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Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged
6726, Hungary

Received October 23, 2019; Revised December 15, 2019; Editorial Decision December 16, 2019; Accepted December 31, 2019

ABSTRACT

Ongoing large-scale genome sequencing projects
are forecasting a data deluge that will almost cer-
tainly overwhelm current analytical capabilities of
evolutionary genomics. In contrast to population ge-
nomics, there are no standardized methods in evo-
lutionary genomics for extracting evolutionary and
functional (e.g. gene-trait association) signal from
genomic data. Here, we examine how current prac-
tices of multi-species comparative genomics per-
form in this aspect and point out that many ge-
nomic datasets are under-utilized due to the lack of
powerful methodologies. As a result, many current
analyses emphasize gene families for which some
functional data is already available, resulting in a
growing gap between functionally well-characterized
genes/organisms and the universe of unknowns.
This leaves unknown genes on the ‘dark side’ of
genomes, a problem that will not be mitigated by se-
quencing more and more genomes, unless we de-
velop tools to infer functional hypotheses for un-
known genes in a systematic manner. We provide
an inventory of recently developed methods capable
of predicting gene-gene and gene-trait associations
based on comparative data, then argue that realizing
the full potential of whole genome datasets requires
the integration of phylogenetic comparative methods
into genomics, a rich but underutilized toolbox for
looking into the past.

INTRODUCTION

The post genomic era has brought about an exponential
increase in the number of sequenced genomes, which has
virtually eliminated sequence data being the limiting fac-
tor in comparative and evolutionary genomics. Currently,
there are >200 000 genomes in GenBank (as of 15 July
2019, including nuclear and mitochondrial) and, although
prokaryotic and fungal genomes dominate the landscape,
plenty of genomes are available for all main lineages. In ad-
dition, data are coming along for lesser known or under-
represented phyla as well (1–4), especially with the spread
of single-cell genomics (5). A whole new level of genomic
data deluge is on the horizon with the launch of several
large-scale genome sequencing projects, including ones aim-
ing to sequence all living organisms on Earth (6) (Earth
Biogenome Project) or in the UK (Darwin Tree of Life
Project) and others specifically focused on major lineages
such as plants (7–9), fungi (10,11) (1000 Fungal Genomes
Project, 1KFG), vertebrates (12,13) (Genome 10K), birds
(14) (Bird 10 000 genomes, B10K) or insects (15–17) (Insect
5000 Genomes, I5k), among others. Of these projects, the
1000 Fungal genomes project has been the first to break the
1000 genome boundary, as shown by the phylogenetically
diverse collection of fungal genomes hosted by MycoCosm
(18,19). All these data mean the foundations of comparative
and evolutionary genomics, and the data flood we are about
to see makes it timely to revisit some broad considerations
of how all these data may and/or ought to be analyzed.

The completion of reference genomes for the main model
species and decreasing sequencing prices led to the birth
of comparative evolutionary genomics or phylogenomics
(20), although the latter is more often used in the con-
text of genome-scale inference of phylogenies. Compara-
tive evolutionary genomics became one of the most rapidly
expanding fields in biology, that seeks to explain evolved
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differences between species by using genomic data. Ques-
tions that comparative evolutionary genomics seeks to an-
swer range from uncovering the phylogenetic relationships
among species, understanding the evolution of genetic el-
ements (e.g. genes, non-coding regions, etc.), how they af-
fect organismal traits or, what genomic changes underlie the
evolution of a phenotypic trait (21). The latter question is
most promising from the perspective of relating unknown
genes to traits of interest and for finding new genes that can
fuel applications in biotechnology, agriculture or medicine.
This article is focusing on the field of genomics that aims to
relate observed genetic differences to phenotypes and evo-
lutionary adaptations (e.g. metabolic capabilities, morpho-
logical structures, etc.) by systematic comparisons of whole
genome sequences.

ARE WE FULFILLING THE PROMISES OF COMPAR-
ATIVE GENOMICS?

Genome sequencing, by cracking the code of life is viewed
by many as the ultimate key to decoding species’ biology
and for better harnessing the diversity of life for basic the-
oretical, practical (biotechnological, medical) and societal
challenges. The completion of the human genome and the
avenues it opened were awaited with great excitement, for
applications ranging from basic research to personalized
medicine (22–24). Promises at the time were coming in num-
bers, but foreseen benefits to healthcare remained elusive for
several years (25–27), leading some to ponder whether the
project fulfilled its promises and even whether genomics was
more hype than substance (25,28–29). It was only several
years later that the human genome’s broad impact, espe-
cially on basic research, became widely appreciated. While
a genome’s information content is certainly high, extract-
ing signals from primary sequence is the real challenge and
becomes increasingly so nowadays as the number of se-
quenced species grow exponentially (30).

The promises of comparative genomics are also ambi-
tious, from understanding organismal biology and evolu-
tion, to explaining climate change (6), disease (31) or im-
proving biotechnology (11,19) and agriculture (15,17), to
name a few. Duly, the interest these promises and projects
are sparking is intense. Indeed, combining genomes and
phenotypic traits can, in theory, make it possible to answer
questions that were only tractable in model species (32) be-
fore and will allow us to generate functional hypotheses for
genes of the countless numbers of non-model species. This
should eventually lead to closing the gap between the in-
creasingly rapid accumulation of genomic sequences and
the huge backlog of linking loci to phenotypes. It should
also help inferring functional hypotheses to the vast regions
of the protein space that are currently functionally unchar-
acterized (33–35). Given the potentials of large-scale ge-
nomics and the theoretical advances, we here present a per-
sonal evaluation of how current practices perform in achiev-
ing the promises and how we could do better. We posit that
current practices under-utilize genomic information and of-
fer suggestions on how to improve evolutionary and func-
tional inferences from whole genomes.

Known unknowns and unknown unknowns

A fundamental question for comparative genomics is which
genomic loci underlie a given organismal trait (21,36). Iden-
tifying such genes without prior information is challenging,
but comparing genomes of species that have the trait, to
those that lack it should, in principle, make it possible. This
is one of the great promises of comparative genomics but
how much of this is realized?

Among the focal genes of comparative analyses, we dis-
tinguish two categories, based on what prior information is
available for gene and trait. Genes whose association with
the trait is supported by some prior information and we
suspect are important for its evolution are referred to as
known unknowns. Evidence may be coming from forward
or reverse genetics in model species, from RNA-seq stud-
ies, functional annotations or many other sources. For ex-
ample, a recent study (37) analyzed cytochrome p450 copy
numbers in the koala genome in search for dietary adap-
tations to a highly toxic eucalypt-based diet. The choice
of cytochrome p450 superfamily for scrutiny is based on
its known role in detoxification (38), which guided the au-
thors’ choice in analyzing this superfamily. The study did
not delve into genes that were a priori not known to be
linked to detoxification but may be serving that purpose in
the koala genome, potentially missing key gene families. In
fungal genomics, carbohydrate-active enzymes (CAZy) are
some of the most frequently analyzed gene families, com-
prising hundreds of individual genes in fungal genomes.
They are known key players of wood-decay, a biotechno-
logically relevant trait (e.g. in biofuel production). There-
fore, CAZy genes were the first candidates to be analyzed for
understanding what genes differentiate efficient and weak
wood-decaying fungi from each other (39). They eventu-
ally ‘made a big career’ in fungal comparative genomics,
partly because they are the workhorse enzymes in wood-
decay, but also because they are known players of the game.
Their repertoires in fungal genomes indeed correlate with
the species’ ability to decay wood, but are they the com-
plete story or only a fraction of the big picture? Other gene
families are also certainly needed for the complex process
of wood decay, but these have not received even a fraction
of the attention CAZymes received, because they are not
known and are hard to crack.

Cytochrome p450s and CAZymes are ‘low hanging fruit’
for studies of koala dietary adaptations and fungal wood-
decay, respectively, because we can link them to detoxifi-
cation and lignocellulose degradation based on prior stud-
ies. They are known unknowns: while their analyses can be
insightful, both wood-decay and digestion of toxic plants
are sufficiently complex and understudied traits that we can
assume with confidence that many other genes are also in-
volved. We refer to the latter genes as unknown unknowns:
they are linked to the trait, but we have no prior informa-
tion on that. Unknown unknowns, might have generic func-
tional annotation (e.g. conserved domains or gene ontology
terms), but, from the perspective of the trait, are completely
unknown and finding them should be an endeavor for com-
parative genomics studies.
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Unduly emphasis on known unknowns

For many evolutionary genomics studies the choice of ge-
nomic regions to be analyzed is influenced by prior knowl-
edge, i.e. they are focusing on known unknowns. This is
usually guided by interest in traits for which information is
available from model organisms or some other source. This
strategy will yield information on a priori selected sets of
genes, in contrast to an unbiased screen which may find un-
known unknowns that show a stronger link to the pheno-
type, but are not known yet. Restricting focus on known un-
knowns, thus, under-utilizes sequenced genomes and leaves
some of the signal in the data untapped. This is not opti-
mal, as combining genomes with traits has the potential to
highlight unknown unknowns even in species or clades that
are not amenable to laboratory experimentation (21). While
new genomes are being published at an unprecedented rate,
very few studies report on unknown unknowns, which re-
sults in an over-representation of already known genes in
genomic studies. Some families get analyzed over and over
again (see CAZy example for fungi, or a small subset of hu-
man genes (40)), whereas others remain on the ‘dark side’ of
genomes, receiving no attention at all. This trend does not
help closing the gap between genes of known and unknown
function as more and more genomes become available and
is in contrast with some of the basic goals of evolutionary
genomics.

How many unknown unknowns are there?

Assessing the number of unknown unknowns from a trait’s
perspective is challenging because there is an unknown
number of genes underlying any given phenotypic trait.
However, it is easy to provide an estimate from the per-
spective of genes of unknown functions (GUFs). Sequenced
genomes usually contain a considerable fraction of genes
whose function is unknown or that cannot be assigned any
functional (e.g. pfam or GO) annotations. Such genes have
proven the richest source of discovery of new protein folds
and families (35).

A broad group of GUFs are those that lack any kind of
functional annotation. Such genes are often just termed ‘hy-
pothetical protein’ in genome annotations, because it is im-
possible to annotate them based on similarity to function-
ally characterized genes from other organisms. We assessed
the number of GUFs based on InterPro domain contents
in 573 eukaryotic genomes (Figure 1A). The proportion of
genes without known InterPro domains is lowest for meta-
zoans (13–61% per genome) and highest in protist lineages,
where 35–87% of predicted genes have no functional anno-
tations at all. Fungi (20–68%) and plants (24–54%) are in-
termediate, yet >30% of the genes in any genome are GUFs.
Although some of such genes might be prediction errors,
most are conserved across multiple species, highlighting the
need for systematic approaches to discovering gene func-
tion. This is a particularly pressing need in less studied lin-
eages such as protists or fungi (except yeasts), whereas the
situation looks brighter for metazoans, which have tradi-
tionally been in the spotlight. In line with this, the number
of lineage-specific InterPro annotation terms (i.e. those only
known in a given kingdom) are highest in animals, but low-
est in protists and fungi (Figure 1B), likely reflecting the

amount of effort made to catalog conserved domain sig-
natures rather than true differences in the number of con-
served domains in these lineages.

We obtained another estimate of GUFs from genes to
which precise functional hypotheses can be propagated
based on 1-to-1 orthology relationships. We analyzed these
patterns in 461 eukaryote species and pairwise orthology
obtained from the OMA database (41). Genes for which
more or less precise function can be inferred based on
comparisons of 1-to-1 orthologs clearly show an enrich-
ment around intensely researched model species (Figure
1C), with the two highest peaks corresponding to yeasts
and vertebrates. Up to 80% of the genes of non-model
species in these groups can be annotated with orthology-
based functions, as opposed to 41, 38, 50 and 43% in pro-
tists, Archeoplastida, filamentous fungi (i.e. non-yeasts),
and non-vertebrate metazoans, respectively. These figures
aptly reflect the biased distribution of functional informa-
tion around model species and calls for approaches target-
ing non-model organisms. For example, in fungi most func-
tional information is coming from yeast, which has a highly
stripped genome (42) that represents basic eukaryote func-
tions properly, but not necessarily does conserved traits of
filamentous fungi. Therefore, although some model fungi
are particularly well-studied, the space of gene functions
across the entire fungal kingdom in general remains poorly
known. A similar bias has been observed within individual
organisms; for example, it was reported that most research
concentrates on ca. 2000 of the 19 000 genes on the human
genome (40).

These data reveal a large number of GUFs in any given
eukaryotic genome, which is consistent with some previous
reports (33) and calls for systematic efforts and the develop-
ment of approaches for charting their functional landscape.

UNKNOWN UNKNOWNS CAN BE IDENTIFIED USING
PHYLOGENY-AWARE APPROACHES

There is a myriad of approaches for finding genes linked
to a particular phenotype, from mutagenesis assays, dele-
tion libraries, co-expression analyses (33) etc. In compara-
tive genomics associations between traits and genetic vari-
ants are inferred by comparing groups of genomes with
or without the trait. In population genomics, this is now
routinely accomplished by genome-wide association stud-
ies (GWAS) (43,44), analyses of quantitative trait loci (21)
and related methods. GWASs investigate the entire genome
and systematically look for co-occurrence patterns of a ge-
netic variant and a trait in sequenced individuals (45). Al-
though powerful at the population level, GWAS cannot be
applied to comparisons of related species (21) because it
cannot account for phylogenetic relationships (although at-
tempts exist for modeling within-population phylogenetic
structure (46,47)). The phylogeny is a source of strong sig-
nal that can mislead non-phylogeny-aware statistics (48–
50), but a method that is similarly powerful as GWASs has
not yet been widely adopted in multi-species comparative
genomics.

What options do we have for finding unknown unknowns
in comparative studies of several species? The situation is
quite simple in prokaryotes where gene presence/absence
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Figure 1. GUFs make up a significant proportion of eukaryotic genomes. (A) The proportion of protein coding genes across genomes of 461 species
that can be annotated with approximate functions via 1-to-1 orthology to manually curated genes, based on the assumption that clear 1-to-1 orthology
relationships are indicative of conserved and shared function. Orthology information and the tree were taken from the Orthologous MAtrix database
(41). Tree was subsequently manually resolved to supergroups based on Deutekom et al. (121). Model systems from which functional information was
propagated by orthology are marked with blue bars and the names of the most important ones are shown. Abbreviations as follows: H.sapiens––Homo
sapiens, R.nor––Rattus norvegicus, M.mus––Mus musculus, G.gal––Gallus gallus, X.tro––Xenopus tropicalis, D.melanogaster––Drosophila melanogaster,
C.elegans––Caenorhabditis elegans, N.cra––Neurospora crassa, S.cer––Saccharomyces cerevisiae, S.pom––Schizosaccharomyces pombe, U.may––Ustilago
maydis, D.dis––Dictyostelium discoideum, A.tha––Arabidopsis thaliana, M.tru––Medicago truncatula. (B) Mean proportions of genes that contain known
conserved domains from the InterPro database broken down by major eukaryotic group. Genomes were annotated with InterPro domains using Inter-
ProScan 77.0 (only the Pfam and CDD databases were considered, ignoring repeats and Domains of unknown Function, E-value cutoff 10−5). (C) The
number of lineage-specific InterPro terms in the Metazoa, Fungi, Archeoplastida and Protist groups (collectively). Lineage specificity was assessed based
on the array of species in which a given InterPro term was found.

correlates well with traits (e.g. metabolic capabilities) and
phylogeny may not strongly interfere with the analysis due
to rampant HGT across species. For those situations, mod-
ified phylogenetic profiling methods could be used (Table
1). Phylogenetic profiling (51,52) was designed to find gene–
gene co-occurrence patterns in a panel of species, as a way to
identify functional gene modules and propagate functional
annotations from one gene to the other (53). Although de-
signed to find gene-gene associations, the original algorithm
could easily be adapted to find gene-trait associations (see
e.g. (54)). However, phylogenetic profiling does not con-
sider the phylogenetic relationships of the species (despite
its name), for which it has been criticized and shown to per-
form inferior to truly phylogenetic methods (49–50,55–56)
(see Figure 2A). Barker and Pagel (49,50) showed that ac-
counting for phylogenetic non-independence in the data us-
ing continuous-time Markov models in a maximum like-
lihood framework significantly improves the detection of
gene-gene associations, especially if the model constrains
genes to behave like Dollo characters (49).

The more severe limitation of phylogenetic profil-
ing for eukaryotic genomics is that it considers simple
presence/absence profiles of gene families (Table 1), which
is problematic because eukaryotic gene families have intri-
cate duplication/loss histories (55,57–58). The application
of phylogenetic profiling to eukaryotes has, therefore, been
limited (56,59), although examples of successful applica-
tions exist, especially for simple, single-copy gene families,
like metabolic gene clusters (60,61) or in the context of strict
1-to-1 orthologs (54).

Finding links between genetics and trait has to consider
three factors: the trait values of the compared species, the
evolutionary history of each of the genetic elements (e.g.
gene families) available for the analysis and the species phy-
logeny (Figure 2A and B). Parsimony- or likelihood-based
methods (62,63) can be used to map genetic changes and
trait gains/losses onto the phylogeny, followed by assess-
ing the level of correlation between mapping of the trait
and that for each of the genetic elements. Of the myriad
types of genetic changes, gene family origins, sequence di-
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Figure 2. Basic principles of finding associations in genomics data. (A) A simple example illustrating the need of considering the phylogeny in comparative
analyses of genomic data. Consider two pairs of genes (denoted by red and blue backgrounds) either present (‘1’) or absent (‘0’) in the eight species.
Similarity in the presence/absence patterns of the first gene pair (red) are best explained by shared inheritance from the common ancestor. The second
gene pair, on the other hand, can be explained by four coincident loss events along terminal branches, providing evidence for correlated evolution, and,
thus potential functional linkage. Adapted from Barker et al. (49). Note that a similar logic works for detecting gene–phenotype associations. (B) Pairwise
comparisons (upper panel) fail to adequately resolve the timing of genetic changes (marked by horizontal dashes), necessitating the use of phylogenetic
methods which, on the other hand, can localize genetic changes to specific branches of the tree (bottom, left tree) and can narrow down the range of
potentially relevant changes when compared with reconstructions of trait evolution (bottom, right tree). Trait distribution on the tree is shown by blue and
orange rectangles and corresponding colored circles denote ancestral states. The gain and loss of the blue trait is denoted by a blue star and orange cross,
respectively. (C) Some of the signal types that can inform analyses of gene– trait association. See text for explanation.

vergence, gene presence/absence and gene duplication and
loss patterns are most commonly analyzed (Figure 2C),
probably because these can be inferred from organismal
gene catalogs relatively easily (see recent reviews (64–66)).
In a comparative perspective, however, the logic of mapping
duplications/losses can be extended easily to any type of ge-
netic element in which homology relations (i.e. orthology,
paralogy) can be established and its evolutionary history be
reconstructed. Such mappings (67) provide information on
the timing, temporal and taxonomic distribution of genetic
changes and can be mined for various attributes, such as as-
sociations with trait evolution. It can also be used to infer

which gene families show the highest duplication/loss rate
across the trees, in specific clades or branches of the tree.

Trait gain/loss signal informs searches for unknown un-
knowns

Theory dictates that, of the thousands of genes and non-
coding elements in a genome, the ones that are linked to
a trait should show correlated evolutionary changes with
it. That is, the gain or loss of the trait should correlate
with gains or losses of genetic elements, which is identifiable
when viewed across a panel of species. The ideal, ‘textbook’
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Table 1. Methods for finding associations between genomic features based on macroevolutionary comparative data

Method Type of association detected Principle Strength Limitation Refs.

Phylogenetic
profiling

Gene–gene Co-occurrence of
genes across a
panel of species

Simple, fast,
widespread method

Cannot correct for
phylogeny; cannot
consider gene copynumber
(only presence/absence)

(52,53)

CLIME Gene–gene Partitions genes
across a panel of
species into groups
sharing a similar
evolutionary
history

Phylogeny aware;
statistically sound
and sensitive
(incorporates tree
HMMs); adaptable
to phenotypes with
modification

Cannot consider gene
copynumber (only
presence/absence)

(90)

Barker et al.
2007

Gene–gene Identifies
correlated
gain/loss patterns
in 1-to-1
orthogroups

Phylogeny aware;
statistically well
founded; adaptable
to phenotypes with
modification

Cannot consider gene
copynumber (only
presence/absence); the
applied Markov models
work poorly for Dollo-like
characters (e.g. genes)

(49,50)

‘Forward
genomics’

Gene–phenotype Divergence from
an ancestral
sequence and
co-elimination of
genes in
trait-preserving
versus trait-loss
species

Phylogeny aware;
high sensitivity and
specificity

Cannot consider gene
copynumber (only
presence/absence); only
considers losses

(83,89)

REforge Cis-regulatory
sequence–phenotype

Same as ‘forward
genomics’, for
transcription
factor binding sites

Phylogeny aware;
considers
cis-regulatory
sequences; high
sensitivity and
specificity

Only considers losses;
needs prior TFBS
information

(88)

COMPARE Gene–phenotype Identifies shifts in
gene duplication
and loss rates upon
the emergence and
loss of a trait,
respectively

Can analyze
multigene families;
integrates trait gain
and loss
information

Only considers gene
duplications/losses
(adaptable to other data
types);

(42,45)

Chikina et al. Gene–phenotype Contrasts the rate
of sequence
evolution in
trait-preserving
versus trait-loss
species

Phylogeny aware;
can consider
sequence-level
divergence

Limited to 1-to-1
orthologs; only considers
losses

(84,117)

All methods except phylogenetic profiling are computationally intensive, computational complexity is therefore not listed among the limitations.

case involves a single change, such as a gene duplication or
a single nucleotide polymorphism that is necessary and suf-
ficient for a new trait to evolve. This is probably rarely the
case (although examples exist (68)), however, and an array
of changes are probably more often necessary for the emer-
gence of the trait. Many of these changes might predate the
trait in evolutionary time, whereas a single or a few might
directly lead to its manifestation as a phenotype (cf. thresh-
old model (69)). It should be noted that the gain of the trait
may also correlate with a range of genetic changes that are
induced by, rather than being causative of, its emergence,
making it hard to distinguish correlation from causation.

Using this logic, genetic changes that correlate with the
emergence of a trait can be identified in genome-wide cat-
alogs of genetic innovations. Several methods have been
proposed for this (see below and Table 1), although, as
may be expected in new fields, no single method has yet
been applied more than a few times. To inform our search,
we should understand the phylogenetic relationships of the

species being compared and we should know in which
node(s) along this phylogeny the trait showed changes. An-
cestral character state reconstructions can be used to map
gain(s) and loss(es) of the trait onto the phylogeny and ob-
tain a view of character state transformations (see recent re-
views (70–72)). From the perspective of the genetics, a range
of signals may be analyzed, including changes in selection
regime, de novo gene (family) birth, gene duplication/loss,
rearrangements, rewiring, SNPs, regulatory networks, splic-
ing and expression patterns (73), epigenetics, etc. In the sim-
plest approach, one may ask if the group of species with the
trait (including their ancestral nodes) are enriched for cer-
tain genes relative to those not having the trait, given the
phylogeny. Another simple approach is asking what gene
families (orthogroups) are gained/lost in parts of the tree
where the trait is gained or lost. Several example studies
(42,54,74–75) and dedicated pipelines (76,77) testify the va-
lidity of these approaches, which is, however, conditioned
on the correct identification of strict orthogroups and on
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simple gene presence-absence being a good predictor of trait
evolution. This is often not the case, as evident, for exam-
ple, from the deep conservation of multicellularity-related
genes in many clades (78,79). A higher resolution approach
considers not only gene family origin and loss, but also gene
duplication and loss (80), providing a fine-grained view on
genetic changes in relation to changes in trait values (see
below).

Because we are looking for correlation, the more char-
acter state transitions the trait shows across the phylogeny,
the more precise our search can get (81). A trait with a sin-
gle gain on the tree allows us to identify genetic changes that
are coincident with its emergence, which potentially yields
a long list of genes, among which we cannot differentiate
further, unless we have other types of data. A trait with
two state transitions (e.g. a gain and a loss) gives us more
precision, by allowing us to identify genes that change in
both cases when the trait does and may be viewed as the
minimum number of state changes necessary to find gene–
phenotype associations. Trait loss, in particular, convergent
loss, can provide valuable information for identifying linked
genetics because relaxed selection on the genetics of the lost
trait leads to divergence and/or complete elimination of the
underlying genetic elements (recently termed co-elimination
of genes (82)).

Datasets with convergent trait losses are particularly
signal-rich, because losses happen to a homologous genetic
background and therefore genetic changes are likely shared
by convergent loss events. Several studies exploited conver-
gent losses to pinpoint genes linked to the trait. Hiller et al.
(83) devised an approach to find genes, across all alignable
genomic loci, with an increased rate of sequence divergence
in species that lost a given phenotype (in the study, the abil-
ity to synthesize vitamin C) (see also an alternative method
(84)). The method has been extended to the complete loss
of genes (85,86) and to screening divergence in transcription
factor binding sites (87,88) in relation to trait loss, the latter
vividly demonstrating that the logic is not only applicable to
genes, but also other genetic elements. Phylogenetically cor-
rected versions of the method (utilizing phylogenetic gener-
alized least squares) have also been developed and used to
find vision-related genes in a dataset that contains two in-
dependently evolved subterranean mammals (89). Because
the logic of these approaches is similar to that of forward
genetics, the term ‘forward genomics’ has been coined (83)
and it has been argued that collections of phenotypic data
would allow many-to-many analyses of trait––gene associ-
ation.

CLIME (90) is a Bayesian tool that considers the species
tree topology and gene gain and losses to infer groups of
genes that share the same evolutionary history (described by
tree HMM-s). Such groups may represent functional mod-
ules or pathways (evolutionarily conserved modules) and
can be used to infer putative functions for unknown genes.
CLIME can be considered a sophisticated model-based and
phylogeny aware phylogenetic profiling algorithm. It was re-
ported to perform better on presence/absence matrix of ho-
mologs than on strict 1-to-1 ortholog matrices. The simul-
taneous inference of optimal gene partitioning scheme and
parameters of HMMs describing the evolutionary history
of the genes in one Bayesian MCMC framework is attrac-

tive and yields high statistical power. CLIME was found to
perform well on genes with �6 losses and moderately well
on ones with �4 losses (90).

Considering gene duplication/loss rates instead of gene
presence/absence can further improve predictions. The
COMPARE (42,55) pipeline integrates signals of gene du-
plication and loss with trait gain and loss for predicting
gene family––trait associations. It uses gene trees to infer
gene duplication/loss events (based on the species (91,92)
overlap principle), taking into account the complex one-to-
many orthology/paralogy relationships (64–65,91,93) char-
acteristic of eukaryotic gene families. Inferred duplica-
tions and losses are mapped onto the phylogenetic species
tree, yielding reconstructed ancestral genomes and fully
resolved gene duplication and loss histories across clades
and through time. This can be analyzed using comparative
methods or mined for gene families that show elevated du-
plication rate in part(s) of the tree where a trait is gained
and/or elevated loss rates where it is lost (55). This method
has been used to infer the tempo and mode of genome evo-
lution through time and across clades (94–96), to recon-
struct genetic innovations underpinning the evolution of
multicellular fungi (78,97), that of the convergent origins
of yeasts (42) and to make predictions on the genetic bases
of efficient wood-decay strategies by fungi (55). This latter
exercise was aimed to find unknown unknowns of the ge-
netics of wood-decay. The search returned 409 gene families
which, as expected, contained several CAZyme families that
were previously reported to be associated with wood-decay
(i.e. known unknowns) but also hundreds of novel fami-
lies. A comparison to three gene expression datasets showed
that >60% of these families were also significantly upregu-
lated when wood was the single carbon source in the experi-
ment, providing independent validation for the predictions.
It should be noted that wood-decay represents a fitting
trait for this approach, because it evolved once in Agari-
comycetes fungi and was lost several times (seven losses in
the dataset). Nonetheless, simulations showed that COM-
PARE had high precision in detecting gene–trait associa-
tions even for traits with a single gain and a single loss (55).
This highlights the power of using gene duplication/loss
rates for understanding genome evolution, which comes at
a high-computational cost, however, and the validity of the
findings is conditional on accurate gene family assignments
(i.e. orthology and paralogy detection).

Finding unknown unknowns can also be a daunting task
and sometimes will not yield sensible results. A search for
gene families that fit the phylogenetic pattern of nitrogen-
fixing symbioses of plants in a dataset of 37 genomes failed
to find any positive hits (98). However, it turned out this was
because the evolutionary history of nitrogen-fixing sym-
bioses is not accurately described by the phylogenetically
most parsimonious scenario (single gain, multiple losses),
which eventually suggested a mechanism of trait evolution
that cannot be expected to fit into a search strategy like that
(99).

These examples show the wide range of approaches that
can be used to identify unknown unknowns using compar-
ative genomics. The methods are available, though there is
not a long record of their application in evolutionary ge-
nomics, a status that will hopefully change in the near fu-
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ture. A common feature of all these is the explicit model-
ing of phylogenetic relationships that allows the analysis to
distinguish between similarity caused by common descent
from that caused by similar selective pressures (49). Phylo-
genetic comparative methods have, for decades, been devel-
oped for these very situations, although mostly in isolation
from genomics. We next argue that better integration of phy-
logenetic methods will empower us to answer more exciting
questions in evolutionary genomics.

Phylogenetic comparative methods are a rich toolbox for ge-
nomics

Phylogenetic comparative methods are statistical ap-
proaches that combine information on species relatedness
with contemporary trait values to infer historical patterns
of evolution (48,71). We will not go into details about meth-
ods (only refer to recent reviews), just note that there are
elaborate models for analyzing various attributes of the evo-
lution of discrete or continuous characters, which could be
transplanted into genomics to answer new types of ques-
tions on genome or trait evolution. We offer a few exam-
ples and note in parentheses the potential applications in
the context of genomics. Without attempting to be exhaus-
tive, established methods exist for analyzing gains and losses
of character states (48,100–101) (e.g. presence/absence of
a genetic element, expression level) across the phylogeny,
inferring changes in trait values (e.g. expression values)
(102) along trees, the distribution of character state changes
across time or clades (71,103) (e.g. assessing rates of ge-
netic evolution through time), for assessing variation in
the timing of tree branching events (104–107) (which, in
gene trees mean duplications) or for reconstructing ances-
tral character states (many of these have been adopted in an-
cestral gene content/gene order/gene sequence reconstruc-
tions) (67,83,88–89,108–111). We argue that these methods
represent a largely unexploited methodological resource for
genomics and that they could be used to extract valuable
signal from genomic datasets. One aspect that was quickly
adopted by genomicists are parsimony-based methods for
inferring the placement of gene duplications/losses or other
genetic events (112,113), ancestral genomes (109) or gene
order. Dollo parsimony is especially well-suited to genetic
data (62) and is conceptually easy to grasp. However, there
is a suite of other methods that could be deployed in com-
parative genomics. For example, by applying the Binary-
state speciation and extinction (BISSE) model (114), which
measures a binary trait’s effect on lineage diversification, to
gene trees, it was possible to show that class-II-peroxidases
(which degrade lignin in plant tissues) show a significantly
higher gene duplication rate in efficient wood-decay fungi
than in weaker or non-decayers (39). Although class-II-
peroxidases were known before as key players of wood-
decay, this analysis is proof-of-concept that phylogenetic
comparative methods can be used in novel ways to extract
valuable signal from genomic datasets. Another attractive
approach for analyzing the genetics of a trait would be as-
suming a gradual assembly of a genetic toolkit in a way
similar to what the threshold model for phylogenetic com-
parative analyses implements (69,115). In that model, the
discrete (presence/absence) trait we observe is the function

of a continuous underlying quantity (liability (69), e.g. ge-
netic innovations) that, if builds up to a sufficient level, al-
lows the trait to manifest. One can envision applications
of this model to complex multigenic traits, where genetic
innovations can be expected to come along in a gradual
manner, making traditional analytical methods inadequate.
These examples illustrate, along with several others above,
that phylogenetics offers a largely untapped pool of tools
for evolutionary genomics.

Computational challenges

A significant question is how current methods scale with the
number of genomes analyzed and whether we will be able
to deal with the flood of data expected in the coming years.
Most of the pipelines discussed above (55,83–84,90) start
with computationally intensive steps (all-vs-all searches, or-
thology, gene tree and species tree inference or combina-
tions of these) and thus how these scale with the number
of genomes analyzed determines the overall computational
burden of the analysis. To date, phenotype–genotype asso-
ciations have been analyzed in datasets comprising up to 62
or 100 mammalian species by forward genomics (116,117),
and up to 62 and 117 fungal genomes by COMPARE (55)
(Miyauchi et al. in preparation). Run times for large anal-
yses can be prohibitive and require high-performance com-
puting facilities. Fast methods that allow similarity searches
and orthology inference in thousands of genomes without
compromising accuracy are now becoming available (see
e.g. (118,119)) and preliminary analyses using these sug-
gest that analyses of up to 1000 genomes are feasible (Balint
et al., unpublished data). Similarly, the need to infer species
trees could soon be bypassed as large-scale genomic trees,
from which topologies for subsets of species can be ex-
tracted, become increasingly available.

A promising strategy for bypassing the need of re-
running some of the computationally intensive steps is the
integration and periodic updating of results into openly
available and searchable databases. These could be mined
for associations with any trait that shows state transitions
in the suite of species represented and could provide an
open platform for predicting gene function based on phy-
logenomics.

CONCLUSION

Exploring complex datasets is a prime challenge in today’s
biology. Much of genomics currently is explorative––that is,
we let the data guide us toward interesting patterns––and
the more efficiently this happens, the more efficiently we
get to discoveries and can generate hypotheses. Therefore,
creativity in data analysis needs to be emphasized and en-
hancing signal extraction from currently available genomics
data should be a priority. We argued above that for evolu-
tionary genomics, phylogenetic comparative methods pro-
vide a rich and under-exploited toolbox that evolutionary
biologists have been developing for many decades. Evolu-
tionary genomics could build on that or other approaches
(e.g. artificial intelligence methods (120)) to extract signal
and make informed predictions on gene–phenotype associ-
ations, genome evolution or the principles of evolutionary
adaptation from genome-scale data.



Nucleic Acids Research, 2020, Vol. 48, No. 5 2217

While some would probably argue that increasing the size
of genomics datasets, better integration of different data
types (e.g. genomic, transcriptomic, proteomic), higher res-
olution (e.g. single-cell) or more reference-quality assem-
blies (6) is the way to go in evolutionary genomics, our
standpoint is that better approaches for analyzing the data
at hand and the extension of current methods to utilize
multiple evolutionary signals in comparative datasets (gene
duplications/losses, parallel amino acid changes, positive
selection) are of utmost importance. This is not only be-
cause these would allow making biological inferences from
data already at hand, but also because better extraction of
signal from genomic data can provide functional, testable
hypotheses and can drive -omics science toward a more
hypothesis-driven state.
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