, USA) was included in the reaction to label the transcription
products [12,25–28]. Transcripts of the correct size were purified by electrophoresis on
a 10% (wt/vol) denaturing polyacrylamide gel, followed by elution, phenol extraction,
and ethanol precipitation. The same conditions were used for all of the reactions: 25 mM
Tris-HCl (pH 7.5), 5 mM MgCl2, 100 mM NaCl, and 10% (vol/vol) glycerol, 20 fmol of
substrate, and equimolar amounts of tRNA endonuclease (2 µM). The reactions were
incubated at 30 ◦C or 65 ◦C for 8 min. Aliquots were pooled at 2 min intervals, the reaction
was stopped by phenol extraction and the ethanol precipitated [12]. The products were
separated on 10% (wt/vol) denaturing polyacrylamide gels and analyzed on a Molecular
Dynamics model Storm 860 PhosphorImager using ImageQuant software, version 4. Local
average background was corrected, and the fraction cleaved was calculated by the ratio of
cleaved product to the sum of the cleaved product plus uncleaved substrate [25].

2.3. SCHPO Strains and Media

The fission yeast strain used in the present study was IHSP365 (h− leu1-32 ura4-
D18). Cells were grown in YE (0.5% yeast extract and 3% glucose) plus appropriate
supplements. Yeast cells carrying a plasmid were grown in EMM (Edinburgh minimal
medium, Formedium, Norfolk, UK) plus appropriate supplements [29]. Standard protocols
for genetic manipulation of fission yeast were used as described in [29].

2.4. Vector Construction

All vectors were constructed following PCR amplification of desired genes and their
insertion between the NdeI and BamHI sites of either plasmid pREP41-MHN or pREP42-
MHN [30]. The clones were verified by sequencing. The genes are under the control of
a thiamine-regulated nmt promoter; the vector pREP41 contains the auxotrophic LEU2
marker, while pREP42 contains the URA4 marker.

2.5. Preparation of Cell Extracts and Western Blots

Cell extracts were prepared according to [30], resolved by SDS-PAGE, transferred
onto immobilon PVDF transfer membranes and then analyzed by Western blot, using a
primary antibody specific for the Myc-tag. Horseradish peroxidase-conjugated secondary
antibodies were detected using SuperSignal ULTRA Chemiluminescent Substrate (Pierce,
Holmed, NJ, USA).

2.6. Motif Search for a Hairpin Loop

Using a descriptor for a hairpin consisting of a six-base pair helix and a seven-
nucleotide loop motif, the RNABOB program [31] was used to search the mRNA sequence
of galactosidase. This secondary structure was derived from the anticodon arm of tRNAs.
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2.7. β-Galactosidase Assay

The ability of each tRNA endonuclease to process a BHB-lacZ, restoring the β-
galactosidase activity, was determined. To measure the activity quantitatively, the cells
were grown in liquid cultures to mid-log phase at 30 ◦C in EMM containing appropriate
supplement and 4 mM thiamine. The cells were then washed with thiamine-free medium
and re-inoculated into EMM in the absence of thiamine and grown to mid-log phase.
The assay of the β-galactosidase activity was performed as described in [32,33] using
o-nitrophenyl β-D-galactopyranoside (ONPG, Sigma, Saint Louis, MO, USA) as substrate.

2.8. RNA Extraction and RT PCR

Cells were grown in selective medium and harvested in mid-log phase, resuspended
in 20 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM EDTA, and lysed by vortexing with glass
beads in the presence of phenol. After centrifugation, ethanol was used to precipitate RNA
from the aqueous phase. A 5 mg aliquot of the extracted RNA was reverse transcribed (RT)
with a primer specific for the donor sequence (5′CGCGGATCCTCAATTAGGGGCAGGGCA
TGCTC). Subsequently, the DNA was used as a template for PCR amplification by using an
upstream primer specific for the acceptor sequence and the oligomer previously used for the
RT as a downstream primer. The RNA was reverse transcribed using SuperScript III reverse
transcriptase (Invitrogen) at 55 ◦C, followed by PCR amplification with Taq DNA poly-
merase using a forward primer (5′CTCACTTACGGGCCATATGTGGTCTTCCTTTCAGC)
and as a reverse primer the primer used for the RT reaction. Products were analyzed by
electrophoresis on 2% agarose gels containing ethidium bromide in TBE buffer (80 mM Tris
base, 90 mM Boric acid, 1 mM EDTA).

3. Results
3.1. The FERAC Homolog of the tRNA-Splicing Endonuclease

The kingdom of Archaea is characterized by microorganisms capable of living in harsh
environments, such as high temperatures, organic solvents, high salt concentrations, or
acidic or alkaline conditions. We sought an enzyme with features more compatible with the
temperature requirements typical of eukaryotes. The euryarchaeota FERAC is a facultative
anaerobe, whose optimal growth temperature is between 35 and 42 ◦C [34]. In a previous
study [17], we identified, using the sequence of the METJA (Q58819) enzyme as a probe
in BLASTP (Basic Local Alignment Search Tool Program) searches, a gene coding for the
protein S0AS78 in the genome of FERAC. The size of the protein, 288 residues, and our
phylogenetic studies suggested that we were dealing with a homodimeric enzyme [17].
The gene was cloned in pET28 to obtain a construct that coded for a protein with a
modified N terminus presenting a His-6 tag. The tagged enzyme was purified by affinity
chromatography followed by gel filtration chromatography. It eluted as a single peak
corresponding to the size of the predicted protein, as described in the Section 2.

3.2. The FERAC tRNA Endonuclease Can Cleave the Mini BHB Motif Substrate at 30 ◦C In Vitro

We compared the cleavage activities, at 30 ◦C and 65 ◦C, of three purified enzymes:
the FERAC tRNA endonuclease, the homotetrameric METJA enzyme and the eukaryal
heterotetrameric tRNA endonuclease of SCHPO. Equimolar amounts of enzyme (2 µM)
were incubated in the presence of the mini BHB, uniformly labeled with 32P (Figure 1A)
substrate (20 fmol) for 8 min. Aliquots were withdrawn at 2 min intervals, the reaction
was stopped and products were resolved on a denaturing gel, as described in the Section 2.
Figure 1B shows that in the absence of enzyme, no cleavage occurred at either temperature
(lanes 1–2), as expected. However, the FERAC enzyme was able to correctly cleave the mini
BHB substrate at 30 ◦C (lanes 4–7), while the METJA and SCHPO enzymes did not (lanes
8–11 and 12–15, respectively). When the METJA enzyme reaction was run at 65 ◦C (lane3)
the substrate was cleaved, showing a striking temperature dependence. Interestingly, the
SCHPO enzyme, which should be active at 30 ◦C, performed extremely poorly.
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Figure 1. RNA cleavage assay. (A) Mini BHB substrate for the in vitro cleavage assay. Arrows
indicate the splicing sites. (B) The mini BHB substrate was incubated with three different enzymes,
in the reaction conditions as reported in the Section 2. The cleavage products were analyzed by
electrophoresis on 10% polyacrylamide gel containing 29:1 monomer to bis and 8 M urea, followed
by autoradiography. The identification of the reaction products is indicated. Lane 1–2 contain the
control (C, no enzyme added) incubated at 30 ◦C and 65 ◦C. Lanes 4–7, 8–11, and 12–15 show the
products after incubation with the endonucleases from FERAC, METJA, and SCHPO, respectively.
Lane 3 shows the products following incubation at 65 ◦C in the presence of the METJA enzyme. Lane
16 contains purified T7 transcribed substrate not being incubated. (C) Splicing plateau levels showing
the functionality of each of the three enzymes at 30 ◦C. All reactions were performed at 1 mM RNA
and 2 mM enzyme under the conditions reported in the Section 2. ∆, SCHPO; �, METJA; O, FERAC.

In the absence of kinetic determinations to compare the efficiency of the tested en-
zymes, we quantified the reaction products as specified in the Section 2. Figure 1C shows
that the FERAC enzyme rapidly cleaves all of the substrate. This indicates that the RNA
substrate is not misfolded and that it can be processed to completion. The SCHPO and
METJA enzymes performed poorly, plateauing slightly above background.

3.3. In Vivo Expression of FERAC tRNA Endonucleases in SCHPO

Endonuclease efficiency was assessed in SCHPO because of the organism’s endoge-
nous heterotetrameric subunit genes and the possibility to clone, express, and compare the
efficiency of the archaeal enzymes’ homotetrameric and homodimeric versions using only
a single vector.

As a first step, the genes coding for the METJA and FERAC enzymes were cloned
into pREP42-HMN under the control of a medium-strength promoter and a transcriptional
termination element of the thiamine-repressible gene nmt1 [30,35,36]. This vector enables
the episomal expression of a tRNA endonuclease fused to tag sequences. The expressed
protein presents an N-terminal tag comprising two copies of the Myc epitope and six
histidine residues [30]. The SCHPO strain IHSP365 with genotype h− leul.32 ura4.d18 was
used to determine if the expression of the exogenous protein could be toxic to SCHPO. The
toxicity was tested by streaking the transformed cells on plates with different concentrations
of thiamine [37]. Figure 2A shows that expressing the enzyme from FERAC (p42F), METJA
(p42M), and the empty vector (p42) in the absence of thiamine, therefore under maximal
inducing conditions, is not deleterious to SCHPO growth. To investigate the expression
levels of the enzymes, Western blot analysis of whole cell extracts was carried out using
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an antibody specific for the Myc-tag [30] (Figure 2B,C). No strongly immunoreactive
proteins were detected in lane 1B and 2C (the vector control); moreover, the antibody gave
a negligible background. On the contrary, in lanes 2B and 1C, single bands of the predicted
size were detected, showing that the expression of the fusion proteins was successful.
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Figure 2. Analysis of growth and expression of archaeal tRNA endonuclease in SCHPO. (A) SCHPO
expressing either the FERAC endonuclease (p42F) or the METJA enzyme (p42M), or no enzyme (p42)
growing on EMM in absence of thiamine at 30 ◦C. (B) Detection by Western blot using an anti-Myc
antibody of Myc-tagged METJA (lane2) tRNA endonuclease and the control (lane1) in extracts from
cells grown in the absence of thiamine. (C) Detection by Western blot using an anti-Myc antibody
of Myc-tagged FERAC (lane 1) tRNA endonuclease, and the control (lane 2) in extracts from cells
grown in the absence of thiamine.

3.4. The FERAC tRNA Endonuclease Mediates RNA Trans-Recombination to Form Chimeric
mRNA In Vivo

Figure 3A summarizes the technique used in vivo. Two transcripts, one expressed
episomally and designated as the donor, and one encoded in the genome and designated
as the acceptor, combine to generate a BHB that serves as the substrate for the exogenous
FERAC tRNA endonuclease. The SCHPO leucine and uracil autotrophic strain IHSP365
was transformed with two compatible vectors, pREP42, which contains the tRNA endonu-
clease gene, and pREP41, which contains a sequence whose transcript (donor) cannot
code for a full protein unless it forms a BHB motif with an endogenous mRNA transcript
(acceptor).

As an acceptor we used the endogenous mRNA transcript of the gene that codes for
the enzyme N-succinyl-5-aminoimidazole-4-carboxamide ribotide synthetase (ADE6) [38].

Yeast harboring the mutation of this gene can survive only if adenine is present in the
growth medium. The donor is a gene that codes for Streptomyces noursei nat1, encoding
an N-acetyltransferase (NrsR) that monoacetylates nourseothricin (NAT), an inhibitor of
ribosomal protein synthesis that induces miscoding during translation in a wide range
of prokaryotic and eukaryotic organisms [39–41]. This gene, cloned into pREP41-HMN,
presents an upstream sequence designed to form a BHB structure upon interaction with
the ADE6 mRNA (Figure 3B). The NrsR ORF is out of frame and can be translated only
if the BHB structure is formed, and is cleaved by a tRNA endonuclease. To examine the
splicing product, we analyzed the final RNA product by RT-PCR. The product of the
reaction was analyzed by electrophoresis on an agarose gel, Figure 3C shows a band that
in size corresponds to the recombinant RNA. The translational product resulting from the
recombinatorial event between ADE6 and NrSR mRNA should be a chimeric protein that
presents the N-terminus of ADE6 and, at its C-terminus, the NrsR protein that confers
resistance to NAT. SCHPO strains transformed with pREP41dADE_NAT and either with
pREP42-HMN or pREP42-METJA (p42M) or pREP42-FERAC (p42F) were streaked on
EMM plates containing NAT and adenine, in the absence of thiamine. Only the strain
carrying the plasmid p42F (Figure 4A) was resistant to the antibiotic, as a consequence of
the action of the FERAC enzyme. The strains were also streaked on the same medium but
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this time containing 5-fluoroorotic acid (5-FOA) and uracil at low concentration. Because
the plasmid pREP42 contains a ura4+ selectable marker encoding orotidine 5’-phosphate
decarboxylase that converts 5-FOA into the toxic compound 5-fluorouracil, causing cell
death, cells harboring this vector cannot grow unless they lose the plasmid. Figure 4B
shows that the strain expressing the FERAC endonuclease cloned into pREP42 was now
sensitive to the 5-FOA.

J. Fungi 2021, 7, x FOR PEER REVIEW 6 of 11 
 

 

prokaryotic and eukaryotic organisms [39–41]. This gene, cloned into pREP41-HMN, pre-
sents an upstream sequence designed to form a BHB structure upon interaction with the 
ADE6 mRNA (Figure 3B). The NrsR ORF is out of frame and can be translated only if the 
BHB structure is formed, and is cleaved by a tRNA endonuclease. To examine the splicing 
product, we analyzed the final RNA product by RT-PCR. The product of the reaction was 
analyzed by electrophoresis on an agarose gel, Figure 3C shows a band that in size corre-
sponds to the recombinant RNA. The translational product resulting from the recombina-
torial event between ADE6 and NrSR mRNA should be a chimeric protein that presents 
the N-terminus of ADE6 and, at its C-terminus, the NrsR protein that confers resistance 
to NAT. SCHPO strains transformed with pREP41dADE_NAT and either with pREP42-
HMN or pREP42-METJA (p42M) or pREP42-FERAC (p42F) were streaked on EMM plates 
containing NAT and adenine, in the absence of thiamine. Only the strain carrying the 
plasmid p42F (Figure 4A) was resistant to the antibiotic, as a consequence of the action of 
the FERAC enzyme. The strains were also streaked on the same medium but this time 
containing 5-fluoroorotic acid (5-FOA) and uracil at low concentration. Because the plas-
mid pREP42 contains a ura4+ selectable marker encoding orotidine 5’-phosphate decar-
boxylase that converts 5-FOA into the toxic compound 5-fluorouracil, causing cell death, 
cells harboring this vector cannot grow unless they lose the plasmid. Figure 4B shows that 
the strain expressing the FERAC endonuclease cloned into pREP42 was now sensitive to 
the 5-FOA. 

 
Figure 3. RNA recombination. (A) Schematic view of the gene targeting strategy. (B) BHB motif 
necessary for the tRNA endonuclease-dependent recombinatorial event. The sequence belonging to 
the endogenous acceptor gene is in black; the sequence of the donor is in gray. (C) RT-PCR analysis 
by agarose gel electrophoresis of the recombination product. 

Figure 3. RNA recombination. (A) Schematic view of the gene targeting strategy. (B) BHB motif
necessary for the tRNA endonuclease-dependent recombinatorial event. The sequence belonging to
the endogenous acceptor gene is in black; the sequence of the donor is in gray. (C) RT-PCR analysis
by agarose gel electrophoresis of the recombination product.

J. Fungi 2021, 7, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 4. Sensitivity and resistance. (A) SCHPO cells co-transformed with pREP41-dADE-NAT and 
either a pREP42 vector empty or expressing FERAC or METJA tRNA endonucleases were streaked 
on EMM containing plates containing 100 μg/mL of nourseothricin (NAT) and adenine in absence 
of thiamine at 30 °C for three days. (B) The same strains were streaked on the same medium con-
taining 5-FOA. 

3.5. Intron Regulation of Gene Expression 
To produce a substrate that is cleaved only by the FERAC enzyme, we decided to use 

an in vivo approach based on the β-galactosidase (lacZ) assay [32,33]. As a first step, the 
mRNA sequence of lacZ was searched, using the RNABOB program [31] with a descriptor 
(Materials and Methods), to find a hairpin presenting a six-base pair helix and a seven-
nucleotide loop (Figure 5A). This step is necessary for two reasons: first, the hairpin re-
sembles the anticodon arm structure of a mature tRNA, and therefore should facilitate the 
action of the endogenous tRNA ligase following the removal of the intron; second, it does 
not require the introduction of an exogenous hairpin that could otherwise impair either 
the transcription or the translation of the mRNA encoded by the target gene. We decided 
to insert into the hairpin of the β-galactosidase gene an intron capable of folding into a 
BHB structure. This BHB motif presents a two nucleotides bulge at the 5′ splicing site and 
a three nucleotides bulge at the 3′ separated by a 4-bp helix (Figure 5B). A β-galactosidase 
gene presenting such an intron was cloned into pREP41-HMN (p41Zb). The presence of 
the intron results in a transcript that is out of frame and cannot be translated into β-galac-
tosidase. The strain IHSP365 was transformed with the vector p41Zb, in the absence or 
the presence of p42F, and as a control the same strain was transformed with the p41 vector 
alone. Transformant colonies were selected on EMM in the case of the strain carrying p42F 
and p41Zb, while cells carrying only p41Zb or p41 were selected on EMM containing ura-
cil. To accurately monitor the regulation of the expression of the genes under test, we used 
a β-galactosidase in vitro assay to provide a sensitive and quantitative assessment of β-
galactosidase activity by measuring the hydrolysis of the Ortho-nitrophenyl-β-D-galacto-
pyranoside (ONPG) substrate into galactose and the chromogenic compound orthro ni-
trophenol. 

In Figure 5C, we show that Miller units calculated for both controls p41 and p41Zb 
were less than 5, implying the absence of β-galactosidase expression, while the strain car-
rying both p42F and p41Zb plasmids yielded 216 Miller units of β-galactosidase. 

Figure 4. Sensitivity and resistance. (A) SCHPO cells co-transformed with pREP41-dADE-NAT and
either a pREP42 vector empty or expressing FERAC or METJA tRNA endonucleases were streaked
on EMM containing plates containing 100 µg/mL of nourseothricin (NAT) and adenine in absence of
thiamine at 30 ◦C for three days. (B) The same strains were streaked on the same medium containing
5-FOA.

3.5. Intron Regulation of Gene Expression

To produce a substrate that is cleaved only by the FERAC enzyme, we decided to
use an in vivo approach based on the β-galactosidase (lacZ) assay [32,33]. As a first
step, the mRNA sequence of lacZ was searched, using the RNABOB program [31] with
a descriptor (Section 2), to find a hairpin presenting a six-base pair helix and a seven-
nucleotide loop (Figure 5A). This step is necessary for two reasons: first, the hairpin
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resembles the anticodon arm structure of a mature tRNA, and therefore should facilitate
the action of the endogenous tRNA ligase following the removal of the intron; second, it
does not require the introduction of an exogenous hairpin that could otherwise impair
either the transcription or the translation of the mRNA encoded by the target gene. We
decided to insert into the hairpin of the β-galactosidase gene an intron capable of folding
into a BHB structure. This BHB motif presents a two nucleotides bulge at the 5′ splicing
site and a three nucleotides bulge at the 3′ separated by a 4-bp helix (Figure 5B). A β-
galactosidase gene presenting such an intron was cloned into pREP41-HMN (p41Zb). The
presence of the intron results in a transcript that is out of frame and cannot be translated into
β-galactosidase. The strain IHSP365 was transformed with the vector p41Zb, in the absence
or the presence of p42F, and as a control the same strain was transformed with the p41
vector alone. Transformant colonies were selected on EMM in the case of the strain carrying
p42F and p41Zb, while cells carrying only p41Zb or p41 were selected on EMM containing
uracil. To accurately monitor the regulation of the expression of the genes under test, we
used a β-galactosidase in vitro assay to provide a sensitive and quantitative assessment
of β-galactosidase activity by measuring the hydrolysis of the Ortho-nitrophenyl-β-D-
galactopyranoside (ONPG) substrate into galactose and the chromogenic compound orthro
nitrophenol.
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Figure 5. β-galactosidase activity of the gene construct pREP41-Zb. (A) Internal hairpin loop. (B) The
transcribed gene presents an intron so that it cannot be translated. Only the correct removal of the
intron generates a transcript that can be successfully translated. The sequence belonging to the gene
is in black, the intron sequence is in gray. (C) Quantitative β-gal assay of the SCHPO strain carrying
only the pREP41-Zb (p41Zb) or the control vector alone (p41) or co-transformed with pREP42-FERAC
(p41Zb-p42F).

In Figure 5C, we show that Miller units calculated for both controls p41 and p41Zb
were less than 5, implying the absence of β-galactosidase expression, while the strain
carrying both p42F and p41Zb plasmids yielded 216 Miller units of β-galactosidase.

4. Discussion

Previous studies of the activity of tRNA endonucleases in eukaryotic cells were
published. A series of studies looked at the expression in human cells of the homotetrameric
tRNA endonuclease from a METJA [42–44], a thermophilic methanogenic archaean growing
at temperatures between 48 ◦C and 94 ◦C. The optimal temperature of the enzyme limited
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the efficiency of the reaction. In other studies, the endogenous tRNA endonuclease and
ligase from Saccharomyces cerevisiae and in mouse cells were employed to trans-splice two
different transcripts together in a chimera by the forming of a pretRNA structure [45,46].
Regrettably, due to the requirement of a pretRNA, the tRNA endonuclease cannot target
genomic endogenous mRNA, and its expression cannot be controlled to calibrate efficiency.

A strategy with significant advantages must: first, act just at the mRNA level, involv-
ing no genomic alterations; and second, be regulated by modulating the expression of the
tRNA endonuclease, which works at temperatures ranging from 30 to 37 ◦C.

We show in this work that the homodimeric archaeal FERAC tRNA endonuclease
is a suitable choice for developing into a new synthetic biology tool for trans-splicing
to create novel chimera combinations of various transcripts since it exhibits all of the
aforementioned features. The FERAC tRNA endonuclease can be used to investigate
protein function by creating mRNA chimeras via trans-splicing joining after the formation
of a BHB structure. The formation of this structure and high specificity of the enzyme, when
coupled with an optimal screening of sequence homologies in the genome, considerably
decreases the possibility of nonspecific trans-splicing to other endogenous mRNA. Not
only can mutations be inserted at specific locations within a protein, but protein domains
can also be combined to produce new functions. The gain of NAT resistance as a result of
chimeric mRNA translation reveals how efficiently and properly the tRNA endonuclease
processes the substrates, as shown by the reverse transcription polymerase chain reaction
product.

The FERAC endonuclease also provides a cis-splicing mechanism that recognizes a BHB
motif as the major determinant for its recruitment and is virtually sequence independent.

The efficacy of this regulatory mechanism at the level of transcription, processing,
and translation is revealed by restoring the β-galactosidase activity following the precise
ablation of the intron.

In higher eukaryotes, this potential could be realized by expressing the endonuclease
with tissue-specific promoters in certain cell types and tissues.

Similarly, this approach may be used to tag a target protein intercating in a com-
plex without affecting its natural expression, lowering the likelihood of side effects from
overexpression.

The fact that the activity of FERAC endonuclease in vivo is dependent on its inter-
action with two biological components of the splicing reaction, the target mRNA and an
endogenous RNA ligase, suggests a possible framework for future research to improve
efficiency.

Our next goal will be to extend these studies in animal models.
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