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Abstract: Cardiovascular disease is a major complication of chronic kidney disease. The coronary
artery calcium (CAC) score is a surrogate marker for the risk of coronary artery disease. The purpose
of this study is to predict outcomes for non-dialysis chronic kidney disease patients under the age of
60 with high CAC scores using machine learning techniques. We developed the predictive models
with a chronic kidney disease representative cohort, the Korean Cohort Study for Outcomes in
Patients with Chronic Kidney Disease (KNOW-CKD). We divided the cohort into a training dataset
(70%) and a validation dataset (30%). The test dataset incorporated an external dataset of patients
that were not included in the KNOW-CKD cohort. Support vector machine, random forest, XGboost,
logistic regression, and multi-perceptron neural network models were used in the predictive models.
We evaluated the model’s performance using the area under the receiver operating characteristic
(AUROC) curve. Shapley additive explanation values were applied to select the important features.
The random forest model showed the best predictive performance (AUROC 0.87) and there was
a statistically significant difference between the traditional logistic regression model and the test
dataset. This study will help identify patients at high risk of cardiovascular complications in young
chronic kidney disease and establish individualized treatment strategies.

Keywords: random forest; prediction; coronary artery calcification; machine learning; artificial
intelligence; chronic kidney disease

1. Introduction

Chronic kidney disease (CKD) is a major health problem, both worldwide and in Korea.
When CKD progresses to end stage kidney disease, it causes a heavy socioeconomic burden
on both individual patients and communities [1,2]. Among the various complications of
CKD, cardiovascular disease (CVD) is at least the second most common cause of death for
all stages of CKD patients, and it is the most common cause of death for CKD patients in
stages 3–5 [3]. Therefore, in CKD patients, CVD risk assessment and timely intervention
may improve the prognosis for CKD patients. Furthermore, the evaluation of CVD risk
in younger patients is particularly important. Because younger patients often are more
involved in socioeconomic activities than older patients, the development of CVD in young
patients has a greater adverse effect on society.

CKD increases the risk of atheromatosis, and it can progress to atherosclerosis [4,5].
The traditional risk factors for CVD in CKD patients include age, hypertension, high fasting
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glucose, dyslipidemia, and smoking history [6–8]. Coronary computed tomography (CT),
which is a non-invasive method for evaluating atherosclerosis of the coronary arteries,
has been widely used to assess CKD. Coronary CT can calculate a patient’s coronary
artery calcium (CAC) score, which is a marker of subclinical coronary artery disease, by
measuring the amount of CAC [9–11]. However, the use of coronary CT is limited in
developing countries due to its high cost, and the effects of radiation exposure prohibit its
excessive use.

Recently, many studies have been conducted that apply various machine learning
techniques to clinical problems. Prediction models using machine learning techniques
have demonstrated better performance than traditional prediction models, such as scoring
systems for critical care [12] and traditional statistical models [13]. However, to the best
of our knowledge, there has been no study examining the prediction of CAC scores in
young non-dialysis CKD patients using machine learning. Therefore, the purpose of this
study is to develop a predictive model using machine learning techniques that can screen
high-risk patients with coronary artery disease among young chronic kidney disease,
and we also compared the performance of machine learning techniques and traditional
logistic regression.

2. Materials and Methods
2.1. Data Source and Study Population

We analyzed data from the Korean Cohort Study for Outcomes in Patients with
Chronic Kidney Disease (KNOW-CKD), a nationwide, multicenter prospective cohort
study that included non-dialysis patients with stage 1–5 CKD, aged 20–75 years. The
detailed methods and design of the study were published previously (NCT01630486 at
http://www.clinicaltrials.gov, accessed on 14 December 2021) [14]. The KNOW-CKD
cohort included a total of 2238 patients. We excluded 879 patients who had missing
CAC scores or were over the age of 60 years old. The final derivation cohort comprised
1341 patients. In addition, we established an external cohort based on patients who
were treated at Chonnam National University Hospital for external validation. A total of
83 patients with CKD who were under the age of 60 years old were included in the external
validation cohort. The enrollment of patients in this study is summarized in Figure 1.

Figure 1. Flow chart representing the workflow of the machine learning analysis. We utilized the
derivation cohort to construct the predictive models and external validation cohort to assess the
universality of final predictive model. Abbreviations: AUROC, area under the receiver operator
curve; CAC, coronary artery calcium; KNOW-CKD, Korean Cohort Study for Outcomes in Patients
with Chronic Kidney Disease; SHAP, Shapley additive explanations.

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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2.2. Measurement and Definition

Various factors are known to be associated with coronary artery calcification; we
selected a representative sample of 35 features that were related with coronary artery calci-
fication and used them for the analysis. The details of the selected features are summarized
in Table S1. Demographic and baseline clinical data, including age, sex, smoking history,
cause of CKD, economic status, educational status, comorbidities, and medication history,
were surveyed by well-trained research coordinators. Blood pressure was measured using
an electronic sphygmomanometer in the clinic after five minutes of seated rest. Venous
blood samples were collected after an overnight fast. Serum creatinine was measured using
the traceable isotope-dilution mass spectrometry method. The estimated glomerular filtra-
tion rate was calculated using the Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) equation [15]. First-voided urine was used to measure spot urinary metrics,
such as protein and creatinine. Coronary multi-detector CT was performed to calculate
the coronary calcium score. The quantitative CAC score was calculated using the method
described by Agatston et al. [16]. The primary outcome variable of this study was high
CAC score, which was defined as a CAC score ≥100, and the patients were classified based
on this criterion.

2.3. Statistical Analysis

The data were analyzed using the R language (R Foundation for Statistical Comput-
ing, Vienna, Austria, version 4.0.2, http://www.r-project.org, accessed on 14 December
2021) and the Python programming language (Python software foundation, CA, USA,
version 3.7, accessed on 14 December 2021). The packages used for the machine learning
were: Scikit-learn (version 0.16.1, https://github.com/scikit-learn/scikit-learn, accessed
on 14 December 2021) [17], XGboost (The XGBoost Contributors, NY, USA, version 1.4.0,
https://github.com/dmlc/xgboost, accessed on 14 December 2021) [18], and Keras (ver-
sion 2.2.4, https://github.com/keras-team/keras, accessed on 14 December 2021) [19]. We
used Scikit-learn packages for the support vector machine (SVM) and Random Forest (RF).
XGboost was used for the extreme gradient boosting models and Keras was used for the
multilayer perceptron (MLP) neural network models. We also used R for logistic regression
with stepwise backward eliminations using Akaike information criterion.

To maintain a constant ratio of primary outcomes in both the training and test datasets,
we divided the full dataset into a training dataset (70%) and a validation dataset (30%)
using a stratified sampling method. The training dataset was used for developing the
predictive models, whereas the validation dataset was used to validate and compare the
models. To survey the optimal hyperparameters for machine learning techniques, a 10-fold
cross-validation was performed. We used a grid search to investigate the combination
of hyperparameters and defined the hyperparameter with the highest the area under the
receiver operator curve (AUROC) value as the optimal hyperparameter. We used the
AUROC as our main evaluation metric because it features class skew independence, and it
is classification-threshold-invariant. The test dataset was utilized only in the performance
tests for the final predictive model.

For the neural network model and the SVM, all the variables were normalized with the
minimum and maximum values of each variable in the training dataset. The mathematical
expressions of the normalization are depicted below:

normalization : z =
x−min(x)

max(x)−min(x)
(1)

We also created dummy features of the discrete variables for appropriate analyses. We
calculated the AUROC to quantify the performance of the predictive models and applied
the DeLong test to compare the performance of each predictive model. Because missing
values cannot be used in machine learning, simple imputation was performed using the
MICE package in R [20]. The continuous variables were imputed using the pmm (predictive
mean matching) method, the binary variables were imputed by the logreg (logistic regres-

http://www.r-project.org
https://github.com/scikit-learn/scikit-learn
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sion) method, and the multinomial variables were imputed by the polyreg (polytomous
logistic regression) method. Any p-values < 0.05 were considered as statistically significant.
The Shapley additive explanations (SHAP) value was calculated to determine feature
importance. SHAP is based on game theory [21] and local explanations [22]. Lundberg
and Lee [23] reported the SHAP value for an explainable model with additive feature
attribution methods. Additive feature attribution methods were defined as follows [23]:

g
(
z′
)
= Φ0 +

M

∑
i=1

Φiz′ i (2)

where z′ ∈ {0, 1}M, M is the number of input features, and φi ∈ R.
An important property of the class of additive feature attribution methods is that it

has a single unique solution with three desirable properties: local accuracy, omission, and
consistency [23]. Based on above method, the authors suggested Tree SHAP, which uses a
conditional expectation rather than a marginal expectation [24]:

Φi = ∑
S⊆N\{i}

|S|!(M− |S| − 1)!
M!

[ fx(S ∪ {i})− fx(S)] (3)

where N is the set of all input features
SHAP values can be obtained using the conditional expected value function of the

machine learning model, and SHAP utilizes a technique for estimating the Shapley value for
the input feature value of each instance [23]. Using SHAP, consistent variable importance
can be extracted; Tree SHAP was used in this study.

3. Results
3.1. Clinical Characteristics of Study Population

The percentages of missing data for all the variables in the derivation cohort were
<5%, except for C-reactive protein (7.189%), waist-hip ratio (6.594%), and serum chloride
(8.676%), and these missing values were imputed via a simple imputation method using the
“MICE” package. The data from 1341 patients were analyzed. The median age and eGFR of
the patients in the derivation cohort were 48.0 years and 55.3 mL/min/1.73 m2, respectively.
The proportion of female patients was 42.4% (568 patients), and the mean waist–hip ratio
and fasting blood glucose levels were 0.9 and 107.3 mg/dL, respectively, for the entire
derivation cohort. The number of patients with high CAC scores (>100) was 345 (36.8%) in
the training dataset and 148 (36.7%) in the validation dataset. Only six features, namely
serum albumin, low density lipid, total cholesterol, educational status, serum calcium,
and serum phosphate, showed statistical differences between the training and validation
cohorts. The detailed characteristics of the study population are summarized in Table S1.

3.2. Predictive Models for Coronary Artery Calcium Score

We constructed five predictive models. The summarized results, including the sen-
sitivity, specificity, accuracy, AUROC, and p-value for the DeLong test of each predictive
model are described in Table 1. The RF and XGboost models showed better accuracy,
sensitivity, and specificity than the conventional logistic regression techniques. The SVM
and MLP neural network models had lower accuracy, sensitivity, and AUROC than lo-
gistic regression. Among the machine learning techniques, the RF model showed the
best performance with respect to AUROC and was only statistically significantly different
from the performance of logistic regression. We visualize the AUROC in Figure 2. For the
logistic regression, Akaike information criterion was applied to select the features using
the backward elimination method. The logistic regression data are summarized in Table 2.
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Table 1. Evaluation metrics for prediction models.

Accuracy Sensitivity Specificity AUROC (95% CI) p-Value for
DeLong Test

Logistic regression 0.7022 0.5068 0.8157 0.7467 (0.696–0.797) reference
XGboost 0.737 0.5405 0.8510 0.7599 (0.711–0.809) 0.3809

RandomForest 0.727 0.5068 0.8549 0.7776 (0.731–0.825) 0.0220
Support vector machine 0.6799 0.17568 0.97255 0.7379 (0.689–0.787) 0.4711

Multilayer perceptron neural network 0.6923 0.4527 0.8314 0.7233 (0.672–0.775) 0.1014

Abbreviations: AUROC, area under the receiver operator curve; CI, confidence interval; XGboost, extreme gradient boost.

Figure 2. Comparing area under the receiver operator curve of prediction models. The RandomForest
model showed the highest area under the receiver operator curve of the coronary artery calcification
score prediction. Abbreviations: AUC, area under the receiver operator curve; SVM, support vector
machine; XGBoost, extreme gradient boost.

Table 2. Results of multivariable logistic regression analysis.

Variables Odds Ratio Confidence Interval p-Value

Age 1.107 1.081–1.135 <0.001
Male 4.066 2.617–6.405 <0.001

Estimated glomerular filtration rate 1.008 1.001–1.015 0.0174
C-reactive protein 0.941 0.889–0.989 0.0256

Fasting blood glucose 1.01 1.005–1.015 0.0002
High density lipid 0.99 0.978–1.002 0.1219
Total cholesterol 0.995 0.99–1 0.0434

Marital status: Never 1.798 1.043–3.102 0.0345
Marital status: DW 1.515 0.712–3.236 0.2799

Unemployed 1.499 1–2.257 0.0509
Non-use of statin 0.675 0.479–0.952 0.025

Phosphate 1.249 0.945–1.656 0.1207
Waist–hip ratio 39.309 2.587–621.509 0.0086

Hemoglobin 0.921 0.822–1.031 0.1544
Urine protein to creatinine ratio 1.139 1.043–1.248 0.0044

Serum potassium 1.405 0.993–1.992 0.0555
Abbreviation: DW, divorced or widowed.
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3.3. Final Predictive Model

The SHAP values of the features in the RF model that showed the best performance
were calculated, and the results of the top 20 features are summarized in Figure 3. Age
and fasting blood glucose were the highest-ranking features, followed by waist–hip ratio,
sex, and high-density lipoprotein. Finally, we selected four features, age, sex, waist-hip
ratio, and fasting blood glucose, based on their SHAP values and clinical accessibility. We
assessed the performance of the final predictive model with the test dataset, which was
independent of the derivation cohort. The AUROC of the final predictive model using the
test dataset is visualized in Figure 4, and its AUROC was 0.87.

Figure 3. Shapley additive explanations (SHAP) value for RandomForest model. The top 20 features
showed the highest SHAP value in the RandomForest model. Abbreviations: SHAP, Shapley additive
explanations; FBS, fasting blood glucose; WHR, waist–hip ratio; HDL, high-density lipid; UPCR,
urine protein to creatinine ratio; ALP, alkaline phosphatase; LDL, low-density lipid; SBP, systolic
blood pressure; TC, total cholesterol; CRP, C-reactive protein; eGFR, estimated glomerular filtration
rate; TG, triglyceride; DBP, diastolic blood pressure.
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Figure 4. Area under the receiver operator curve of final predictive RandomForest model with test
dataset. The area under the receiver operator curve of the final predictive model showed a reliable
result. Abbreviation: AUC, area under the receiver operator curve.

4. Discussion

In this study, we found that traditional logistic regression has limitations in predicting
the CAC score of young CKD patients and classifying them into high-risk groups. The RF
model showed the best performance with respect to AUROC, requiring only four, easily
obtained clinical variables.

Cardiovascular complications are major complications among CKD patients. The
selection of high-risk CKD patients for cardiovascular complications and the provision of
early interventions are particularly challenging tasks in the medical field. Based on the
socioeconomic benefits of early intervention in young patients and the prevalence of high
CAC score (>100) increasing with age in Korea [25], we excluded patients over 60 years
old. The CAC score is a surrogate marker that can predict the occurrence of cardiovascular
events, and it is possible to measure the CAC score using the Agatston method, which
measures CAC scores using the weighted sum of lesions with density >130 HU, multiplying
the area of calcium by a factor related to maximum plaque attenuation [16]. Recent research
has reported that patients with CAC scores >100 have 4.3 times greater risk of experiencing a
major cardiovascular event compared to the patients a CAC score of zero [26]. Additionally,
the CAC score correlates well with the Framingham risk score, which estimates the 10 year
risk of coronary artery disease [27]. Current treatment guidelines recommend that if
coronary artery disease is strongly suspected, coronary angiography should be performed
first so that both diagnosis and treatment can be performed at the same time. If it is possible
to screen patients who are expected to receive a high CAC score, i.e., patients at high risk of
coronary artery disease who require coronary angiography. This is very important because
unnecessary potentials for double doses of radiation and contrast agents can be avoided.

RF is an ensemble-based tree model that offers the advantage of not easily nor fre-
quently overfitting the data. In addition, rapid performance improvements are not induced
by an increase in the training dataset amount, which means that good performances can be
generated even with smaller datasets. However, RF features disadvantages in that it has a
high computational cost, and it is unable to extract the non-uniform feature importance. To
overcome these problems, we constructed the final predictive model by extracting impor-
tant variables based on the SHAP value and ensured the universality and applicability of
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the model. Previous reports [28,29] showed the underperformance of predictive models
with machine learning techniques in test datasets, which reflects the universality problem
of machine learning. However, our final model for predicting high CAC score patients
showed a strong predictive performance (0.87 of AUROC) with the external test cohort.
This was achieved through careful feature selection.

Currently, machine learning explainability is a major concern, especially in the medical
field. Traditional methods (Gini and Split count) for measuring the feature importance
of the tree-model feature inconsistent limitations for each model or individual tree. Con-
sistency and accuracy are the important components with which to evaluate the feature
importance [19]. Among various methods, SHAP is one of the most reliable technique to
assess the feature importance [30]. Our final predictive model comprised only four clinical
variables (age, sex, fasting glucose and waist–hip ratio). Known traditional risk factors
for CAC include age, high fasting glucose, hypertension, male sex, blood glucose, and
waist-hip ratio [7,8,31]. The four variables (age, sex, fasting blood glucose, and waist–hip
ratio) that were selected by the SHAP value were consistent with traditional risk factors
for CAC, and similar results were observed in logistic regression. Although the SHAP
value could not confirm the causality, we concluded that our prediction model is clinically
reliable based on these results.

To the best of our knowledge, this study is the first to predict CAC scores based on
clinical variables in young non-dialysis CKD patients. Our derivation cohort features many
strengths, including its prospective observational design, robust data collection, and large
study population. We applied robust statistical methods, including minimized omitted
variable bias, with our imputation method and the SHAP value. These strengths ensure
that our analyses are reliable. However, our study also features some limitations. First,
the database used in this study is larger than in other disease-specific cohorts, but it is
smaller than the general population cohort. Second, although the dataset was verified by
an external validation cohort, we cannot confirm its universality, which is a limitation of all
machine learning methods. Lastly, the study design was retrospective and the problems
of hidden bias, confound variables, and omitted variables, which are common to many
machine learning techniques, could not be solved completely here.

In this study, our final predictive RF model demonstrated better predictive perfor-
mance than logistic regression in the assessment of young CKD patients. Our predictive
model may help to screen high-risk patients for cardiovascular complications in young
chronic kidney disease, without subjecting patients to radiation exposure. Regarding the
simplicity and clinical significance of our predictive model, the results of this study may
offer great benefits for the efficient use of resources where the use of expensive medical
resources, such as CT, is limited. In addition, these results may help in the application of
personalized treatment strategies for high-risk patients. In the future, we aim to complete a
follow-up study to demonstrate the universality and generalizability of the model.
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.3390/jpm11121372/s1, Table S1: Clinical characteristics of enrolled patients.
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