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Abstract

With availability of voluminous sets of observational data, an empirical paradigm to

screen for drug repurposing opportunities (i.e., beneficial effects of drugs on

nonindicated outcomes) is feasible. In this article, we use a linked claims and elec-

tronic health record database to comprehensively explore repurposing effects of anti-

hypertensive drugs. We follow a target trial emulation framework for causal

inference to emulate randomized controlled trials estimating confounding adjusted

effects of antihypertensives on each of 262 outcomes of interest. We then fit hierar-

chical models to the results as a form of postprocessing to account for multiple com-

parisons and to sift through the results in a principled way. Our motivation is

twofold. We seek both to surface genuinely intriguing drug repurposing opportuni-

ties and to elucidate through a real application some study design decisions and

potential biases that arise in this context.
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Keypoints

• Large observational healthcare databases have the potential to help identify promising drug

repurposing candidates.

• We illustrate a high throughput screening approach based on target trial emulation, followed

by hierarchical modeling for postprocessing.

• We discuss biases that might arise in this setting and how they should inform study design

decisions.

Plain language summary

We consider the problem of how to search for drug repurposing opportunities (i.e., beneficial

effects of drugs on outcomes that they were not designed or approved for). We use a large

observational healthcare database to comprehensively explore potential repurposing effects of

antihypertensive drugs. In lieu of randomized trials to assess each candidate repurposing oppor-

tunity (which would be the gold standard of evidence, but would be infeasible due to resource
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and time constraints), we use statistical techniques to emulate the randomized trials we wish we

could conduct assessing effects of antihypertensives on each of 262 outcomes of interest. We

then use another statistical technique called “hierarchical modeling” to sift through the results

and identify the most promising repurposing candidates in a principled way. Our motivation for

conducting this analysis is twofold. We seek both to surface genuinely intriguing drug

repurposing opportunities and to elucidate through a real application some study design deci-

sions and potential biases that arise in this setting due to the inability of statistical adjustment

techniques to truly correct for the vagaries of observational data.

1 | INTRODUCTION

Drug development over the past three decades has been character-

ized by what has been called “rational drug design.” Insights into the

mechanism of action of a particular substance to prevent or alleviate

disease first appear in peer reviewed biological science literature.

Then, medicinal chemists, mostly in pharmaceutical companies, search

systematically for molecules with properties conducive to use in the

human body and then engineer changes to the molecule to maximize

efficacy and tolerability. Mechanism driven drug development is lim-

ited by the requirement to know a precise molecular pathway at the

outset, but there is every reason to believe that drug candidates work

in ways not previously considered. For example, the full complement

of mechanisms that explain all the indications for aspirin are still not

well understood. And off label uses are common for many medicines.

Now, with increasing availability of voluminous sets of observa-

tional data and modern analytics, an empirical paradigm is also feasible.

Opportunities exist to conduct exploratory empirical research in a high

throughput fashion and then to consider findings in the context of what

is known about a drug from traditional hypothesis driven studies. The

potential value of such an approach is amplified by the current interest

in repurposing medications, especially ones that have been widely used.

In this article, we use a linked claims and electronic health record (EHR)

database to comprehensively explore repurposing effects (i.e., effects

on nonindicated outcomes) of antihypertensive drugs.

Our motivation is twofold. We seek both to surface genuinely

intriguing drug repurposing opportunities and to elucidate through a

real application some study design decisions and biases that arise in

this context.

Within the antihypertensive therapeutic class, drugs from five

mechanistic classes are candidate first line therapies for hypertension.

Guidelines1 offer some criteria on how to choose among them, but

there is still considerable variation in care. Past randomized trials2 and

observational studies3,4 have explored the comparative effectiveness

(at lowering blood pressure and preventing adverse cardiovascular

events) and safety profiles of antihypertensives in order to guide

treatment decisions. While safety profiles capture the unintended

negative consequences of these drugs, it is also of interest to assess

their unintended beneficial effects. Unintended beneficial effects can

also inform treatment decisions, as well as indicate potential

repurposing opportunities or suggest pathways for drug development.

Scattered studies have looked at repurposing effects of

antihypertensives (e.g., Reference 5 considers effects on dementia),

but not in a systematic fashion.

We follow a target trial emulation framework6,7 to emulate

five-arm (one arm for each first line mechanistic class) randomized

controlled trials estimating confounding adjusted effects of antihyper-

tensives on each of 262 outcomes of interest. We then fit hierarchical

models to the results as a form of postprocessing to account for multi-

ple comparisons and to sift through the results in a principled way.

Finally, we take stock of what we have learned, both about the

repurposing potential of antihypertensives and the challenges of

screening for repurposing opportunities.

2 | METHODS

Ideally, any comparison of the effects of drugs on outcomes of interest

would be based on a randomized trial. Multiple trials comparing antihy-

pertensives have been conducted,2 but they did not study the full range

of outcomes we are interested in. Therefore, we attempt to estimate

effects of interest using observational data, following a target trial emu-

lation framework.6,7 We specify protocols for the pragmatic trials we

wish we could conduct, and then construct cohorts and perform statis-

tical analyses to generate effect estimates that, under certain causal

assumptions, approximate results that would be observed in the trials.

2.1 | Target trial protocols

We specified the protocols for our target trials as follows:

Inclusion criteria: To be eligible for inclusion in the study, a patient

must have confirmed hypertension [defined as a systolic blood pres-

sure (SBP) reading exceeding 140 mmHg or a diastolic blood pressure

(DBP) reading exceeding 90 mmHg), be over 50 years old, be about to

start an antihypertensive for the first time, and have no prior occur-

rence of the outcome of interest.

Treatment arms: Patients are randomly assigned to start an antihy-

pertensive from one and only one of five first line mechanistic classes:

angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor

blockers (ARBs), thiazide diuretics, beta-adrenergic blocking agents

(beta blockers), or calcium channel blockers. The choice of the specific

drug within the class corresponding to the subject's treatment arm is

left to the prescribing physician's discretion.
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Baseline: Randomization and treatment initiation occur at the first

time that all inclusion criteria are met.

Follow-up period: Patients are followed until the earliest of occur-

rence of the outcome of interest, death, or loss to follow-up.

2.2 | Trial emulation

Using observational data, we sought to estimate intention to treat

(ITT) effects from trials with the protocols above. In this context, ITT

effects are effects of initiating an antihypertensive class but poten-

tially adding another class, switching classes, or discontinuing antihy-

pertensives altogether postbaseline according to usual care.

2.2.1 | Data

We used linked claims and EHR data from the IBM LCED database com-

prising data on over 6.5 million patients from across the United States

who appear in both the MarketScan claims database8 and the Explorys

EHR database.9 EHR data has the limitation that out of network care is

not captured, while claims data has the shortcoming that most lab values

and exam findings are not captured. The linked claims/EHR database

greatly mitigates each of these limitations. It contains claims for diagno-

ses, prescriptions, and procedures that occur out of network as long as

they were covered by insurance included in the database. It also contains

in-network lab results and exam findings.

2.2.2 | Cohort construction

For each outcome, we constructed a cohort of patients meeting target

trial inclusion criteria from Section 2.1 corresponding to that outcome.

(The only difference between cohorts for different outcomes is that

different patients were excluded for having a previous outcome

occurrence in their medical history.) Baseline was taken to be the first

date that a prescription for an antihypertensive from one of the five

classes of interest was filled. Patients were excluded if they had ever

filled any antihypertensive prescription (from any class) previously, or

if they simultaneously initiated drugs from multiple classes. Disease

outcomes were grouped according to the Agency for Healthcare

Research and Quality Clinical Classifications Software (CCS) that

aggregates the International Classification of Diseases (ICD) diagnos-

tic codes into clinically sensible groupings.10 Patients were excluded if

any ICD code corresponding to the outcome CCS code appeared

before baseline. Patients were also excluded if they had less than

1 year of continuous observation with insurance coverage in the data-

base prior to baseline. This was to ensure that we could reliably con-

firm that they were new antihypertensive users who had never

experienced the outcome and so that we could collect reliable data on

confounders. Follow-up was until the earliest of occurrence of the

outcome of interest, death, or a break in continuous insurance cover-

age for any reason (i.e., loss to follow-up).

2.2.3 | Inverse probability weighting to adjust for
confounding and informative censoring

The baseline confounding variables we adjusted for included age, sex,

calendar year, diabetes, prior stroke, prior acute myocardial infarction

(AMI), prior heart failure, chronic kidney disease (as defined in Refer-

ence 11), most recent SBP recording, most recent DBP recording, and

most recent BMI recording. These confounders comprise all variables

mentioned anywhere in the American Heart Association guidelines1

for selecting a first line antihypertensive, plus calendar year to adjust

for changing prescribing patterns.

For each antihypertensive class/outcome pair, we estimated the

counterfactual cumulative incidence curve for the outcome had the

full cohort been assigned to that class, adjusting for the confounding

variables listed above using inverse probability weighting.12,13 This

required fitting four models for each class/outcome pair.

Model 1 (treatment model): We fit a logistic regression model for

probability of receiving an antihypertensive from the class of interest

(as opposed to any other class, given membership in the cohort) con-

ditional on the confounders.

Model 2 (censoring model, denominator): We fit a Cox hazard model

for loss to follow-up (i.e., end of continuous insurance coverage) at

time t given baseline confounders and treatment assignment.

Model 3 (censoring model, numerator): We fit another Cox hazard

model for loss to follow-up at time t conditional only on treatment

assignment.

From these three models we computed stabilized weights as fol-

lows. Let ai indicate whether subject i was prescribed the antihyper-

tensive class of interest (yes = 1) and xi denote the values of subject

i's confounder variables. Let bπt xið Þ denote subject i's estimated proba-

bility of receiving the treatment of interest given xi as computed using

Model 1. Let bπdenc xi ,aið Þ denote subject i's estimated probability of not

being censored for at least as long as they were actually observed in

the data conditional on their covariates xi and treatment assignment ai

as computed using Model 2. Let bπnumc aið Þ denote subject i's estimated

probability of not being censored for at least as long as they were

actually observed in the data conditional only on their treatment

assignment ai as computed using Model 3. Finally, let pa denote the

sample proportion of subjects prescribed the class of interest in the

cohort. We then compute stabilized weights:

wi ¼ bπnumc aið Þ
bπdenc xi,aið Þ

� aipaþ 1�aið Þ 1�pað Þ
aibπt xið Þþ 1�aið Þ 1�bπt xið Þð Þ :

Model 4 (weighted outcome Cox model): Finally, we fit a weighted

Cox proportional hazards model for the outcome, weighting each sub-

ject by wi (above) with treatment assignment as the only predictor.

From Model 4, we compute the estimated counterfactual cumula-

tive incidence curve. We estimated covariance matrices of the inci-

dence curve estimates and corresponding confidence intervals for all

outcomes of interest via bootstrap. Our analysis plan called for cap-

ping extreme weights, but the maximum stabilized weight in our anal-

ysis was 31 so in practice no cap was implemented.
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2.3 | Hierarchical modeling

We fit hierarchical models to our counterfactual incidence curve and

bootstrap covariance matrix estimates to account for multiple com-

parisons, share strength across analyses, and use posterior probabili-

ties to help interpret results.14,15 Let δji denote the true counterfactual

1 year incidence rate for outcome j under antihypertensive treatment

i with j indexing the 262 outcomes of interest and i indexing the five

antihypertensive mechanistic classes of interest. Let bδji denote the

corresponding estimates of the 1 year incidence rate for outcome

j and treatment i. Because our estimators are regular and asymptoti-

cally linear, under the assumptions that we sufficiently adjusted for

confounding and correctly specified models, we have that our esti-

mates come from a jointly Gaussian sampling distribution centered at

the true counterfactual rates, that is

bδ j1,…,bδ j5 �N δ j1,…,δ j5

h i
,Σj

� �
: ð1Þ

Given estimates bδji and a prior distribution on the counterfactual

rate parameters δji, we might obtain posterior distributions for δji taking

our estimates as the “data.” We consider several models with alterna-

tive prior distributions on the δji parameters that pool information and

shrink the δji parameters toward a common mean in different ways

and to varying degrees.

No Pooling Under this model, we put independent weakly infor-

mative priors on each rate δji:

bδ j1,…,bδ j5 �N δ j1,…,δ
j
5

h i
,bΣj

� �

δji �Uniform 0,1ð Þ for alli, j:

Here, we follow Gelman et al14 in making the simplifying model-

ing assumption that our bootstrap estimate bΣj is the true covariance

Σj. Under this model, no rate estimate for any treatment/outcome pair

bδji has any impact on the posterior distribution of the rate for any

other treatment/outcome pair δj
0

i0 . This is why it is called a “no pooling”
model.

Single Outcome Pooling Under this model, we posit that the five

rates for each outcome are drawn from a common distribution with a

common outcome specific mean.

bδ j1,…,bδj5 �N δ j1,…,δ
j
5

h i
,bΣj

� �

δji �N μj ,σj
� �

μj �Uniform 0,0:3ð Þ;σj �Uniform 0,0:2ð Þ

Under this model, rate estimates for the same outcome are

pooled together, since the assumption that they are generated by a

common distribution makes outlier rates a priori less likely. Suppose

for outcome j a particular treatment has a counterfactual rate estimate

that is far from the other treatments, but the other treatments have

rate estimates that are close together. Then the cluster of rate esti-

mates that are close together will pull the estimate of σj closer to 0. A

smaller σj will in turn pull the posterior of the true rate under the

treatment with the disparate estimated rate closer to μj, the common

mean of the distribution postulated to have generated all the true

rates. In this way, the single outcome pooling model mitigates the

issue of multiple comparisons within outcomes. However, rate esti-

mates for one outcome have no impact on posterior rates for other

outcomes under this model.

All Outcome Pooling Under this model, we posit that there is a

base rate corresponding to each outcome, and for each treatment/

outcome pair the ratio of the counterfactual incidence rate to the

base rate is drawn from a common distribution centered at 1.

bδj1,…,bδj5 �N δ j1,…,δ j5

h i
,bΣj

� �

αji �N 1,σð Þ

μj �Uniform 0,0:3ð Þ;σ�Uniform 0,0:2ð Þ

δij ¼ μjα
j
i

Under this model, if most treatments do not impact most out-

comes, then the posterior distribution for σ will be small. This will pull

the posteriors of all δji toward their outcome specific base rates μj for

all i and j. In this way, the all outcome pooling model mitigates the

issue of multiple comparisons both within and across outcomes.

3 | RESULTS

Our systematic approach produced estimated counterfactual cumula-

tive incidence curves under each of five treatments for 262 outcomes

along with bootstrap covariance estimates. Furthermore, we gener-

ated posterior joint distributions of the 1-year incidence rate (one

time point along the cumulative incidence curve) under the no

pooling, single outcome pooling, and all outcome pooling models

specified above. Our full results are available in the supplementary

materials.

We used a multipronged strategy to sift through and interpret

key takeaways from all of these estimates. For critical efficacy out-

comes (AMI, stroke, and heart failure), we examined results in full.

For repurposing outcomes, we looked for drug class/outcome pairs

where the outcome incidence rate under the drug class “stood out

from the pack” in accordance to criteria we formalize below.

Beyond the results produced by this automated and somewhat

principled approach, we also highlighted other results that are of

interest because, once additional context was brought to bear,

they seemed to represent either promising opportunities or poten-

tial sources of bias in the data.
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3.1 | Cohort description

Baseline characteristics of the study cohort are shown in Table 1.

12 555 patients met inclusion criteria for at least one target trial. We

note that there were significant differences between prebaseline dis-

ease rates across study arms. Patients on thiazide diuretics were

healthiest, having the lowest rates of prior AMI, diabetes, heart failure,

kidney disease, and stroke. Patients on beta blockers had the highest

rates of prebaseline adverse cardiovascular events (AMI, heart failure,

and stroke), while patients on ACE inhibitors and ARBs had higher

baseline rates of diabetes. Age, blood pressure, and BMI were similar

across treatment arms at baseline. Table 2 contains the inverse proba-

bility of treatment weighted means of each baseline covariate in

Table 1. That these means are similar across treatment arms indicates

that we successfully adjusted for observed confounding by the vari-

ables in Table 1.

3.2 | Comparative effectiveness results

ACE inhibitors were estimated to lead to the lowest rates of heart failure

onset and beta blockers the highest rates of heart failure onset relative to

the other antihypertensives (Figure 1A). Thiazides were estimated to be

most effective at preventing acute myocardial infarction (Figure 1B).

There were no significant differences between medications in estimated

effect on ischemic or hemorrhagic stroke (Figure 1C,D). ARB and ACE

were estimated to lead to the lowest rates of cardiac dysrhythmia onset

and beta blockers the highest rates of cardiac dysrhythmia onset relative

to the other antihypertensives (Figure 1E).

3.3 | Repurposing results

For the No Pooling, Single Outcome Pooling, and All Outcome Pooling

models, we identified drug class/outcome pairs such that: (A) there

was a high posterior probability that the 1-year counterfactual inci-

dence of the outcome was lowest for that drug; and (B) the ratio

between the posterior mean 1-year incidences under that drug and

the drug with the second lowest estimated counterfactual 1 year

cumulative incidence was ≤0.8. Table 3 shows the nine outcomes

meeting these criteria when effect estimates and posterior probabili-

ties were computed under the No Pooling model. The starred (*) out-

comes also met these criteria under the Single Outcome Pooling

model. Outcomes with daggers (**) further met the criteria under the

All Outcome Pooling model.

4 | DISCUSSION

4.1 | Comparative effectiveness

Agreement between our comparative effectiveness results and past

studies was mixed. Regarding stroke prevention, the literature is fairlyT
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TABLE 2 Inverse probability of
treatment weighted baseline
characteristics of the study cohort

Characteristics ACE ARB Beta Blocker CCB Thiazide Diuretic

Sex = Female (%) 52.3 52.2 52.7 51.8 51.4

AMI (%) 2.7 2.4 2.6 2.7 2.8

Diabetes (%) 17.9 18.8 18.4 18.0 19.0

Heart failure (%) 3.8 3.6 3.8 4.0 4.6

Stroke (%) 8.8 8.7 9.1 8.7 9.2

CKD (%) 3.1 3.0 3.1 3.0 2.8

BMI (mean) 28.4 28.4 28.3 28.4 28.6

Diastolic BP (mean) 87.1 87.2 87.0 87.2 87.2

Systolic BP (mean) 154.2 154.1 154.1 154.2 154.4

Age (mean) 62.9 62.7 63.0 62.8 63.0

Note: For a given baseline variable, similar weighted rates or means across study arms suggests adequate

adjustment for confounding by that variable.

Abbreviations: AMI, acute myocardial infarction; CKD, chronic kidney disease; BMI, body mass index; BP,

blood pressure; eGFR, estimated glomerular filtration rate.

F IGURE 1 Comparative effectiveness results of the antihypertensive treatments for A, heart failure, B, acute myocardial infarction, C,
ischemic stroke, D, hemorrhagic stroke, and E, cardiac dysrhythmias. The cumulative incidence rate is measured at 1 year after baseline. The
results use the single outcome pooling method

TABLE 3 Screening raw results for unexpected beneficial effects and repurposing opportunities under the no pooling model

Outcome Thiazide ARB CCB Beta Blocker ACE RR (p)

Acute myocardial infarction* 0.4 (0.2,0.6) 0.8 (0.4,1.2) 1.1 (0.6,1.5) 1.1 (0.7,1.4) 0.9 (0.7,1.1) 0.52 (p = 0.96)

Pulmonary heart disease* 1.2 (0.5,1.9) 0.4 (0.2,0.7) 1.3 (0.9,1.8) 1.2 (0.8,1.5) 0.9 (0.6,1.1) 0.52 (p = 0.97)

Aneurysms 0.5 (0.2,0.8) 1.0 (0.6,1.5) 1.0 (0.6,1.4) 1.1 (0.7,1.4) 0.9 (0.6,1.2) 0.55 (p = 0.94)

Varicose Veins*,** 1.6 (1.1,2.2) 1.3 (0.8,1.9) 1.1 (0.7,1.5) 1.3 (0.9,1.6) 0.7 (0.5,0.9) 0.65 (p = 0.93)

Regional enteritis, ulcerative colitis 0.9 (0.4,1.3) 0.4 (0.1,0.7) 0.8 (0.4,1.2) 1.2 (0.8,1.6) 0.8 (0.6,1.0) 0.55 (p = 0.91)

Schizophrenia, psychosis* 0.8 (0.4,1.3) 0.3 (0.1,0.7) 1.1 (0.4,1.2) 1.4 (0.8,1.6) 0.7 (0.6,1.0) 0.55 (p = 0.94)

Gastrointestinal hemorrhage 3.0 (2.2,3.7) 2.0 (1.4,2.5) 3.3 (2.4,4.1) 2.9 (2.3,3.6) 2.6 (2.2,3.1) 0.77 (p = 0.92)

Paralysis*,** 0.7 (0.3,1.1) 0.2 (0.1,0.4) 0.8 (0.4,1.1) 0.7 (0.4,1.0) 0.6 (0.4,0.8) 0.38 (p = 0.97)

Symptoms of mental and substance use conditions 1.6 (0.9,2.4) 1.6 (1.0,2.1) 1.4 (0.9,1.9) 1.4 (1.0,1.8) 0.9 (0.7,1.1) 0.66 (p = 0.92)

Note: Numbers are percents. RR is risk ratio of lowest to second lowest rate. p is pseudo-posterior probability that the lowest estimated rate is truly the

lowest. The bold faced value in each row corresponds to the drug (column) estimated to have a protective effect for the condition corresponding to

that row.

*Under the single outcome pooling model.

**Under the all outcome pooling model.
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consistent and our results confirm that there are no significant differ-

ences between antihypertensive classes. Our finding that ACE inhibi-

tors were most effective at preventing heart failure contradicts the

ALLHAT randomized trial,2 which found that thiazide diuretics were

most effective in a high cardiovascular risk population. It also contra-

dicts two observational studies by the OHDSI group3,4 which, respec-

tively, found that thiazide diuretics were superior and that ARBS and

ACE inhibitors did not significantly differ from each other. That beta

blockers lead to higher incidence of heart failure onset (despite being

effective at treating existing heart failure) is consistent with past stud-

ies including ALLHAT.2 The finding that thiazide diuretics prevent

AMI relative to other classes again contradicts the ALLHAT trial,2

where no significant differences across treatments were found for this

outcome. However, the OHDSI group3 did also find that thiazide

diuretics were superior at preventing AMI.

4.2 | Design considerations for repurposing
screening studies

There are pros and cons to the active comparator design when

searching for repurposing opportunities. A drawback is that ACE

inhibitors and ARBs work through closely related pathways, so com-

paring them to each other could in theory mask shared effects. For

example, both classes are known to prevent cardiac dysrhythmias,16

and indeed both are estimated to prevent cardiac dysrhythmias in our

analysis compared with the other classes (Figure 1E). If not for ACE

inhibitors, ARBs would more clearly stand out from the pack for this

outcome.

A benefit of the active comparator design is that comparatively

beneficial effects on new outcomes are unlikely to be indirect effects

of the drug's indicated purpose (reducing blood pressure), which is

shared by all drugs being compared. Thus, it is more likely in an active

comparator design that the mechanism of action behind an observed

repurposing effect might also apply in patients without the indication

for the drug. However, it is still possible (though not a priori likely)

that even if the mechanism of action for a repurposing effect is not

primarily mediated by treatment of the drug's indication, effects

would only appear in a population where the indication (hypertension

in this instance) was present.

Another study design decision was to consider mechanistic clas-

ses as opposed to specific drugs as the treatments in our analyses.

The primary motivation for this choice was sample size. If a class did

have a repurposing effect, we might not have the power to detect it

in the individual drugs in the class. Of course, if an individual drug has

a repurposing effect not shared across its mechanistic class, we risk

diluting and failing to detect that effect at the class level. Since drugs

with similar mechanisms of action are likely to have similar

repurposing effects, we believed the benefits of larger treatment arms

in our RCT emulations outweighed the risk.

Looking at prevention as opposed to treatment of disease also

has pluses and minuses. The main drawback is of course that one

might hope to find cases in which a drug can be used for treatment of

a condition postonset, but we are only directly assessing preventive

effects. For example, beta blockers are estimated to lead to increased

incidence of heart failure compared with other antihypertensives in

our cohort of patients who have never had a heart failure diagnosis in

the past. And indeed beta blockers are known to precipitate heart fail-

ure (which we can take as validation of our results). But beta blockers

are also effective treatments for chronic heart failure post onset. This

is an extreme example of how conflating prevention of onset with

potential for treatment after onset can yield misleading results.

But assessing postonset effects on a range of conditions can be

challenging because it requires defining and extracting from the data

separate relevant outcomes marking disease progression for each

condition. It can also be challenging to adjust for measures of disease

progression as potential confounders. These challenges of course do

not arise if we restrict our cohort to a preonset population.

Furthermore, a treatment estimated to have a preventive effect

on an outcome in our study design might also be a promising candi-

date to treat that outcome postonset. This is because ‘prevention’ in
our setting really means prevention of diagnosis. The mechanism for

prevention of diagnosis will likely often be early postonset but pre-

detection treatment. For example, a drug that delays cancer diagnosis

may do so by slowing tumor growth, which would be desirable post-

diagnosis as well.

Another study design decision was to select a therapeutic class

and search across outcomes as opposed to selecting outcomes and

searching across a wide range of drugs as Laifenfeld et al.17 did. One

reason we made this decision is that it is more straightforward to

identify a sufficient confounding adjustment set that can be used for

the same treatments across outcomes than vice versa. The main

drivers of treatment decisions can be ascertained by consulting guide-

lines and medical expertise, and they suffice for confounding adjust-

ment for any outcome. The full set of variables prognostic for an

outcome is much harder to identify, making it very difficult to con-

struct an outcome-specific adjustment set that would perform reason-

ably well across a wide range of treatments. VanderWeele18 makes

similar arguments in favor of outcome wide analysis.

Finally, our high throughput approach required us to use crude

outcome definitions. Outcome occurrences were defined by the

appearance of ICD codes alone, when additional criteria such as hos-

pitalization could have significantly improved accuracy in many cases.

Furthermore, we grouped outcomes into categories defined by CCS

codes. These groupings were designed to be clinically meaningful but

can be suboptimal for exploring repurposing effects. Some degree of

outcome grouping is required for high throughput screening to have

adequately powered studies, but it is difficult to reason a priori about

which groupings are appropriate, and the groupings can both impact

results and lead to challenges in interpretation. For example, our ana-

lyses estimated that ACE inhibitors prevent onset of the CCS code

labeled “anxiety and fear related disorders” (to a degree that just mis-

sed our strict selection criteria). This category includes a host of pho-

bias (e.g., ICD codes for agoraphobia and arachnophobia) as well as

anxiety disorders (e.g., ICD codes for generalized anxiety disorder and

panic disorder). Estimating the effect of ACE inhibitors on a more
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granular level, we found that the effect was almost entirely driven by

anxiety disorders, with very low incidence of phobias in any treatment

arm of the cohort.

4.3 | Observations on bias patterns in repurposing
screening studies

When we search for causal signals in observational data, we will inevi-

tably dredge up some relationships driven by confounding or mea-

surement error. This is particularly likely to occur for outcomes with

known relationships to the drugs under study (e.g., side effects or indi-

cations). We consider a few examples below.

ACE-inhibitors are known to lower both red and white blood cell

counts as a side effect. However, in our analyses, ACE inhibitors were

found to be protective against white blood cell diseases, immune dis-

orders, and nutritional anemia. There are several possible explanations

for these results. The white blood cell and immune effects could be

due to confounding if clinicians could tell from information not in our

data that certain patients were at risk for low white blood cell counts

and therefore did not prescribe ACE inhibitors. It is even possible that

many instances of these outcomes were already present prior to drug

initiation but only appeared in our data afterward (leading us to fail to

exclude such cases from the cohort as intended and instead wrongly

count them as new occurrences of the outcome). The apparent pro-

tective effects of ACE inhibitors could be due to fewer unrecorded

(but known to physicians) prebaseline instances of these outcomes in

the ACE cohort (since patients known to have low white blood cell

counts would not be given ACE inhibitors). Alternatively, ACE inhibi-

tors may have had real protective effects against disorders that result

from too many white blood cells or too strong an immune responses,

which are lumped into the same CSS categories as diseases from too

few white blood cells or too weak immune response. Of course, inves-

tigation of outcomes at a finer granularity could test this latter

hypothesis.

Regarding nutritional anemia, it is possible that anemia cases in

patients taking ACE inhibitors are assumed to be due to the known

side effect of the medication and therefore not coded as nutritional.

ACE inhibitors would appear protective against nutritional anemia

when in reality ACE inhibitors only affect its coding. This would be an

example of outcome measurement error associated with treatment

assignment biasing an effect estimate.

Patterns like these might be expected to appear frequently for

known side effects. As further examples, ACE inhibitors were also

found to be protective for “other specified joint diseases” even

though joint pain is a known side effect, and thiazides were estimated

to be protective for diabetes, also a known side effect.19 However,

we note that when assessing repurposing opportunities on outcomes

that are not known side effects (or indications) of any of the drugs, the

danger of such biases driving results is greatly reduced. This is

because considerations pertaining to such outcomes do not typically

relate to treatment decisions, reducing the likelihood of strong

confounding. For evidence that strong confounding was not wide-

spread in our repurposing effect estimates, we refer the reader to for-

est plots of effect estimates across all treatments and outcomes in

Appendix 3. Because true repurposing effects are rare, we would

expect credible intervals for most repurposing effect estimates to con-

tain no effect if strong confounding is not widespread. Indeed, this is

what we see. See Appendix 3 for further details.

4.4 | Future work

Future work could improve on the screening procedure we

implemented in multiple ways. First, we used CCS outcome groupings

and mechanistic class treatment groupings to avoid treatment arms

with too few outcome occurrences to make precise effect estimates.

Multilevel hierarchical models properly implemented should enable

strength sharing across drugs and outcomes to mitigate this problem,

which might in turn enable detection of more narrowly defined

repurposing effects, that is, effects of specific drugs on well-defined

outcomes. Second, all our results depended for their validity on the

absence of strong unobserved confounding. Other methods for effect

estimation, such as instrumental variables5,20 or the recently devel-

oped proximal inference,21,22 depend on alternative assumptions. Tri-

angulating results from multiple methods (each depending on

different distinct assumptions) could significantly improve reliability.

5 | CONCLUSION

We have illustrated a principled approach to high throughput screening

for drug repurposing opportunities using observational data. While our

study design decisions entailed tradeoffs and we identified several clear

instances of bias, we also identified some intriguing opportunities. For

example, we found some suggestive evidence of efficacy of ACE inhibi-

tors against mood disorders. A cursory literature search reveals physiolog-

ical arguments that the renin-angiotensin system (on which ACE

inhibitors act) plays an important role in mood disorders, as well as case

studies dating back to the 1980s of ACE inhibitors appearing to treat

major depression.23-26 Another cursory literature search surfaced that

angiotensin sustains paralysis inducing brain inflammation in mice,27 pos-

sibly lending some credence to our finding that ARBs might prevent paral-

ysis. Perhaps these lines of thought deserve additional attention?

Certainly, triangulation would make the case more compelling (future

work). But the more general point is that perhaps empirical evidence from

observational studies can fruitfully help to stimulate thought and direct

expert attention towards promising directions at little cost.
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