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Abstract

Since the initial reported discovery of SARS-CoV-2 in late 2019, genomic surveillance has

been an important tool to understand its transmission and evolution. Here, we sought to

describe the underlying regional phylodynamics before and during a rapid spreading event

that was documented by surveillance protocols of the United States Air Force Academy

(USAFA) in late October-November of 2020. We used replicate long-read sequencing on

Colorado SARS-CoV-2 genomes collected July through November 2020 at the University of

Colorado Anschutz Medical campus in Aurora and the United States Air Force Academy in

Colorado Springs. Replicate sequencing allowed rigorous validation of variation and place-

ment in a phylogenetic relatedness network. We focus on describing the phylodynamics of a

lineage that likely originated in the local Colorado Springs community and expanded rapidly

over the course of two months in an outbreak within the well-controlled environment of the

United States Air Force Academy. Divergence estimates from sampling dates indicate that

the SARS-CoV-2 lineage associated with this rapid expansion event originated in late Octo-

ber 2020. These results are in agreement with transmission pathways inferred by the United

States Air Force Academy, and provide a window into the evolutionary process and trans-

mission dynamics of a potentially dangerous but ultimately contained variant.

Introduction

The COVID-19 pandemic caused by SARS-CoV-2 has resulted in worldwide disruption and

more than 6.4 million recorded deaths [Worldometers, July 28, 2022]. Sequencing the SARS-

CoV-2 genome from infected individuals is an effective means to track the dispersion and

prevalence of the virus. Genomic tracking allows researchers to model viral evolution and

identify possible variants of concern. For example, sequencing provided strong evidence that
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the virus was transmitted locally within Washington state as early as January 2020 [1]. Simi-

larly, sequencing allowed public health officials to track the rise and spread of the highly infec-

tious Delta variant, enabling more responsive policies [2]. These sequencing efforts provide

even greater power when coupled with viral evolutionary modelling (phylodynamics) in an

epidemiological context [3, 4]. This type of combined approach for tracking and predicting

viral transmission is known as genomic surveillance and is a critical component of the modern

public health response to viral epidemics [2, 5, 6].

Due to the nature of the pandemic, many grass-roots sequencing efforts sprang up de novo
around the world, leading to heterogeneity in sequencing quality and inconsistency in geo-

graphic sampling. For example, long-read Oxford Nanopore technology (ONT) with overlap-

ping polymerase chain reaction (PCR) amplicons is commonly used to obtain sequences [7].

Long-read ONT has many advantages over short-read sequencing, including that it avoids

having to connect short reads that fall away before making it through amplicons and avoids

some deterministic errors of other technologies [8], but its high error rate poses other chal-

lenges including high false positive and false negative variant calls when comparing to a single

reference sequence [8–11]. Because accumulated mutations are key data for inference of phy-

logenetics, convergence, and selected variants, it is important to be as confident as possible in

mutational signatures. There has also been heterogeneity in sequencing between different

areas. For instance, analyzing the GISAID dataset [12, 13], there was little sequencing of

Colorado genomes for much of 2020, making it challenging to understand the landscape of

SARS-CoV-2 variant origins and evolution of local transmission during this phase of the pan-

demic. Finally, there also are conceptual challenges for this type of genomic surveillance due to

incomplete knowledge of the etiology of epidemics, including stochastic environmental effects,

sociological response, and phenotypic variance [14].

In the case study presented here, we focus on providing a snapshot of infection dynamics in

Colorado in August to November 2020. Sequence data was collected as RNA isolated from

infected individuals sampled from two Colorado populations: samples collected for clinical

testing at the University of Colorado (CU) Anschutz Medical Campus; and samples gathered

predominantly from asymptomatic, randomly sampled individuals at the United States Air

Force Academy (USAFA) who tested positive by PCR testing. Together, these samples repre-

sent a baseline for the two largest Colorado cities (Denver/Aurora and Colorado Springs) in

late 2020 and document the rapid initial spread and subsequent containment of a highly-

evolved variant. We used replicate sequencing to validate variants across multiple related

genomes rather than relying on only a single distant reference sequence to validate variant

calls (Fig 1). Having established a credible set of high confidence SARS-CoV-2 genomes, we

then describe the phylodynamics of a rapid viral spread event within a relatively controlled

environment, estimate its divergence from related samples and compare to its associated epi-

demiological data [15].

Materials and methods

Ethics statement

The United States Air Force Academy Institutional Review Board (IRB) determined the sur-

veillance testing (FAC20200035E) was approved as Not Human Subjects Research in accor-

dance with Title 32, Subtitle A, Chapter I, Subchapter M, Part 219: Protection of Human

Subjects, Department of Defense Instruction 3216.02: Protection of Human Subjects and

Adherence to Ethical Standards in Department of Defense-Conducted and–Supported

Research and Air Force Instruction 40–402: Protection of Human Subjects in Biomedical and

Behavioral Research.
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Fig 1. Flow chart of SARS-CoV-2 sequencing, variant prediction, variant quality analysis and relatedness network generation. Blue boxes describe the

purpose of each stage of analysis, free text designates the specific method used at each stage and orange arrows indicate points where steps were repeated

iteratively until sufficient quality metrics were fulfilled.
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Manager, Office of Regulatory Compliance, University of Colorado Denver, Anschutz Medical

Campus, and signed by Thomas Flaig, Vice Chancellor for Research, University of Colorado

Denver, Anschutz Medical Campus.

All samples were processed in the Rissland laboratory under IBC#1366. We were advised

by Taylor Brumbelow (Human Research Protections, COMIRB Investigator Support, Univer-

sity of Colorado Denver, Anschutz Medical Campus, comirb@ucdenver.edu) on May 19,

2020, that our research qualifies as “non-human subjects research” because we did not have

access to or use identifiers such as exact dates of service or admission, county, or zip code.

Nanopore long-read sequencing

Extracted RNA was obtained from either the University of Colorado BioBank (CU) or USAFA

for samples collected between August and November 2020. Sequencing was performed accord-

ing to the Nanopore Protocol for PCR tiling of SARS-CoV-2 (revision E, released Feb 6 2020)

using the V3 primers (https://github.com/artic-network/artic-ncov2019/tree/master/primer_

schemes/nCoV-2019/V3). 11 μL RNA was used for reverse transcription and initial amplicon

PCR. Samples were processed in random order, and each was sequenced in at least two repli-

cates. After the PCR and bead clean-up, samples were run on a 1.5% agarose gel, and those

with visible bands at 400 bp were quantified using a Qubit fluorometer. Samples were end-

prepped, barcoded and pooled together for sequencing. Samples were quantified using a Qubit

fluorometer. The samples were then processed for downstream sequencing and analysis

according to the Nanopore protocol. Sequencing was performed using R9.4.1 (FLO-

MIN106D) Nanopore flow cell. Half of the prepared DNA library (7.5 ul) was diluted to a total

volume of 12 uL prior to loading. A minimum of 40,000 reads was collected per barcoded sam-

ple. Samples with fewer than 40,000 reads were re-sequenced in later runs. Adapter sequences

and primers were removed from reads with the Nanopore sequencing software MinKNOW.

Genomes were sequenced in batches. A negative control (water) and a positive control

(SARS-CoV-2 RNA from ATCC) were included in each batch of samples. At least two

sequencing replicates were performed for each sample to confirm that variants were reproduc-

ible; in some cases, especially for low concentration samples, samples were sequenced three or

four times to improve call certainty. In later runs, to add further robustness against possible

experimental artifacts, the two sequencing replicates were separated, and the order of samples

was randomized within a batch.

Read alignment to the Wuhan reference genome

Following sequencing, reads for each barcode [each barcode corresponding to an individual

sample] in fastq format were aligned to the reference Wuhan SARS-CoV-2 genome

(NC_045512.2) using mimimap2 [16]. Minimap2 parameters were run as follows for each bar-

code: -a–x splice–uf–k14 –secondary = no NC_045512.2.fasta. The resulting aligned reads

were output into sam format and samtools [17, 18] was used to generate a binary alignment

map (bam). BLAST was performed to verify that primers had been trimmed from read ends.

Summary statistics describing read length, error rate, total number of reads, number of

mapped reads, and other quality metrics were generated using samtools stats. Further sequenc-

ing quality assessment was performed with bedtools genomecov [19]. For each barcode, a cover-

age histogram (-ibam), coverage map across consecutive intervals (-ibam–bga) and coverage

map at each single nucleotide (-ibam–d) were generated. Finally, an R package (minionCovid-
Coverage.R) was used to visualize the genome-wide coverage distribution for each barcode

individually. A custom python script (findLowQualBases.py) was used to obtain coordinates of

low-quality genome sequence and stored in a bed file to mask the low-quality regions from the
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consensus sequence at a later step. Steps described here were called from a pipeline wrapper

script, runCovidSeqs.sh (Code available at: https://bitbucket.org/pollocklaboratory/
covid19phylodynamicscode2021/).

Sequencing quality assessment

Using the aforementioned coverage and read information, each individual genome included

in further analysis was required to meet a series of sequencing quality thresholds.

Each successfully sequenced genome had:

1. A total read count greater than or equal to 40,000 reads.

2. An error rate less than or equal to 11%

3. Greater than 95% of reads mapped to the reference genome

4. Low quality sequence content less than 5% of the genome length

5. Low-coverage (< = 30X) sequence at the 5’ and 3’ end of the genome that did not exceed

two hundred nucleotides in length on each end.

Any samples that failed to meet these thresholds were re-sequenced. If genome quality did

not meet the above standards upon resequencing, the genome was excluded from analysis.

Prediction of mutations from the reference genome

Variant likelihoods at each position were generated from the bam files of high-quality samples

using the mpileup package of bcftools-1.11 [18], with the following parameters: -oU–d 200000.

We then used bcftools call to make the variant calls, with respect to the reference genome

(NC_045512.2), under the following setting:—ploidy 1 –vm–Oz. Variants assigned a ‘QUAL’

quality score <50 (ranging from 0–225) were excluded, but stored separately should revision

be required. Variants were stored in variant call format (vcf) and variant calls were mapped to

the reference genome sequence (NC_045512.2) with bcftools consensus. Following previous

publications [20, 21], positions with coverage less than or equal to 30X were masked from each

genome, or marked as ‘N’ in the consensus genome sequence using bedtools maskfasta. There-

fore, no variants were called at these regions. This process generated a putative consensus

sequence for each SARS-CoV-2 sample replicate individually, which represented its predicted

mutations from the Wuhan reference sequence.

Additional quality control and generation of concordant genome set

Following the variant prediction process, we further evaluated each replicate’s variant predic-

tions for the following quality criteria:

• If a predicted variant position fell within 200 bases from either the 5’ or the 3’ end of the

genome, it was excluded due to consistently poor coverage in those regions.

• Any variants that occurred in stretches of low-quality score, extending across more than one

adjacent or nearby position, were excluded as a likely artifact.

• Putative mutation events at 28881–28883 were excluded, as this region is known to fre-

quently recur as post in-situ (PCR or sequencing) [22–26]

Following these additional quality control steps, we evaluated each genome’s set of repli-

cates for consistency in variant calls. Genomes in which all replicates were predicted with the

same set of variants were considered concordant. However, there were instances of
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inconsistent variant calls between replicates of the same SARS-CoV-2 genome. This subset

was described as discordant and set aside for later evaluation. This was done as suggested by

Robasky et al., 2014.

Assessment of possible primer match-derived artifacts

To evaluate if primer error had contributed to recurring variant artifacts, primer sequences

were mapped to all reads of a given barcode. The position of the primer match, relative to each

read, was tracked and a distribution was created of all primer match positions across all reads

(S1 Fig). The average matching read position of each primer was evaluated to assess whether

any primers were enriched for mapping to ends of reads, or were distributed randomly as

expected.

Inference of SARS-CoV-2 ancestral relatedness network

Plausible common ancestors for all 28 concordant genomes in the CU and USAFA sequences

were independently inferred based on mutations in our dataset that deviate from the reference

genome NC_045512.2. To better understand the larger, continental context of our sampling of

genomes, plausible ancestors of the CU and USAFA genomes were qualitatively compared to

the NextStrain “ncov” database sample of 3983 genomes accessed on May 11, 2021 [22]. Of

these, 3923 were submitted in North America between March 5, 2020 and May 10, 2021, and

will be referred to as North American NextStrain (NANS). For each mutation event in our

newly inferred genomes, the estimated NANS frequency was considered at four different time

points: August 14, 2020; November 14, 2020; February 13, 2021; and May 5, 2021. Each muta-

tion event was also associated with one of the eleven major NextStrain clades based on the

ancestral context in which it first appeared. This was done to provide a reference point for

understanding where the Colorado genomes fit in context, relative to the viral dynamics across

the continent at the time.

Although NextStrain calls its groupings “clades”, meaning they are collections of all viruses

inferred to be descended from a single common ancestor, their tracking and labelling system

confusingly goes against common usage of the word ‘clade’ by removing named clades from

within larger clades, leading to a paraphyletic naming convention. Their naming conventions

also do not track sequential origins of clades within clades, and they do not include many of

the CO sequences. We chose to explicitly track and label inferred ancestors and their relation-

ships to CO descendants.

Having obtained a continental, phylogenetic context for where our Colorado samples likely

originate, we then inferred ancestral lineages and relatedness within our SARS-CoV-2 dataset.

Nodes connecting each CU and USAFA genome sequence to their most plausible direct ances-

tor were assigned by grouping shared sets of mutations between our genomes. Plausible ances-

tral genomes were reverse-inferred in a parsimonious approach by working backwards from

our genome dataset, and assigning mutations to ancestral nodes based on shared sets of muta-

tions. Due to the rarity of variants compared to the length of the genome and the short time

range of the closely related sequences in this study, back mutations and multiple mutation

events at a single site are not likely and were not considered. Branching events separating these

inferred, plausible ancestors were provisionally assigned based on differences in mutation con-

tent. These plausible common ancestors represent plausible branching points at which novel

mutations appeared in the genomes included in our dataset. Non-ancestral mutation events

were inferred if they occurred in only one genome across our sampled dataset and did not cor-

respond to any known mutation already in the NANS database. These were assigned to the

branch leading to the individual sequences in which they occurred. This process was used to
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infer a plausible ancestral relatedness network among SARS-CoV-2 samples in our dataset,

and are used to organize discussion of these sequences. These plausible ancestral nodes were

labelled A1-A13.

Use of relatedness network to resolve incongruent relatedness

The approximate relatedness among genomes was used to interpret variant calls in the discor-

dant variant set from above, noting that all such variants were generally rare or absent from

the worldwide sequences available at that time. Each genome was fitted to the existing net-

work, based on its variant set with and without the discordant variants. We first considered

that a variant that was discordant among replicates of a sample but had no effect on the struc-

ture of the network was considered a valid variant call. Most cases were of this nature because

most discordant variants were supported by multiple calls in related genomes, and were pre-

sumed to be false negatives in some replicates. We disallowed any discordant variant that

altered the relatedness network, conservatively presuming that it was a possible false positive

variant and not well supported. We discuss removal of variants in further detail in the results.

We ended with a complete set of confident variants for each genome that resolved discordan-

cies among replicates so that they did not impact inferred relatedness networks among the

SARS-CoV-2 genomes in our dataset and had no impact on our results. Finalized genomes

were aligned with Mugsy v1r2.2 [27]. IQTree web server [28] was then used to generate a phy-

logenetic tree, using the settings: -s covidGenomes22Ref.fasta -st DNA -m JC+F -bb 1000 -alrt

1000 -o NC_045512.2. This tree was then visualized using FigTree v1.4.4.

Estimation of CO Springs lineage divergence time

The Bayesian Evolutionary Analysis Sampling Trees (BEAST) suite, version 1.10.4, was used to

generate evolutionary divergence estimates from the USAFA SARS-CoV-2 genomes and their

respective sampling dates between August 9, 2020 and November 19, 2020 [29–32]. Sampling

dates were represented as the number of days since December 26, 2020, or the date associated

with the Wuhan reference genome sequence. The evolutionary model was designed in

BEAUti, using the following parameters: Exponential growth model, strict clock, HKY substi-

tution model-estimated base frequencies with a 4-category gamma site heterogeneity model.

Default priors were used, with the exception of the coalescent population size parameter,

which was set to a lognormal distribution, mu = 1, sigma = 10. Operators were set to auto-opti-

mized parameters. The control file containing these model parameters (covidGenomes22Re-

f_2_allAFonly_2m_exp_model.XML, SDataset 1) was analyzed with BEAST. The MCMC

analysis was run for 20 million generations, with a burn-in of 2 million. The resulting posterior

distributions were visualized and assessed in Tracer, version 1.7.2. TreeAnnotator was used to

summarize the set of BEAST-predicted trees onto a single, target tree. A highest posterior den-

sity (HPD) of 95% was chosen for the credible interval of divergence estimates at each node

across all trees generated in the analysis. The resulting tree annotation was visualized using

FigTree software.

Comparison to USAFA contact tracing and high-level contact tracing

A large number of the USAFA samples are descended from a series of closely related plausible

common ancestors beginning with A12 that are mostly closely related to ancestor A3 (corre-

sponding to NextStrain cluster 20G) but separated by nine mutation events mostly not seen

elsewhere in the NextStrain database. This branch of the network appears to have been intro-

duced into USAFA from contact with the local Colorado Springs community [15], and we

label it the Colorado Springs variant. The network relationships and identities among
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sequences were compared to USAFA contact tracing information (under USAFA IRB

FAC20200035E) to examine consistency between our inferred genomic ancestral relationships

and what was known about the contact path through the USAFA. The network was also used

to examine whether the CO Springs variant arose from multiple community transfers or a sin-

gle community transfer followed by spreading within the USAFA.

Results

Overview of SARS-CoV-2 sequencing and variant calling

We obtained 44 nearly-complete SARS-CoV-2 genomic sequences using RNA collected from

anonymized individuals in two Colorado populations. The first was collected in August 2020

by the Colorado Center for Personalized Medicine Biobank at the University of Colorado

(CU). The second was collected by the USAFA in September to November 2020. The CU sam-

ples were predominantly derived from clinical samples from Denver and Aurora obtained at

the University of Colorado hospital, while the USAFA samples were primarily obtained from

asymptomatic, randomly sampled cadets. In the case of the USAFA samples, because the test-

ing and quarantine protocols established at the beginning of the school year resulted in a popu-

lation free from COVID-19 when classes started in August [15], subsequent infections almost

certainly originated from contact with the local Colorado Springs community.

We followed the ARTIC protocol to produce overlapping short ~450 bp PCR-amplified

segments (amplicons), using Minion sequencing and the Oxford Nanopore Technology

(ONT) SARS-CoV-2 pipeline. Differences from the Wuhan reference genome sequence

(NC_045512.2) were called as described in the methods to predict mutation events in the CU

and USAFA genomes. We attempted to sequence 33 CU samples and 68 USAFA samples. Ten

CU and 41 USAFA samples did not amplify well enough to sequence, and five USAFA samples

did not sequence well despite amplification. Ultimately, each of the 44 SARS-CoV-2 genomes

were fully and reliably sequenced at least twice (S1 and S2 Tables).

Quality control process filters out likely sequencing artifacts

Prior to evaluating genomes for discordancy, we initially filtered out predicted variants that

appeared to be sequencing artifacts, or occurred in regions of low sequence quality, as

described in the methods (S3 Table). First, we excluded variants at positions 28882–28883

based on previous knowledge that these were problematic mutations [25], although they

would not have had a substantial impact on the final phylogenetic network. Next, a series of

polymorphisms from positions 19299 to 19550 were observed in several genomes but were

consistently of low quality and not well replicated. Therefore these were excluded, even when

the variant met the quality threshold (S3 Table). Similarly, a pair of adjacent mutations at posi-

tions 24389–24390 were called in consensus sequences from ten CU and USAFA samples but

were consistently replicated in only two samples. A further eight mutations were called in only

one replicate per sample, and at generally lower-quality scores. Based on these incompatibili-

ties, we excluded these mutation events from all genomes (S3 Table).

Discordant variation identified via replicate sequencing

Following quality filtering of variant predictions (S3 Table), the majority of variant calls gener-

ated by this analysis were found to be in agreement between replicates (concordant). However,

we discovered several instances of incongruent variant calls between replicates of the same

genome sample. These were described as discordant, according to Robasky et al., 2014. At least

one discordant variant call was observed in 14 of 44 SARS-CoV-2 genomes (S4 Table). In
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these instances, certain variants were assigned a high enough likelihood score to pass quality

filtering (QUAL>50) in at least one replicate, but were not scored above this threshold consis-

tently across replicates, making them possible false positives. These calls were the results of

using standard, widely accepted analysis pipelines and quality filters. This finding further

underscores the importance of replicate sequencing protocols, even in the context of long-read

sequencing. If a replicate sequencing approach had not been followed, these variants would

have been summarily excluded as false positives [11]. Therefore, we investigated further to

assess the validity of these variants.

Relatedness networks can resolve discordant variant calls and address

putative false positives

We identified all plausible ancestral sequences in the Colorado phylogenetic network based on

all observed different combinations of shared differences from the Wuhan reference sequence.

This resulted in 13 inferred ancestors, which we label A1 to A13 for purposes of discussion (Figs

2 and 3, S2 Fig). Using the inferred ancestral relationships between concordant genomes (relat-

edness network), we then critically evaluated the impact of incorporating each of the discordant

genomes individually, based on how it’s variant set impacted the structure of phylogenetic rela-

tionships between genomes. If the inclusion of the putative false positive variants was in agree-

ment with the shared sets of ancestral mutations in related genomes, the variant was retained. If,

however, inclusion of a discordant variant created a set of mutations that were incongruent with

the shared ancestral variation of related genomes, the variant was excluded as a false positive.

Through this approach, we were able to confidently resolve 16 discordant, putative false posi-

tives as confident true positives to include in our genome annotations (S4 Table). In a less rigor-

ous process, these mutations would have been rejected from their respective genomes. As a

result of this analysis, only one discordant variant, at position 13094, was excluded as a likely

false positive because it occurred sporadically on the relatedness network, suggesting it was not a

result of a shared ancestral mutation. Together, these results underscore the importance of repli-

cating sample sequencing to improve confidence in results from this amplicon approach [11].

Relatedness networks can also reveal false negatives

Comparing shared variant sets between ancestrally related SARS-CoV-2 genomes also uncov-

ered instances where variants that probably should have been present were excluded due to

low quality scores across all replicates. Under the original codified criteria for rejecting variants

due to low quality scores, genomes Z, R and I had calls at some sites that were in disagreement

with the relatedness network, in the sense that there would necessarily had to have been rever-

sions at these sites to make the calls compatible with the network (S5 Table). However, these

variants were observed in the original analysis but filtered due to the quality score cutoff. In

another instance, genomes AR, AQ and AJ appeared to be missing calls for a mutation that

probably should have been present, based on mutation content of closely related genomes of

ancestor A3. However, this mutation, at position 27964, was called with very low-quality geno-

type scores in many other genomes (S5 Table), and we inferred that the site in question was in

a genomic region that regularly exhibited low-coverage and low-quality/inconsistent variant

calls across most genomes in our sampling. This is consistent with poor amplicon amplifica-

tion in some of these genomes, and we avoid making claims based on the presence or absence

of this variant.

Finally, this approach allowed us to identify two instances of chance congruent mutation

events (S6 Table). The mutation at position 14187 in genome J is shared with the descendants

of ancestral node A12, although J is a descendant of node A4, which is highly divergent from
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A12. Additionally, we identified that a mutation at position 24904 occurs in both genomes J

and G. However, these genomes are separated by two ancestral nodes, and this mutation is not

found in any other related genomes, so we conclude that these two mutations are chance con-

vergent events. The remaining variants are well replicated congruent with the parsimonious

phylogenetic network, and represent high-confidence sequences suitable for in-depth evolu-

tionary analysis of SARS-CoV-2 infections in Colorado (S7 Table, S1 Dataset).

Broad phylogenetic structure of the CU and USAFA genomes

We characterized the ancestral variant composition of each genome, relative to our dataset.

We jointly analyzed the entire set of Colorado sequences and placed their plausible common

Fig 2. Major phylogroup clustering of the CUAF SARS-CoV-2 genomes. Tip labels indicate how many CU Anschutz (CU) and USAFA (AF) genomes

are associated with ancestor. Color shading indicates which main phylogroup genomes belong to, A1-A3, corresponding to NextStrain clades 20A, 20C and

20G, respectively.

https://doi.org/10.1371/journal.pone.0274050.g002
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ancestors on a phylogenetic network. All newly sequenced Colorado genomes appear to be

descended from what we label the A1 ancestor, which is the likely ancestor of NextStrain’s

clade 20A. In other words, they all share four mutation events in common that separate them

from the Wuhan reference sequence, at sites 3037, 14408, 241, and 23403. This result is not

surprising, as this ancestor contains two amino acid-altering mutations in the RdRp and Spike

proteins, which confer a competitive advantage over previous variants since its origin in Janu-

ary 2020 [33]. Based on analysis using NextStrain [22], this variant’s early origin and competi-

tive advantage over the original virus caused its descendants to represent 99% of genome

sequences throughout the world as of August 2020, when the first of our samples were col-

lected (S3 Fig).

15 of the 21 CU sequences and 75% of the USAFA sequences are descended from A2,

which is itself a descendant of A1 and is the likely ancestor of NextStrain’s clade 20C, estimated

to have originated in April 2020. A2 differs from A1 by two mutations, at sites 25563 and 1059,

and rose to a highest frequency of 43% of sequenced genomes in North America by February,

Fig 3. Closely related subset of Air Force samples suggests a novel, rapidly transmitting strain with low average mutation rate, the “Colorado Springs

Variant” (A12-A13). Numbers at tips indicate average number of mutations per genome in each ancestral grouping.

https://doi.org/10.1371/journal.pone.0274050.g003
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2021. Thus, for some time 20C appeared well on its way to becoming the dominant variant in

North America, and may have been at a competitive advantage compared to other early

descendants of A1, but has since lost ground to the well-documented Greek-letter variants

(Alpha, Beta, Delta, etc.) since then [34–36] (S4 Fig). Because the Colorado A1 and A2 descen-

dants (other than the Colorado Springs variant) are not highly clustered, the higher frequency

of A2 in both CU and USAFA samples may indicate that the A2 variant was even more suc-

cessful in Colorado than in the rest of North America.

In our network, we define all differences that can be parsimoniously mapped to branches of

the network to be inferred lineage-defining mutations. There were 41 lineage-defining muta-

tions and 135 novel mutations that were confidently identified from the network of 44

genomes that were sequenced (Table 1, S7 Table). Of the 41 lineage-defining mutations, 24 of

these occurred in the ORF1AB gene, five in the S gene, five in the ORF3A gene, one in the

ORF8 gene, and six in the N gene. 18 have documented amino acid substitutions already in

the NextStrain database.

These mutations were qualitatively cross referenced against the NextStrain ncov database

North American frequencies (henceforth, ncov) to evaluate their mutation frequencies and

determine which of the eleven major clades, as defined by NextStrain at the time of evaluation,

were represented in our sampling (S4 Fig, Table 1). 18 mutations had no detectable frequency

in ncov (<<1% in Table 1), and seven mutations were found sporadically across the ncov tree,

with a prevalence of ~1%.

Of the 18 Colorado lineage-defining mutations that were more common in ncov, all were

on the lineages leading to the series of ancestors A1, A2, or A3, corresponding to NextStrain

clades 20A, 20C, and 20G. Based on shared mutations, 22 of the 44 Colorado genomes are

descendants of A3 (and thus also A1 and A2), 13 are descendants of A2 (and thus also A1) but

not descended from A3, while nine are descended from A1 but not from A2 or A3 (Fig 2). The

inferred ancestors other than A1, A2 and A3 are organized such that there are three ancestors

(A4-A6) descended from A1 but not A2 or A3, two ancestors (A7-A8) descended from A2 but

not A3, and five ancestors (A9-A13) descended from A3. We further verified our relatedness

networks by using IQTree to generate a phylogenetic tree of all 44 final, concordant genomes,

including the Wuhan-Hu-1 genome, which served as the reference for variant calling (S5 Fig).

This confirms our grouping of genomes into the aforementioned relatedness network sub-

structure. In this way, we were able to describe the patterns of relatedness and evolutionary

dynamics between 44 Colorado SARS-CoV-2 genomes.

Origins of a novel lineage associated with a rapid transmission event

Although many of the USAFA samples were likely picked up from the local Colorado Springs

community based on detailed contact-tracing information and limits on off-base travel imple-

mented by USAFA, a group of samples were also associated with a rapid-spreading event

within the USAFA campus starting in late October 2020 [15]. In looking at the distribution of

inferred mutations on the Colorado phylogenetic network, we found that most common

ancestors [A4, A5, A6, A8, A9] share a shallow network of divergence from the ancestors A1,

A2, and A3, with one or two mutations separating each from an earlier ancestor (Fig 2, S2 Fig).

Divergence from ancestors A1 and A2 involved an average of 4.55 and 4.23 mutations/genome

(s.d. 2.69 and 3.36, range 1–9 and 0–11), respectively (Fig 3, S8 Table). Among the sampled

sequences in this part of the tree, only two are identical. These results are in rough agreement

with the idea that the mutations and most of the network diversification (other than A1, A2,

and A3) were unselected and that mutations accumulated randomly with a rate for beta coro-

naviruses between 1.3 × 10−4 – 6.1 × 10−4 mutations per site per year [37–40]. A3, which
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Table 1. Lineage-defining mutations in a set of 44 Colorado SARS-CoV-2 genomes.

Mutation frequency in US [NextStrain]

Position1 ORF REF2 ALT2 Amino acid

change3
August 2020

[8–14]

November 2020

[11–14]

February 2021

[2–13]

May 2021

[5–5]

Ancestor

introduced4
NextStrain

clade

241 ORF1A C T <<1% <<1% <<1% <<1% A1 20A

829 ORF1A C T <<1% <<1% <<1% <<1% A13 NA

1059� ORF1A C T T265I 25% 36% 27% 12% A2 20C

1927 ORF1A T C <<1% <<1% <<1% <<1% A11 NA

2668 ORF1A C T <<1% <<1% <<1% <<1% A7 NA

3037 ORF1A C T <<1% <<1% <<1% <<1% A1 20A

4021 ORF1A C T <<1% <<1% <<1% <<1% A12 NA

7006 ORF1A C T <<1% <<1% <<1% <<1% A8 NA

7086 ORF1A C T <<1% <<1% <<1% <<1% A12 sporadic5

10319� ORF1A C T L3352F 5% 26% 11% <1% A3 20G

11824 ORF1A C T <<1% <<1% <<1% <<1% A9 NA

12295 ORF1A C T <<1% <<1% <<1% <<1% A12 NA

13216 ORF1A T C <<1% <<1% <<1% <<1% A12 NA

14187 ORF1B G A <<1% <<1% <<1% <<1% A12 NA

14408� ORF1B C T P314L 90% 94% 91% 97% A1 20A

15766 ORF1B G T V767L 3% 9% 2% <<1% A11 20G

18424� ORF1B A G N1653D 3% 24% 11% <1% A9 20G

18486 ORF1B C T <<1% <<1% <<1% <<1% A6 NA

18538 ORF1B G T V1691L <<1% 1% 1% <<1% A11 sporadic5

19180 ORF1B G T <<1% <<1% <<1% <<1% A8 sporadic5

19891 ORF1B G T <<1% <<1% <<1% <<1% A9 NA

20268 ORF1B A G <<1% <<1% <<1% <<1% A5 NA

21304� ORF1B C T R2613C 3% 24% 10% <1% A10 20G

21390 ORF1B A G <<1% <<1% <<1% <<1% A12 NA

21830 S G T <<1% <<1% <<1% <<1% A13 NA

22162 S T C <<1% <<1% <<1% <<1% A6 NA

22255 S A T <<1% <<1% <<1% <<1% A11 NA

22687 S C T <<1% <<1% <<1% <<1% A11 NA

23403� S A G D614G 98% 98% 98% 100% A1 20A

25563� ORF3A G T Q57H 31% 49% 31% 13% A2 20C

25593 ORF3A G C K67N <<1% 1% <<1% <<1% A12 sporadic5

25907� ORF3A G T G172V 4% 25% 11% <1% A10 20G

25930 ORF3A T C S180P <<1% 1% 1% <<1% A11 sporadic5

26040 ORF3A A T <<1% <<1% <<1% <<1% A9 sporadic5

27964� ORF8 C T S24L 6% 27% 11% <1% A3 20G

28472� N C T P67S 3% 24% 11% <1% A10 20G

28655 N G T <<1% <<1% <<1% <<1% A7 NA

28854 N C T S194L 16% 15% 4% 2% A4 20A

28869� N C T P199L 5% 28% 12% 3% A10 20G

28887 N C T T205I 1% 10% 17% 9% A9 21C

(Continued)
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corresponds to the common ancestor of NextStrain’s 20G clade, increased rapidly from August

to November 2020 to a peak of 25% in North America (Table 1, Fig 4), and its dominant pres-

ence in the later USAFA samples may be due to stochastic events in the local community.

The pattern in ancestors A10, A11, A12 and A13 is strikingly different. For example, diver-

gence from ancestor A3 was much lower, with an average of only 1.77 mutations/genome (s.d.

2.9, range 0–12). This frequency drops even further to< = 1 mutation/genome away from

ancestors A11, A12 and A13 in the Colorado Springs variant lineage (Fig 3, S8 Table). Five

mutations on the branch led to A10, and seven mutations on each of the branches led to two of

its descendants, A11 and A12 (Fig 3). Furthermore, the highly derived A12 gave rise to 14

descendant sequences in the sample, including another shared ancestor differing by two muta-

tions (A13). All of the descendant sequences from A12 and A13 differ from their ancestors by

zero to three mutations, and there are respectively three and four sequences corresponding

exactly to A13 and A14. The ancestors A10 and A11 have a few descendant sequences from

CU individuals, indicating that they and A12 may have arisen from community spread. In

contrast, the high prevalence of closely related USAFA samples in A12 and its descendants

indicates sequence documentation of a rapid-spreading event, possibly involving one or more

individuals.

We further validated this inference by estimating the divergence times between the SARS-

CoV-2 samples collected by the USAFA (Fig 5) [30–32]. The node where the CO Springs vari-

ant branches off from the ancestral lineage was found to have a posterior distribution with a

mean of twenty-four days before the most recent sample, November 19, 2020 (Fig 5). This puts

the mean, estimated date of divergence at October 26th, 2020, with a credible range (95%

Table 1. (Continued)

Mutation frequency in US [NextStrain]

Position1 ORF REF2 ALT2 Amino acid

change3
August 2020

[8–14]

November 2020

[11–14]

February 2021

[2–13]

May 2021

[5–5]

Ancestor

introduced4
NextStrain

clade

29439 N A T Q389H <1% <1% <<1% <<1% A11 sporadic5

� Mutation is found at frequencies > 1% in the ncov North America dataset
1positions refer to aligned location in the Wuhan reference genome
2REF and ALT refer to the nucleotide state at that position in the reference genome and the corresponding alternative allele at that position in comparison genomes,

respectively.
3Amino acid replacement standard notation shows the reference amino acid, the amino acid position in the corresponding gene, and then the inferred amino acid in the

alternative genomes, all as determined from ncov.
4The clade corresponding to an ancestral sequence was determined as the named clade in the NextStrain database at the time of evaluation with the most mutations

shared with the “ancestor introduced” prior to that clade on the NextStrain phylogenetic tree.
5Mutation is not associated with a phylogenetic grouping, but occurs at seemingly random branches throughout the entire tree date accessed: 7/12/21

Number of genomes: Showing 4000 of 4043 genomes sampled between Mar 2020 and June 2021

https://doi.org/10.1371/journal.pone.0274050.t001

Fig 4. Frequency of a CUAF clade 20G mutation in North America between March 2020 and June 2021. The

mutation pictured here is from ORF1A, genomic position 10319, amino acid position 3352.

https://doi.org/10.1371/journal.pone.0274050.g004

PLOS ONE SARS-CoV-2 phylodyanmics in Colorado

PLOS ONE | https://doi.org/10.1371/journal.pone.0274050 October 4, 2022 14 / 23

https://doi.org/10.1371/journal.pone.0274050.t001
https://doi.org/10.1371/journal.pone.0274050.g004
https://doi.org/10.1371/journal.pone.0274050


HPD) between October 27, 2020 and October 17th, 2020. This range of credible divergence

estimates is in accordance with USAFA records that trace the origin of the rapid spreading

event to late October 2020 (SDataset 1).

Given the possibility that the Colorado Springs variant clade had some transmission advan-

tage, we next considered the potential for these mutations to affect protein function. We evalu-

ated the set of nine mutations that defined the CO Springs Variant ancestral clades A12–A13

(Table 2). These mutations have population frequencies < = 1% in NextStrain (Table 1), and

three result in non-synonymous amino acid substitutions. Two of these mutations (ORF1A/

Fig 5. Divergence estimates indicate that the CO Springs lineage originated around October 26th, 2020. The red arrow indicates the node where the CO Springs

lineage branches off from ancestral nodes. 95% HPD and tree distances are in units of “days before November 19, 2020”.

https://doi.org/10.1371/journal.pone.0274050.g005

Table 2. Lineage-defining mutations contributing to the Colorado Springs variant [A12-A13].

Ancestor Mutation

position

ORF Protein REF

allele

ALT

allele

Amino acid

position

Codon

change

Amino acid

change

Biochem property

change?

A13 829 ORF1A Nsp2 C T 188 AAC->AAT N->N N

A12 4021 ORF1A Macro Domain C T 1252 AAC->AAT N->N N

A12 7086 ORF1A Nsp3_C C T 2274 ACT->ATT T-> I Y

A12 12295 ORF1A Nsp8 C T 4010 ACT->ACC T->T N

A12 13216 ORF1A Nsp10 T C 4317 GAT->GAC D->D N

A12 14187 ORF1B RdRp G A 250 AGG->AGA R->R N

A12 21390 ORF1B Methyltransferase A G 244 TTA->TTG L->L N

A13 21830 S Spike G T 268 GTT->TTT V->F Y

A12 25593 ORF3a Orf3a G C 67 AAG->AAC K->N Y

https://doi.org/10.1371/journal.pone.0274050.t002

PLOS ONE SARS-CoV-2 phylodyanmics in Colorado

PLOS ONE | https://doi.org/10.1371/journal.pone.0274050 October 4, 2022 15 / 23

https://doi.org/10.1371/journal.pone.0274050.g005
https://doi.org/10.1371/journal.pone.0274050.t002
https://doi.org/10.1371/journal.pone.0274050


T2274I and ORF3A/K67N) arose on the branch leading to A12, the ancestor of the Colorado

Springs variant. Based on literature review (see discussion), it appears likely that all three

mutations impact the biochemical properties of their associated protein and may have implica-

tions for viral fitness.

Genomic surveillance methods complement high-level contact tracing

From August 2020 through December 2020, USAFA utilized a random surveillance testing

program, where a percentage of cadets [4–15%] were tested daily to identify asymptomatic or

mildly symptomatic SARS-CoV-2 cases. All SARS-CoV-2 positive patients were interviewed,

close-contacts identified, and class schedules reviewed to assess for additional contacts. These

individuals were then placed into quarantine with testing and monitoring before release. If the

individuals identified during contact tracing were not cadets, these close contacts were con-

tacted following local public health guidance.

This method allowed for the identification of infection from a student, sports team, or com-

munity exposure. We were able to link multiple infections back to a rapid spreading event in

late October 2021, which resulted in the strain clusters A12 and A13. Following the dramatic

increase in infections, further lockdown measures were implemented at USAFA limiting new

community introductions. At the end of the semester, a similarly rigorous testing and quaran-

tine process occurred prior to release for the winter break, likely eliminating the strain from

circulation within the population. The ability to contextualize genomic data with contact trac-

ing information helps see a clearer picture for strain introduction, mutation, and propagation,

while making assessment of subsequent viral fitness as SARS-CoV-2 continues to change.

Discussion

Our robust sequencing provides a snapshot of infections in Colorado in late summer and early

fall 2020. There were many circulating variants in Colorado at this time, and their dynamics

broadly reflect strain variation and divergence across the rest of the US. In addition, our analy-

sis suggests that there were likely multiple introductions of SARS-CoV-2 into the USAFA

cadet population, despite their restricted interaction with Colorado Springs. Most did not lead

to subsequent outbreaks, and only one sustained a rapid evolutionary expansion, which we

name the Colorado Springs variant. Prior sequences from the nearby Denver/Aurora area and

pre-outbreak USAFA samples (likely reflecting the Colorado Spring community) indicate slow

and potentially neutral evolution of variant twigs, which come from common ancestors of

known expanding variants previously identified by NextStrain. The lineages immediately prior

and adjacent to the Colorado Springs variant, in contrast, indicate bursts of evolution includ-

ing amino acid altering mutations that may have affected its transmission properties. This vari-

ant may have been highly contagious, but its spread also appears to have been promoted by

one or more rapid spreading events. Luckily, it appears to have been contained by the rigorous

epidemiological control procedures (e.g. social distancing, mask wear, limited gathering, vir-

tual learning) employed at the USAFA. The type of focused community-level data collected

here may be key to understanding how SARS-CoV-2 spreads in local settings, which may

often have highly idiosyncratic dynamics compared to the country as a whole.

We employed rigorous sequencing quality control and validation steps, including standard

PCR and sequencing replicates of all samples, further replicates of any moderately ambiguous

results, and comparison to evolving ancestral sequences as well as the standard Wuhan refer-

ence. This ultimately resulted in an inferred ancestral sequence network that contained only

two convergent mutations and was parsimonious. We verified our final ancestral network via

maximum likelihood phylogenetic tree construction. Our results concerning the USAFA
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diversification are not dependent on the fine details of the network, but it seems clear that

more quantitative studies might be misled if they did not take a similarly cautious and rigorous

replication approach with hands-on evaluation of the data, as we did here. Because we identi-

fied discrepancies that would have been accepted in less thorough [e.g., single-sequence repli-

cate and single reference variant identification] protocols, we suspect, as do others, that an

unknown number of variants in the GISAID database contain flawed sequences that may mis-

lead phylogenetic and convergence analyses [23, 26, 41, 42].

The sequencing initiative presented here highlights the power of robust genomic surveil-

lance to describe local viral dynamics, particularly when paired with epidemiological data col-

lected with the patient samples. Sitko et al. collected these samples through a highly effective

COVID-19 monitoring system at USAFA. Their approach relied on random sampling of indi-

viduals regardless of symptoms. In addition to their robust contact tracing steps, the USAFA

was able to pinpoint their surge to a rapid spreading event on their campus in late October.

This epidemiological conclusion agrees with the results described here, where we were able to

phylogenetically reconstruct the divergence of these samples over the period of time from

August to late November. Adopting this approach enabled the identification of the Colorado

Springs variant in the context of enough branches to pinpoint a burst of change leading to the

variant, and documented the spread of the variant to a large number of people over a short

period of time. Through the use of evolutionary modelling, we traced this burst back to a date

between October 17–27, 2020, with the highest probability of having occurred on October

26th, 2020. It is known that immunocompromised individuals can serve as accelerated caul-

drons of intra-host viral evolution with selected and rapid accumulation of epistatically inter-

acting mutations [25], which might be an explanation for the burst of evolution we see here

leading to the CO Springs variant. However, we do not know of such a case in the community,

and the USAFA population is mostly young and extremely healthy, and the cadets likely inter-

act with similarly young and healthy individuals in the local community. The possibility that

rapid intra-host evolution could occur in such individuals, perhaps during long-term but

largely asymptomatic infections, warrants consideration for further study.

It is important to track and model the evolution of highly adaptive strains that tend to rap-

idly rise in frequency in the population once they gain a sufficient foothold, but it is also

important to describe patterns of viral evolution that may lead to attenuation. Such strains are

likely to be found in sampling from asymptomatic patients because they tend to be less pheno-

typically severe cases. Attenuated strains have the potential to out-compete more severe strains

due to the trade-off between virus transmissibility and severity [43]. Studies like this are well

suited to capture a snapshot of this kind of variance, as samples were collected from both

symptomatic and asymptomatic individuals, per USAFA’s randomized testing surveillance

protocol [15]. Further, mutations in these strains can create reservoirs of mostly neutral muta-

tions, possibly leading to gradual genetic drift over time [44]. In the event of a transmission

bottleneck, variants could then rise to sustained, high frequency [44, 45]. Such a scenario

could contribute to antigenic shifts and viruses with a capacity to reduce vaccine efficacy [43].

These scenarios, in which neutral variants propagate by chance, seem plausible as the default

mode of spreading for SARS-CoV-2 [46], punctuated by the rise of more transmissible variants

of concern. While the Colorado Springs variant appears to have been confined to the isolated

context in which it was found, similar variants may not be contained, and thus it is important

to characterize them whenever possible.

The ancestor of the Colorado Springs variant (A12) contained two intriguing non-synony-

mous amino acid substitutions: ORF1A/T2274I and ORF3A/K67N. ORF1A/T2274I results in

a shift from a polar uncharged to a non-polar residue at the third position of a three residue N-

linked glycosylation site in the Nsp3 peptide. This type of post-translational modification to
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Nsp3 is thought to be important for insertion into the endoplasmic reticulum of host cells,

though it is not known how a mutation at a glycosylation site would impact its ability to do so

[47]. However, disruption of N-linked glycosylation on other viral peptides has been shown to

be destabilizing and negatively impacts virus viability [47, 48]. The ORF3A/K67N mutation

results in a change from a positively charged residue to an uncharged, polar residue. This par-

ticular residue occurs in an LKK peptide motif that is predicted to be a likely B-cell epitope by

Azad and Khan, 2021. Because the mutation seems to increase the free energy of folding, it has

the potential to alter a putative B-cell epitope, allowing the virus to better evade host immune

responses [49]. Interestingly, the only recorded North American SARS-CoV-2 genomes con-

taining this mutation are found in Mexico (S6 Fig). The NextStrain database (derived from the

GISAID database) is a highly incomplete collection of existing viral strains, making it difficult

to determine whether this mutation was imported to the Colorado area or arose de novo
locally. The third amino acid altering mutation, along the lineage leading to A13, is located in

the Spike protein at position 268. The change converts a small, hydrophobic valine residue to

phenylalanine, which is also hydrophobic but contains a large six-carbon ring side chain. A

shift in steric properties is likely to impact local structure, and thereby potentially modify pro-

tein function. Without further experimental studies, it is difficult to know how these mutations

affect viral dynamics and the extent to which they enabled the rapid spreading event.

This case study, while limited in size and scope, is an exemplar to describe the viral phylo-

dynamics of a locally confined rapidly-spreading transmission event, in combination with

paired epidemiological data. Due to their rapid expansion, coupled with minimal mutation

accumulation, rapid spread scenarios have little phylogenetic structure to describe [50], and

the contact structures involved may strongly deviate from the average assumptions used in

most epidemiological models [14, 51]. We conclude that case studies similar to that presented

here could assist in outbreak control, provide variant-origin replicates to obtain a broader

view of the process and refine epidemiological models, and help in early detection and action

against novel variants of concern when they occur in the future.

Supporting information

S1 Fig. Average matching amplicon position of sequencing primers. 1A shows the average

position along the y axis, primer number along the x axis. 1B shows the variance calculated for

the distribution of matching positions for each primer.

(TIF)

S2 Fig. Next Strain estimates of North American continental frequency of the D614G

mutation, from March 2020-May 2021. Gold indicates frequency of ‘G’ substitution over

time, green indicates frequency of ‘D’ substitution over time.

(TIF)

S3 Fig. Eleven major SARS-CoV-2 clades in North America between March 2020 and June

2021, across 3923 genomes. A) Phylogenetic relationships of strains across the continent. B)

Strain relative prevalence between August 2020 and July 2021. Date accessed July 12, 2021.

(TIF)

S4 Fig. Depiction of the ancestral network of 44 Colorado SARS-CoV-2 genomes. Each tip

indicates the genome letter identifier and the number of mutations away from its most recent

ancestral node. Ancestral nodes contain the name of the node (A1-A13) and the position of

lineage-defining mutations which are inherited by all downstream lineages. Node and tip col-

oring described in legend.

(TIF)
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S5 Fig. Phylogenetic tree of 44 novel SARS-CoV-2 genomes from Colorado and Wuhan-

Hu-1. Genomes were aligned with Mugsy and the consensus tree was generated under the

Jukes-Cantor model using IQTree. Tip labels indicate the sample names as identifiable in

GISAID. Red branch labels indicate the major phylogroups described in this paper. Blue aster-

isk indicates the Wuhan-Hu-1 genome outgroup, NC_045512.2.

(TIF)

S6 Fig. Geographic location of the Orf3a K67N mutation in NextStrain. The only other doc-

umented instance of this variant in the NextStrain repository occurs in Northern Mexico. Map

image downloaded from NextStrain, which uses OpenStreetMap1. OpenStreetMap1 is open

data, licensed under the Open Data Commons Open Database License (ODbL) by the Open-

StreetMap Foundation (OSMF).

(TIF)

S1 File. GISAID accession IDs for the 44 SARS-CoV-2 genomes sequenced in this work.

(DOCX)

S1 Table. List of successfully sequenced genomes. Sample ID#s represent deidentified IDs.

(XLSX)

S2 Table. Sequencing meta data and de-identified sampleIDs for successfully sequenced

replicates.

(XLSX)

S3 Table. Variant calls that were excluded (yellow) during QC processing.

(XLSX)

S4 Table. Discordant genomes containing putative false positive variant calls that were

either verified as true positive (green) or excluded as false positives (yellow).

(XLSX)

S5 Table. Genomes with low quality variants that were initially excluded (false positives)

due to low quality, but were re-included upon phylogenetic re-assessment (green).

(XLSX)

S6 Table. Genomes containing convergent variants (blue).

(XLSX)

S7 Table. Non-lineage defining genome mutations.

(XLSX)

S8 Table. Average number of observed variants, by phylogroupings.

(XLSX)

S1 Dataset. Evolutionary model parameters, divergence estimates and MCMC data.

(ZIP)
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