
fgene-11-00457 May 27, 2020 Time: 13:32 # 1

REVIEW
published: 25 May 2020

doi: 10.3389/fgene.2020.00457

Edited by:
Shizhong Han,

Johns Hopkins Medicine,
United States

Reviewed by:
Jiri Vohradsky,

Institute of Microbiology (ASCR),
Czechia

Justin William Walley,
Iowa State University, United States

*Correspondence:
Rosangela Sozzani
rsozzan@ncsu.edu

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology,

a section of the journal
Frontiers in Genetics

Received: 05 November 2019
Accepted: 14 April 2020
Published: 25 May 2020

Citation:
Van den Broeck L, Gordon M,

Inzé D, Williams C and Sozzani R
(2020) Gene Regulatory Network

Inference: Connecting Plant Biology
and Mathematical Modeling.

Front. Genet. 11:457.
doi: 10.3389/fgene.2020.00457

Gene Regulatory Network Inference:
Connecting Plant Biology and
Mathematical Modeling
Lisa Van den Broeck1, Max Gordon2, Dirk Inzé3,4, Cranos Williams2 and
Rosangela Sozzani1*

1 Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States, 2 Department
of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States, 3 Department of Plant
Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium, 4 VIB Center for Plant Systems Biology, Ghent, Belgium

Plant responses to environmental and intrinsic signals are tightly controlled by
multiple transcription factors (TFs). These TFs and their regulatory connections form
gene regulatory networks (GRNs), which provide a blueprint of the transcriptional
regulations underlying plant development and environmental responses. This review
provides examples of experimental methodologies commonly used to identify regulatory
interactions and generate GRNs. Additionally, this review describes network inference
techniques that leverage gene expression data to predict regulatory interactions.
These computational and experimental methodologies yield complex networks that
can identify new regulatory interactions, driving novel hypotheses. Biological properties
that contribute to the complexity of GRNs are also described in this review. These
include network topology, network size, transient binding of TFs to DNA, and
competition between multiple upstream regulators. Finally, this review highlights the
potential of machine learning approaches to leverage gene expression data to predict
phenotypic outputs.

Keywords: gene regulatory network, network properties, network inference, machine learning, experimental
methodologies

FROM GENES TO NETWORKS: A CONTINUOUS MOLECULAR
SCALE FOR PLANT RESEARCH

Plant responses need to integrate environmental signals, including those from biotic and
abiotic stresses. Additionally, plants integrate intrinsic signals, such as developmental or
hormonal cues. Plant responses to environmental and intrinsic signals are under tight
control to ensure a fast and appropriate response and at the same time prevent an
indiscriminate activation of this response (Swift and Coruzzi, 2017). Accordingly, the
chance of randomly activating a plant response is significantly reduced when multiple
transcription factors (TFs) regulate and fine-tune this response (Swift and Coruzzi, 2017).
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As such, multiple upstream TFs, connected to each other,
form complex gene regulatory networks (GRNs) to redundantly
control downstream responsive genes, also defined as target
genes (Hernando et al., 2017). These GRNs consist of nodes
that represent genes, and edges that represent the regulatory
connections between genes. Overall, GRNs provide a blueprint
of the molecular interactions underlying plant responses. The
generation of GRNs in the context of plant responses has
played a critical role in identifying new regulatory connections
between genes and driving novel hypotheses. For example, the
generation of a GRN at the base of the myo-inositol metabolic
pathway in soybean (Glycine max) predicted new regulatory
interactions, of which 13 interactions could be validated. The
GRN was generated with transcriptome data from two mutant
lines, mips1 (myo-inositol phosphate synthase 1) and a triple
mutant mips1/mrp-l (multi-drug resistance protein)/mrp-n that
led to low phytic acid and a decrease in seed emergence (Redekar
et al., 2017). More specifically, differentially expressed genes
(DEGs) were clustered in modules based on their expression
patterns. Putative regulatory interactions between the DEGs
encoding TFs and the different modules were then determined
based on the enrichment of known DNA-binding motifs within
each module (Redekar et al., 2017). By using a systems-level
approach, unknown regulatory interactions were predicted and
validated, allowing for a better understanding of the myo-inositol
metabolic pathway in soybean.

In another example, newly identified hub genes, i.e., highly
connected genes, were hypothesized to have functional roles as
stress-induced genes (Vermeirssen et al., 2014). To generate the
stress-induced GRN, an Arabidopsis microarray compendium
including 199 abiotic stress conditions was used to identify
modules of co-expressed genes. Using three different network
inference techniques, a set of putative upstream TFs was
identified for each module resulting in a total of 200,014
regulatory interactions. Fifty percent of the predicted regulatory
interactions involving seven identified hub TFs were confirmed,
highlighting the capacity of GRNs to identify functional
interactions (Vermeirssen et al., 2014). Furthermore, one of
these seven TFs, NAC DOMAIN CONTAINING PROTEIN 32
(NAC032), was not yet shown to play a role in stress tolerance.
Phenotypic analyses confirmed the involvement of NAC032 in
the regulation of the osmotic stress response, demonstrating the
power of GRNs to identify regulatory TFs in a biological context
(Vermeirssen et al., 2014).

In addition to identifying new regulatory connections between
genes with GRNs, the assessment of GRN topology can provide
a system-level approach to understand network complexity
and robustness, and help in identifying putative strategies for
manipulating the network response. The network topology refers
to the structure of the GRN and includes properties such
as node connectivity, network diameter, network density, and
network motifs (Hu et al., 2005). Node connectivity is the
number of connections a node has to other nodes. Network
diameter measures the number of connections between the most
distant parts of the network. Network density is a measure of
the number of connections in a network in proportion to the
number of nodes. Lastly, network motifs are subgraphs that

occur within a GRN with high occurrence. These aspects of
network topology contribute to the understanding of network
robustness and complexity.

BIOLOGICAL PROPERTIES OF GENE
REGULATORY NETWORKS AND
APPROACHES TO INVESTIGATE THEM

As mentioned above, complex GRNs can be identified that
contribute to plant development and environmental responses.
Several biological properties, including network topology,
contribute to the complexity of GRNs and can be assessed when
studying GRNs:

1. Multiple upstream regulators: Many genes are regulated by
multiple upstream TFs, resulting in a complex regulatory
module for every gene (Barah et al., 2016; Huang et al.,
2017). Moreover, upstream TFs can act alone, form
complexes, compete for binding, and act as a co-factor
with or sequester other TFs (Nagel and Kay, 2012). In
addition to the high number of upstream regulators, some
TFs only regulate a downstream gene in combination with
another TF and/or under specific conditions (Gonzalez
et al., 2015). Such interactions are thus overlooked in the
absence of the second TF. Furthermore, it has been shown
that TFs bind to different motifs when paired with other
TFs than motifs bound by single TFs, further increasing
network complexity (Jolma et al., 2015). How multiple
upstream TFs regulate the expression of one target gene is
thus highly complex. Currently, transient luciferase assays
(TEAs) can be used to quantify the effect of multiple
TFs on the expression of a target gene (Vanden Bossche
et al., 2013). Accordingly, by transforming protoplasts
with multiple effector plasmids containing the TFs of
interest and one reporter plasmid with the promoter of
the target gene of interest, the combined effect of these
TFs on the activity of the promoter can be evaluated. This
information can be used to refine the network.

2. Transient binding: Transcription factors scan the DNA
until they encounter the correct DNA-binding motif and
bind to the DNA, which can occur transiently. A TF can
execute its function through the hit-and-run principle,
which means that once the TF is bound (hit), it establishes
a transcriptional complex that regulates transcription
even when the TF is no longer present (run) (Doidy
et al., 2016; Swift and Coruzzi, 2017). Because these
transient bindings occur within minutes and do not last,
they are harder to detect by methods such as chromatin
immunoprecipitation (ChIP), resulting in false negatives
in the GRN. Performing ChIP experiments with an
inducible system over multiple time points can decrease
the number of false negatives (Doidy et al., 2016; Swift
and Coruzzi, 2017). As such, a new class of target genes
that is only transiently bound by basic LEUCINE ZIPPER
1 (bZIP1) within 1 to 5 min and not at later time points
was discovered (Para et al., 2014).
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3. Size: Depending on the molecular process, the network
size can increase significantly, reaching hundreds of genes
in one network. Researchers can reduce the number of
genes in the network by (i) increasing the fold change or
decreasing the q-value threshold to select a smaller subset
of DEGs, (ii) focusing on a specific type of protein such
as TFs, or (iii) performing an overlap with DEGs from
other relevant datasets. To visualize, explore, and analyze
these networks, regulatory interactions can be uploaded
in Cytoscape R© and analyzed with different applications
such as BiNGO or NetMatch∗ (Su et al., 2014). Generally,
these large-scale networks include hub genes with a
high out-degree, i.e., the number of outgoing edges and
thus the number of target genes (Lorenz et al., 2011;
Barah et al., 2016). Such hub genes can be biologically
important genes and thus relevant for further studies
characterizing gene function.

4. Network topology: Within a GRN, multiple network
motifs, such as feedback and feedforward loops, are
found (Nohales and Kay, 2016). These network motifs
can exhibit specific dynamic characteristics (Figure 1).
Depending on the network motif, delayed, transient,
or increased activation of target genes can occur
(Figure 1; Martin et al., 2016). Thus, as a result of
their dynamic behavior, network motifs contribute to
GRN dynamics and complexity (Figure 1). As shown
in Figure 1, multiple snapshots of the transcriptomes
can be detected depending on the sampled time point
(Figure 1). These characteristics were highlighted in
Chang et al., where ChIP-seq data identifying EIN3
targets upon ethylene treatment were combined with
RNA-seq analysis to construct a GRN (Chang et al.,
2013). Because samples were taken at multiple time points
after ethylene treatment, the dynamics of the response
to ethylene could be unraveled. This study shows the
power of time courses to unravel the dynamics of a
GRN and view the progression of the downstream events
(Chang et al., 2013).

The latter network topology also contributes to the phenotypic
output of plant responses. For example, incoherent feedforward
loops will generate pulses of gene expression, which in turn
generate rhythmic behaviors, such as the circadian clock in
Arabidopsis (Joanito et al., 2018). Studying phenotypic outputs
is commonly achieved by eliminating or overexpressing a single
gene or several genes. However, studying phenotypic outputs
in the context of entire GRNs appears to be more challenging,
and additional tools may be necessary to connect network
characteristics and plant phenotype.

EXPERIMENTAL METHODOLOGIES TO
GENERATE GENE REGULATORY
NETWORKS

To reach a comprehensive understanding of plant responses,
multi-level data, ranging from phenotypic analyses to

gene expression analyses, are being acquired. Advances in
bioinformatics and high-throughput experimental approaches,
such as RNA sequencing and ChIP sequencing, allow us to
study whole transcriptomes. This variety of data can be used to
study genes across a molecular scale, ranging from a single gene,
several genes, or interacting genes forming a GRN. A variety
of experimental methodologies are used to collect data for the
generation of GRNs and provide a system-level view of the plant
response under study (Figure 2). These methodologies can (i)
determine the binding of a TF to specific DNA sequences or (ii)
identify target genes that are regulated by a TF of interest. Based
on this information, directional edges can be drawn from the
genes encoding TFs to their downstream targets.

Methodologies to identify DNA binding events of TFs
are yeast one-hybrid (Y1H) assays, ChIP experiments and
in vitro DNA binding assays (Figure 2). These methodologies
are frequently used in studies focusing on the detailed
characterization of a single gene or a small group of genes.
Additionally, they can be applied in a systems-level context when
performed in parallel.

– Y1H Screens. A large-scale Y1H screen that tested the
promoters of 50 genes involved in xylem development
against 467 TFs was used to construct a GRN at the base of
secondary cell wall synthesis (Taylor-Teeples et al., 2015).
This Y1H screen resulted in a highly interconnected GRN
containing feedforward loops and led to the identification
of new key TFs in the specification of the secondary
cell wall (Taylor-Teeples et al., 2015). Another recently
published GRN constructed from Y1H screens unraveled
a GRN downstream of plant cell regeneration; subdivided
this GRN in wounding, auxin, or cytokine-induced
regeneration subnetworks; and identified hub TFs and
novel promoter–TF interactions (Ikeuchi et al., 2018).
Even though Y1H assays allow for high-throughput data
generation of direct TF-DNA binding to construct GRNs,
the yeast genetic background can affect the results and
the identified regulatory interactions should be confirmed
in planta.

– ChIP. When performing ChIP followed by high-
throughput sequencing (ChIP-seq) or microarray
hybridization (ChIP-chip), genome-wide TF binding
loci can be determined. Although ChIP-seq is limited
to one TF, the technique can be used to build GRNs
when performed in parallel. A recently published study
performed ChIP-seq experiments on 21 TFs related to
abscisic acid (ABA) in the presence and absence of ABA,
enabling the identification of dynamic TF binding; for
19 of the 21 TFs, the binding events increased after
ABA treatment (Song et al., 2016). Because the authors
determined the direct downstream targets of 21 TFs, they
could identify highly regulated target genes that were
downstream of multiple TFs, such as core ABA genes
but also novel non-ABA-related genes, such as RGL3
(RGA-like 3) regulated by gibberellin (GA) and ACS2
(ACC synthase 2) controlling the biosynthesis of ethylene
(Song et al., 2016). Expresso is available to explore and
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FIGURE 1 | Schematic representation of multiple snapshots of the transcriptomes in relation to the presence of network motifs, such as feedforward and feedback
loops. Left panel: a coherent feedforward loop composed of activation interactions results in increased activation of the target gene over time as the induction of the
second transcription factor (TF) only occurs after its own activation by TF1. Middle panel: delayed activation of target2 as a result of the delayed activation of TF4,
part of an incoherent feedforward loop. Right panel: as a result of the feedback loop between TF5 and TF6, target3 is only transiently activated. These interactions
also depend on the relationship between the two TFs, the degradation of the transcripts, and the amount of input signal. The observed transcriptomes will thus be
different over multiple time points and result in different snapshots (dark gray zones). Green and red arrows represent activation and repression, respectively.

access available processed ChIP-seq data in Arabidopsis
(Aghamirzaie et al., 2017).

– In vitro DNA-Binding Experiments. As with Y1H
assays, this methodology can be used to construct GRNs;
however, the large number of regulatory interactions
found with these techniques are not always functional
and need to be placed in a biological context. In vitro
techniques used to determine DNA binding events of TFs
include protein binding microarrays (PBM), DNA-affinity
purification sequencing (DAP-seq), and Systematic
Evolution of Ligands by Exponential Enrichment
(SELEX). PBMs consist of dsDNA microarrays that are
incubated with a tagged TF of interest. The DNA-bound
TFs are detected with a fluorescent-bound antibody
(Berger and Bulyk, 2009). Using PBMs, the DNA-binding
motif of 2913 TFs, selected from different species, was
determined in a large-scale experiment (Weirauch et al.,
2014). These data are publicly available at Cis-BP1

and forms a large resource for bioinformatics analysis
and GRN inference. DAP-seq and SELEX are similar
techniques; however, to our knowledge SELEX has not
been used to build a GRN in plants. For SELEX, a target
(e.g., TF) is incubated with a library, e.g., a synthetic

1http://cisbp.ccbr.utoronto.ca

library or a genome-based library of ssDNA, dsDNA,
or RNA, followed by the selection and amplification of
the bound complexes (Djordjevic, 2007). DAPseq makes
use of a dsDNA library (inferred from genomic DNA)
of which the fragments contain an adaptor sequence.
A purified TF bound to beads is added to the library. Next,
the bound gDNA fragments are eluted and sequenced.
By mapping the sequence reads onto the genome, bound
target genes can be identified (Bartlett et al., 2017). The
in vitro DNA-binding sites of 526 Arabidopsis TFs are
determined with DAP-seq (O’Malley et al., 2016)2.

In addition to constructing a GRN based on the binding
events of a TF, gene expression data of inducible overexpressing
plant lines can be used to build GRNs (Figure 2). The major
advantage of inducible overexpressing lines is that the desired
gain or loss of function can be applied at a specific developmental
stage, resulting in temporal or developmental specific GRN
changes. Three inducible systems are generally used. (i) TFs
translationally fused to a glucocorticoid receptor (GR) domain
translocate to the nucleus in the presence of dexamethasone
(DEX) (Corrado and Karali, 2009). The two other systems make
use of a two-component system in which a chimeric TF induces

2http://neomorph.salk.edu/dev/pages/shhuang/dap_web/pages/index.php
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FIGURE 2 | Overview of network generation and inference methodologies described in this review. High-throughput Y1H screens, ChIP-seq assays, in vitro
DNA-binding experiments, or expression experiments with inducible overexpressing lines can be used to generate GRNs. Three computational methodologies are
described in this review to infer GRNs: Correlation networks, Dynamic Bayesian networks, and machine learning networks. Advantages and disadvantages are given
for each experimental and computational methodology. GRN, gene regulatory network; ML, machine learning; Y1H, yeast one-hybrid; ChIP, chromatin
immunoprecipitation.

the expression of the transgene upon a chemical inducer. (ii)
First, a fusion protein, called XVE, contains a LexA DNA binding
domain, the VP16 transactivation domain, and the human
estrogen receptor domain and is activated when treated with
estrogen (e.g., estradiol). Subsequently, the fusion protein can
activate the expression of the TF of interest by binding on the
LexA operator sequence upstream of the gene encoding the TF
(Zuo et al., 2000). (iii) The third system, called the alc system,
also contains two components: the first component is the AlcR
TF activated in the presence of ethanol or acetaldehyde and
the second component consists of the gene encoding the TF of
interest downstream of the AlcA promoter. When the AlcR is
active, it can bind the AlcA promoter and induces the expression
of the TF of interest (Caddick et al., 1998).

These systems have been used to overexpress a gene of
interest at a desired developmental stage and explore their
downstream effects with, e.g., transcriptomics (Wellmer et al.,
2006; Dubois et al., 2013). For example, APETALA1 (AP1), a
central gene in the initiation of flower development, was fused
to a GR-domain and transformed into the ap1 cal (cauliflower)
double mutant. By specifically activating AP1 in the inflorescence
meristems of this mutant, the temporary obstruction of flower
formation in ap1 cal is lifted and flowers develop synchronously
(Wellmer et al., 2006). In addition to inducing TFs, a system has
been developed in which artificial microRNAs (amiRNAs) are
specifically induced during flower development, generating new
possibilities to unravel GRNs (O’Maoileidigh et al., 2015).

These GRNs contain experimentally determined
transcriptional regulations but do not make a distinction
between indirect or direct targets. By using cycloheximide
in combination with inducible overexpressing lines, indirect
and direct target genes can be distinguished. Cycloheximide
will block the formation of new proteins, preventing direct
targets to in turn regulate their targets and thus the detection of
indirect target genes (Davies and Exworth, 1973). Based on these
principles, the technique TARGET (Transient Assay Reporting
Genome-wide Effects of Transcription factors) was developed
(Bargmann et al., 2013). Protoplasts are transformed with a
GR-TF fusion cassette that also contains a red fluorescent protein
(RFP), enabling the sorting of transformed protoplast through
fluorescence-activated cell sorting (FACS). With the addition of
4-thiouracil (4tU), a distinction can be made between existing
and newly synthesized mRNA (Doidy et al., 2016). Using this
technique, the “hit-and-run” principle was proven for bZIP1
(Para et al., 2014). However, some genes are transcriptionally
induced by cycloheximide, which can render false positive. In
this case, including early and later time points upon induction
of overexpression can indicate whether DEGs are direct or
indirect downstream targets (Van den Broeck et al., 2017).
As such, the regulatory effect of 21 TFs on their downstream
targets was assessed upon multiple time points after induction
of overexpression. Genes differentially expressed 1, 2, and 4 h
after overexpression were selected as putative direct targets and
experimentally validated. The validated targets were used to
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construct a GRN that is specifically activated upon osmotic stress
(Van den Broeck et al., 2017).

The above-described methodologies use experimental data
ranging from Y1H screens to expression data, to construct GRNs.
However, these methodologies introduce uncertainties as a result
of incomplete observations, background noise, and systematic
errors, leading to false negatives. To this end, researchers can
make use of network inference approaches to describe regulatory
interactions as probabilities and built GRNs.

PROBABILISTIC NETWORK INFERENCE
APPROACHES TO IDENTIFY CAUSAL
RELATIONS

The inference of GRNs from large datasets is not an easy task, and
different computational tools, including correlation networks,
and causal inference methods such as Mutual Information and
Bayesian networks, have been applied to this task (Margolin et al.,
2006; Vignes et al., 2011). Co-expressed genes can be identified
from microarray or RNAseq data with correlation methods,
such as Pearson or Spearman correlation. This information
can then be used to build correlation networks (Figure 2).
These correlation networks are based on the principle that
genes expressed in the same conditions could perform a similar
biological function. Correlation networks can thus be powerful
tools to predict new regulatory genes of a specific plant response.
For example, a correlation network in rice was built based on
57 microarray experiments performed during different stages of
anther development. This resulted in 545 clusters, with genes
showing the same expression pattern across the different samples
(Lin et al., 2017). By mapping DEGs identified with knock-
out experiments onto the correlation network, new biologically
important genes involved in anther development were identified.
GRNs have been developed for a large number of species
under different environmental conditions and multiple tools
are available to explore correlation networks or identify sets of
co-expressed genes (Table 1; De Bodt et al., 2010).

Correlation networks can be used to explore large datasets
and identify putative central regulators/hub genes (Figure 2).
However, these networks are unable to provide information
about transcriptional relations between upstream regulators
and downstream target genes. They are also limited in
determining whether the interaction is direct or indirect, results
in activation or repression, or involves competition between
multiple upstream regulators. One technique to provide useful
predictions using correlation networks despite this limitation is
to integrate additional types of data. For example, combining
correlation networks with metabolic data has led to the
identification of key regulatory genes in metabolic pathways
(Wu et al., 2016). The addition of genome-wide association
studies (GWAS) can increase the power and robustness of a
correlation network. A correlation network at the base of mild
and severe salt stress response in roots was constructed in
parallel with a GWAS of a 94-RIL (Ler/Cvi) population. Genes
identified with GWAS were used to explore the clusters of the
correlation network. By analyzing the neighboring genes of the

identified GWAS hits, connections could be made, such as the
allocation of GWAS and neighboring genes identified under
mild salt stress to specific clusters (Kobayashi et al., 2016).
Leveraging the advantage of combining GWAS with correlation
networks, a computational framework, Camoco, was built to
identify candidate SNP-associated genes, build a correlation
network, and prioritize the candidates genes based on their
expression correlation (Schaefer et al., 2018). This approach
is especially useful for species for which the majority of the
genome remains functionally uncharacterized. Other methods
that integrate correlation networks with additional data are
based on known DNA-binding motifs to identify the upstream
regulators of a group of DEGs that cluster together (Palaniswamy
et al., 2006; Lv et al., 2014; Barah et al., 2016). The TF2Network
tool is such a method that allows constructing a GRN based on
DNA-binding motifs by searching in a given list of genes for
enriched TF-binding sites (Kulkarni et al., 2017).

While correlation networks are an adaptable and widely
used computational tool, other methods are necessary to infer
causal relationships from gene expression without the use of
DNA-binding motifs. Using network inference methods, putative
upstream regulators for DEGs can be predicted by searching for
regulators that can explain observed gene expression patterns,
allowing the researcher to construct a GRN (Segal et al., 2003;
Phuong et al., 2004). Bayesian network (BN) inference provides
one avenue to construct large, informative GRNs and infer
direct causal relations between genes (Figure 2; Yu et al., 2004;
Chen et al., 2006; Bansal et al., 2007; Vignes et al., 2011). In
BNs, edges are encoded as probabilistic connections between
their origin and destination nodes (Pearl, 2008). These networks
are a particularly widely used tool in determining conditional
dependencies among genes to predict direct interactions between
an upstream gene and its downstream targets (Yu et al.,
2004; Chen et al., 2006; Bansal et al., 2007; Vignes et al.,
2011). In one example, a BN was used to infer conditional
dependencies among SHOOT MERISTEMLESS (STM) and 56
other genes encoding TFs with publicly available datasets
in Arabidopsis. With this network a strong dependency was
identified between STM and CUP-SHAPED COTYLEDON 1
(CUC1), which was then experimentally validated (Scofield et al.,
2018). Importantly, BNs can be constructed by beginning with
a set of genes of interest and iteratively adding genes that
lead to a model with increased fitness. Using this approach,
several GATA TFs were identified as possible regulators of
photosynthesis in Arabidopsis and novel relationships were tested
(Needham et al., 2009).

To lower the number of possible networks and thus
sometimes extensive computation time, network inference based
on Bayesian principles can make use of a priori knowledge about
the pathway. A priori knowledge can be incorporated in ways
such as restricting possible network structures based on known
patterns of interaction or limiting the number of connections
any node may have. For example, Bayesian inference with an
assumption of hierarchical structure and a limited number of
connections was applied to infer GRNs in Arabidopsis under
different stress conditions. These networks identified 9 TFs as
putative regulators of DESICCATION-RESPONSIVE PROTEIN
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TABLE 1 | Summary of the available tools to explore expression datasets in different species.

Tool Species Specificity References

CORNET Arabidopsis thaliana Co-expression and protein-protein
interaction tool

De Bodt et al., 2010

FlowerNet Arabidopsis thaliana Includes only stamen-, pollen-, or
flower-specific expression studies

Pearce et al., 2015

Genevestigator Arabidopsis thaliana, Hordeum vulgare,
Oryza sativa, Medicago truncatula,
Glycine max, Zea mays, Nicotiana
tabacum, Solanum lycopersicum,
Physcomitrella patens, Triticum
aestivum, and Sorghum bicolor

Multiple tools to analyze a set of genes,
such as clustering and differential
expression

Hruz et al., 2008

RapaNet Brassica rapa Includes 143 B. rapa microarrays Kim et al., 2017

RiceAntherNet Oryza sativa Includes 57 rice anther tissue
microarrays

Lin et al., 2017

RiceArrayNet/PlantArrayNet Oryza sativa, Arabidopsis thaliana, and
Brassica rapa

Includes diverse microarrays and links
genes to pathway maps

Lee et al., 2009

PlantExpress Oryza sativa and Arabidopsis thaliana Contains two sub platforms,
OryzoExpress and ArthaExpress,
enabling cross-species analysis

Kudo et al., 2017

ATTED-II Arabidopsis thaliana, Brassica rapa,
Oryza sativa, Glycine max, Populus
trichocarpa, Solanum lycopersicum,
Vitis vinifera, Medicago truncatula, and
Zea mays

Includes microarray data of crops and
added RNAseq data of Arabidopsis

Obayashi et al., 2014, 2018

PlaNet Arabidopsis thaliana, Hordeum vulgare,
Medicago truncatula, Populus
trichocarpa, Oryza sativa, Glycine max,
Triticum aestivum, Nicotiana tabacum,
Brachypodium distachyon,
Physcomitrella patens, and Selaginella
moellendorffii

Comparative analysis of co-expression
networks across plant species and
prediction of gene function

Mutwil et al., 2011

PLANEX Arabidopsis thaliana, Glycine max,
Hordeum vulgare, Oryza sativa,
Solanum lycopersicum, Triticum
aestivum, Vitis vinifera, and Zea mays

Contains microarray data from the
Gene Expression Omnibus (GEO)

Yim et al., 2013

Different tools are developed to identify sets of co-expressed genes across a wide range of environmental conditions or mutant lines and explore these regulatory modules.
Each tool has overlapping and distinct features.

29A (RD29A), a well-known stress-induced gene, in agreement
with previous experimental data (Penfold et al., 2012).

Another method to infer regulatory relationships is the use of
ordinary differential equation (ODE) models. These approaches
are based on fitting parameterized differential equations to time-
course expression data, where these equations characterize the
dynamic influence of regulators on the expression patterns of
target genes. These equations typically describe mechanistic
interactions between regulators and targets and can vary in
complexity, ranging from linear equations to more complex
non-linear representations (Wu et al., 2014). Given a specific
model type and time-course gene expression data, optimization
routines are used to estimate the parameters of the ODE. These
include least-squares methods, LASSO, Markov Chain Monte
Carlo, and Genetic Algorithms (Locke et al., 2005, 2006; Krouk
et al., 2010; Koryachko et al., 2019). Issues that arise when using
ODEs to model GRNs include overly complex models resulting
in overparameterization, sparse data resulting in unidentifiable
parameters (Krouk et al., 2010), overfitted parameters resulting
in models that are not generalizable (Krumsiek et al., 2010), and
model structures that result in “sloppy” parameters where a wide

range of parameters provide adequate fit to the data (Bujdoso
and Davis, 2013). ODE models are also typically constrained to
a subset of DEGs to reduce the numbers of parameters that need
to be optimized. Putative upstream regulators of genes involved
in the response to different light conditions in Arabidopsis
were selected based on literature, databases such as Kyoto
Encyclopedia of Genes and Genomes (KEGG), and regulator-
gene predictions based on motif presence in promoter regions.
Fitting ODE models to time-course expression data allowed for
the removal of weak regulatory interactions and the refinement of
a GRN under photosynthetic light acclimation (Yao et al., 2011).
Similarly, an ODE model incorporating hidden states to represent
actual protein abundances was used to infer GRNs related to
nitrate response in Arabidopsis. In this study, SPL9 was identified
as a possible regulator of nitrate signaling and experimentally
validated by overexpressing SPL9 (Krouk et al., 2010).

Importantly, each inference technique has specific advantages
and limitations. For example, Bayesian inference methods are
well-suited to extract useful information from noisy gene
expression data and to identify linear cascades (Marbach et al.,
2012). However, they cannot scale to infer large networks and
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are limited in identifying feedforward loops (Marbach et al.,
2012). These shortcomings can be addressed by performing a
clustering step prior to inference (de Luis Balaguer et al., 2017)
and extending the BN into a Dynamic Bayesian Network (DBN),
respectively (Friedman et al., 1998). In DBN inference, a time-
course dataset is provided to predict probabilistic dependencies
between genes. As such, the value of each gene at one time point
depends on the values of its regulators at the previous time point
and/or at the same time point, depending on the sparsity of
the time-course data that is provided. DBNs have been used to
predict mechanisms that are key in regulating circadian rhythms
in Arabidopsis. These were later confirmed in experimentally
verified networks (Dondelinger et al., 2012). Moreover, DBNs
have successfully been used to infer GRNs underlying molecular
responses and reconstruct experimentally determined stem cell
networks. Accordingly, a DBN inferred from root stem cell-
specific time-course data identified PERIANTHIA (PAN) as an
upstream of known stem cell regulators. Experimental evidence
showed that this newly predicted stem cell regulator indeed
controls columella stem-cell maintenance and QC division (de
Luis Balaguer et al., 2017). Importantly, the computational
pipeline used in this work, called GENIST, was made available on
GitHub and through TuxNet, a simple graphical user interface for
processing of RNAseq data and inferring GRNs (de Luis Balaguer
et al., 2017; Spurney et al., 2019). In addition to TuxNet, other
tools are available to facilitate the use of BNs and DBNs for
plant biologists, such as BNArray, a tool developed in R that
creates small DBNs and combines them to predict regulatory
subnetworks (Chen et al., 2006). Similarly, open source Cytoscape
plugins are available for network inference: (i) NetworkBMA
uses Bayesian Network Averaging to infer regulatory networks
(Fraley et al., 2014); (ii) Cygenexpi is based on ODEs and
uses known putative regulations and time-course data to
assess regulatory interactions (Modrák and Vohradskı, 2018);
and (iii) ARACNE can analyze and integrate high-throughput
expression steady-state data and was already successfully
used in identifying previously known and new transcriptional
regulations in the Arabidopsis root (Margolin et al., 2006;
Chávez Montes et al., 2014).

BRIDGING THE GAP BETWEEN
QUANTITATIVE EXPRESSION DATA AND
PHENOTYPIC TRAITS WITH MACHINE
LEARNING APPROACHES

Pleiotropic effects can be a major challenge in making targeted
changes to biological systems. This problem can be circumvented
by adjusting the specificity of the downregulation or upregulation
of the gene expression. For example, the adverse effect of the
constitutive overexpression of PLASTOCHRON1 (ZmPLA1) in
maize, such as the absence of flowering, is eliminated by targeting
the ectopic expression of PLASTOCHRON1 (ZmPLA1) to the
transition zone of a maize leaf. This is achieved by placing
ZmPLA1 downstream of the GA2-OXIDASE (ZmGA2OX)
promotor, of which the expression is limited to the transition
from cell division to cell expansion and results in larger leaves

(Sun et al., 2017). Predicting the need for these kinds of targeted
interventions requires a detailed understanding of the complex
connections between gene expression data and downstream
phenotypic effects. Unraveling GRNs and understanding their
dynamics provides one means to link gene expression and
phenotype. However, when the link between gene expression
and phenotypic output is unclear, unresolved, or highly complex
machine learning (ML) approaches can provide an attractive
avenue. ML approaches can yield data-driven models that
offer predictions, thus providing a broadly applicable toolset
to analyze biological data and predict phenotypic outputs
based on gene expression data (Figure 3). This could help to
improve the effectiveness and precision possible in modifying
phenotypic traits.

Machine learning tools have been applied to biological systems
at multiple scales. They have been applied to gene expression
data to identify DEGs (Pirooznia et al., 2008) and transcriptional
regulations between genes (Figure 2; Huynh-Thu et al., 2010).
At the phenotypic level, ML systems have been used to analyze
images for rapid phenotyping (Gonzalez-Sanchez et al., 2014;
Sommer et al., 2017). Computer vision systems using ML have
been used to track Arabidopsis growth and movement through
day–night cycles, extracting patterns of movement and growth,
automating extraction of phenotypic information (Bernotas et al.,
2019). In another example, linear regression, support vector
machines (SVMs), artificial neural networks (ANNs), random
forest regression, and stochastic gradient boosting were tested
for accuracy and robustness in yield prediction in almonds using
orchard images, orchard-specific attributes, and weather data.
After testing these ML methods, stochastic gradient boosting was
found to provide the best performance in yield prediction and
identifying key determinants of almond yield, such as orchard age
and levels of precipitation during periods of pollinator activity
(Zhang et al., 2019).

Additionally, several ML approaches such as SVMs, random
forests, logistic regression, naïve Bayes classifiers, and ANNs
have already been applied to genetic data for the prediction
of phenotypic traits (Figure 3). For example, deep ANNs were
used to predict yield in maize from genotype data and weather
conditions. In this case, the models were able to predict yield
with a root mean squared error of 12%, although this was
highly sensitive to weather prediction accuracy (Khaki and Wang,
2019). ML approaches have also been used to predict genotypes.
Logistic regression and naïve Bayes approaches have been used
to predict the genotype of crosses between maize strains, with
prediction accuracy between 82 and 85% (Seka et al., 2019).
However, because of the complexity of ML approaches and
lack of interpretable intermediary results, it can be difficult to
understand whether the model will generalize well and operate on
a wide range of input data without prohibitive amounts of testing.
One approach to address this is to identify informative features
that can be extracted from the data before it is used in the ML
system. Extracting information about this process and using that
as an input to the ML system can reduce the complexity of the
relationships the ML system needs to infer.

Gene regulation is an integral mechanism for numerous
biological processes. As a result, GRN topology plays a significant
role in the plant response to intrinsic or environmental signals
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FIGURE 3 | Current and potential future applications of machine learning methods in plant biology. Top panel: current applications of machine learning approaches
include predicting relationships from expression data, predicting phenotype from direct observational data, and predicting phenotype from genotype. Bottom panel:
in the future, gene expression data and GRN inference methods could be used to make phenotypic predictions based on the regulatory relationships between genes.

(Stelling et al., 2002). This connection between phenotype and
regulatory relationships makes constructed or inferred GRNs an
attractive intermediary step between expression-level data and
phenotypic predictions. Due to the key role of gene regulation
in determining phenotype, features derived from the topology of
GRNs, such as node connectivity, network diameter, and network
density, could be used by the ML system to make predictions
at a higher level of abstraction than using the raw expression
data. As such, the incorporation of GRN features within the ML
system can improve both phenotypic prediction performance and
model interpretability (Figure 3). Network topological features
have found use in predicting emergent behavior in systems such
as protein interaction networks and metabolic networks (Hasan
et al., 2006). For example, network features have been applied
to identify biologically important genes in E. coli metabolic
networks and found their predictions to agree with genome-
wide knockout screens (Plaimas et al., 2008, 2010). Similarly, ML
approaches that integrate network topological features have been
applied to predict metabolic pathways from correlation networks
in tomato plants, identifying a novel melibiose-degradation
pathway (Toubiana et al., 2019).

Designing an ML system involves many tradeoffs
between detail, predictive performance, availability of
data, and model interpretability. While deep learning
methods provide extreme detail, incorporating GRN-derived

features presents an opportunity to improve predictive
performance and interpretability while still making efficient
use of available data.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

As shown in this review, multiple techniques, both empirical and
in silico techniques, are available for the generation of GRNs.
An environmental signal or a developmental cue can trigger
transcriptional changes that are regulated by highly dynamic
GRNs. Different transcriptomes are identified depending on
the time upon stress or developmental signal (Figure 1) and
as such sampling at multiple time points is crucial to fully
comprehend a biological response. Moreover, as transcriptomes
differ significantly between organs (root versus shoot), tissues
(proliferating versus mature), and even cell types (epidermis
versus stoma), the precise developmental stage at which the
sampling occurs should be considered with care. Nowadays,
more techniques are being developed that allow for the analysis
of specific cell types using FACS, fluorescence-activated nuclei
sorting (FANS), and Isolation of Nuclei TAgged in specific Cell
Types (INTACT) (Bargmann and Birnbaum, 2010; Deal and
Henikoff, 2011; Slane et al., 2015; Reynoso et al., 2018). Moreover,
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several studies report that even within the same cell type,
gene expression is heterogeneous between cells. The complexity
of cellular diversity and cell-to-cell gene expression variability
can be addressed with transcriptomics at scale with single-cell
resolution (Denyer et al., 2019). Single-cell transcriptomics allows
for the simultaneous and accurate profiling of thousands of cells,
revealing detailed transcriptional pathways and developmental
processes (Denyer et al., 2019). Computational techniques, such
as Bayesian network inference and ML approaches, will need to
be adapted to the large amounts of data generated by single-cell
RNA sequencing and the cross-talk between datasets.
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