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1  | INTRODUC TION

Polysaccharides are organic macromolecules widely distributed 
throughout an organism. It is not only an important molecule that 
constitutes a cell membrane but also an essential component for 
the production of a variety of endogenous factors. Numerous stud‐
ies have shown that polysaccharides can affect the immune system, 
nervous system, and metabolic system of organisms thereby im‐
proving immunity, producing antidepressant effects, and regulating 

glycolipid metabolism (Akhter, Mumin, Lui, & Charpentier, 2018; 
Liu et al., 2015; Schepetkin, Faulkner, Nelson‐Overton, Wiley, & 
Quinn, 2005). Researchers have verified ginseng polysaccharide 
(GPS, same as Panax polysaccharide) for safety and immune ef‐
ficacy in healthy volunteers aged 50–75 years (Cho, Son, & Kim, 
2014). Studies have found that GPS also affected dopamine (DA) 
neurons and had an antidepressant effect (Wang et al., 2010). GPS 
also reduced blood glucose levels in diabetic mice (Sun et al., 2014), 
which indicated that GPS can affect animal glucose metabolism. 
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Abstract
Introduction: Ginseng polysaccharide (GPS, same as Panax polysaccharide) is a kind 
of polysaccharide extracted from ginseng. It has been reported that GPS has the abil‐
ity to activate innate immunity, regulates blood sugar balance, and improves antioxi‐
dant capacity, but the effect on feeding behavior and its mechanism remains unclear.
Method: To investigate the possible effect of GPS on feeding behavior of animals, 
mice were supplied with GPS in water, and food intake, hedonic feeding behavior, 
anxiety‐like behavior, expression of appetite‐regulation peptides in the central nerv‐
ous system and glucose‐related hormone levels in the serum of mice were measured.
Results: Ginseng polysaccharide significantly increased the average daily food intake 
in mice and promoted hedonic eating behavior. Meanwhile, the levels of serum glu‐
cose and glucagon were significantly reduced by GPS, and GPS promoted hypotha‐
lamic neuropeptide Y expression, inhibited proopiomelanocortin (POMC) expression, 
and reduced dopamine D1 receptor (DRD1) levels in the midbrain. We also found that 
the anxiety level of mice was significantly lower after GPS intake. In conclusion, oral 
supplementation with GPS promoted food intake in mice, most likely through the 
regulation of circulating glucose levels.
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However, the effects of GPS on animal feeding have not been 
reported.

Generally, the feeding behavior of animals is affected by the ap‐
petite‐regulating system of the hypothalamus and the midbrain DA 
reward system. In addition, emotions such as anxiety can also affect 
the feeding behavior of animals.

The hypothalamus is an important region of the central nervous 
system (CNS) that regulates feeding. There are two major types of 
neurons in the hypothalamus: anorexigenic proopiomelanocortin 
(POMC) neurons and orexigenic agouti gene‐related protein (AgRP) 
neurons (Krashes, Lowell, & Garfield, 2016). AgRP neurons can 
produce an appetite‐promoting neurotransmitter, neuropeptide Y 
(NPY), which can synergize with AgRP to promote animal feeding 
behavior (Mercer, Chee, & Colmers, 2011). The hypothalamus can 
integrate peripheral signals such as hormones and adipose‐derived 
molecules with local signals to regulate the feeding behavior of an‐
imals (Tzameli, 2013). AgRP and POMC neurons expressing insulin 
receptors (IRs) are sensitive to central insulin actions and contribute 
to the regulation of systemic glucose homeostasis (Chen, Balland, 
& Cowley, 2017). The midbrain DA reward circuit is superimposed 
on this system and may override the signal from the hypothalamus, 
leading to overeating or extreme anorexia (Palmiter, 2007).

The feeding behavior of animals is also regulated by the hedonic 
system (Sasaki, 2017). Hedonic eating is a kind of feeding behav‐
ior that is driven by the rewarding effect and not dominated by the 
need for metabolism, and highly palatable energy‐dense foods are 
more likely to promote hedonic eating behavior (Ziauddeen, Alonso‐
Alonso, Hill, Kelley, & Khan, 2015). The release of DA from the ven‐
tral tegmental area (VTA) plays an important role in the rewarding 
effect. It has been reported that activation of opioid peptide recep‐
tors can promote feeding by palatability (Kelley, Baldo, Pratt, & Will, 
2005), and later studies have found that opioid peptide agonists can 
increase the level of DA in nucleus accumbens (NAc), producing feel‐
ings of pleasure and reward (Saigusa, Aono, & Waddington, 2017). 
The DA reward system is also regulated by hormones and nutrients. 
Neurons in the midbrain VTA and NAc also express hormone‐re‐
lated receptors such as IRs and leptin receptors (Bruijnzeel, Corrie, 
Rogers, & Yamada, 2011). Additionally, the effects of hormones and 
nutrients on the hypothalamus or brain stem can also indirectly 
regulate the midbrain DA reward system (Steinbusch, Labouebe, & 
Thorens, 2015).

In addition to the direct regulation of feeding behavior by the 
CNS, emotions also affect animal feeding behavior. As early as 1989, 
people discovered that anxiety caused obesity and bulimia. Some 
scholars considered that anxiety behavior affects the hypothalamic–
pituitary–adrenal (HPA) axis (Ulrich‐Lai, Fulton, Wilson, Petrovich, 
& Rinaman, 2015). Epel, Lapidus, McEwen, and Brownell (2001) 
found that anxiety can lead to an increase in glucocorticoid levels 
and increase the animal's preference for sweet foods. Anxiety not 
only changes the body's hormone levels to regulate feeding behavior 
but is also associated with the DA system. Zarrindast and Khakpai 
(2015) believes that DA levels in the midbrain and DA receptors play 
an important role in the regulation of anxiety. The effects of anxiety 

on hormones and DA systems suggest that anxiety may not only 
regulate animals' feeding behavior but may also have an impact on 
animals' hedonic feeding behavior.

To investigate the possible pathway by which GPS affects the 
feeding behavior of animals, mice were supplied with GPS in water, 
and food intake, hedonic feeding behavior, anxiety‐like behavior, ex‐
pression of appetite‐regulation peptides in the CNS, and glucose‐re‐
lated hormone levels in the serum of mice were measured.

2  | MATERIAL S AND METHODS

2.1 | Animals

All experimental protocols and methods were approved by the 
College of Animal Science, South China Agricultural University. All 
experiments were conducted in accordance with “The Instructive 
Notions with Respect to Caring for Laboratory Animals” issued by 
the Ministry of Science and Technology of the People's Republic of 
China.

Four‐week‐old male C57BL/6 mice were purchased from 
Guangdong Medical Laboratory Animal Center, housed individu‐
ally in cages and maintained on a 12:12 hr light/dark cycle (lights 
on from 6 a.m. to 6 p.m.). The mice were fed standard chow for 
3 days to allow the mice to adapt to the environment. The con‐
trol group was provided pure water, and the treatment group 
was provided water containing 1.5 g/L GPS (20% purity, Namiao 
Biotechnology Co. Ltd, China). The dose of GPS was based on 
published articles (Sun et al., 2014; Zhou, Shi, Jiang, Zhou, & Xu, 
2014). According to the literature, the effective dose of oral GPS 
was 50–200 mg kg−1 day−1. We chose the lower dose. The purity 
of our GPS was 20%, and the water consumption of mice weighted 
25 g is about 4–5 ml/day. Drinking 5 ml of 1.5 g/L GPS water a 
day means daily GPS uptake is about 7.5 mg (containing 1.5 mg 
effective GPS), that means 60 mg kg−1 day−1. Studies have shown 
that intermittent feeding of highly palatable food can activate the 
reward system (Avena & Bocarsly, 2012). We gave high‐fat diet 
(HFD) pellets (crude protein 18%, crude fat 60%, and crude ash 
8%) on Monday and standard chow pellets (crude protein 18%, 
crude fat 4%, and crude ash 8%) for the rest of the weeks, and this 
weekly cycle was repeated.

2.2 | Open‐field test

The open‐field chamber (60 × 60 × 60 cm) was surrounded by a black 
plastic plate, and the bottom was a white plastic plate. We divided 
the bottom into a grid pattern of 25 equal‐sized squares, with the 
nine squares in the middle defined as the center area, and the re‐
maining 16 squares considered the surrounding area. Each mouse 
was placed in the center of the chamber and allowed to freely move 
for 5 min. Activity in the box was measured by total distance trave‐
led, average speed, center entry counts, the amount of time, and dis‐
tance traveled in the center area (measured by Supermaze) (Wang, 
Li, Du, Shao, & Wang, 2015).
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2.3 | Conditioned place preference

The conditioned place preference (CPP) apparatus consisted of two 
equal‐sized chambers (10 cm × 30 cm × 30 cm) that were separated 
by a sliding door. The CPP chamber was surrounded by a black plas‐
tic plate, the bottom was a white plastic plate; one chamber floor has 
circular holes, and the other chamber floor has linear holes. On day 
1, to allow habituation, mice were allowed to freely access the ap‐
paratus for 15 min, and mice with a total time on one side more than 
twice the other side were excluded. From days 2 to 4, we closed the 
door, placed the HFD in the chamber with the floor with round holes, 
and defined it as the HFD area, and placed standard chow in the 
other chamber and defined it as the Chow area; mice were placed in 
the HFD area and Chow area, each for 15 min. On day 5, we formally 
evaluated the CPPs by opening the door and allowing the mice to 
move freely in the apparatus for 15 min. The time the mice spent in 
the two chambers was recorded.

2.4 | Sampling

Blood samples were collected from the orbital sinus and centrifuged at 
4°C and 3,000 rpm for 15 min, and then serum was collected and stored 
at	 −80°C.	After	 the	 completion	 of	 the	 blood	 collection,	 the	mice	were	
killed by cervical dislocation. POMC and AgRP neurons were mainly ex‐
pressed in the arcuate nucleus at the bottom of the hypothalamus (Ilnytska 
& Argyropoulos, 2008; Young et al., 1998), so we extracted the brain and 
then removed the tissue at the bottom of the hypothalamus and stored 
it with liquid nitrogen. Then, in order to prevent brain deformation when 
separating the midbrain, we put the remaining brain into dry ice for a few 
minutes to shape, cut the midbrain along the pink line, and divide it into two 
halves along the midline of the brain (Figure 1). Samples were quickly frozen 
in	liquid	nitrogen	and	transferred	to	the	−80°C	refrigerator	for	preservation.

2.5 | Glucose‐related metabolic indicators

Glucose in serum was detected by a glucose assay kit (F006, Jian 
Cheng, NanJing, China), and serum insulin and glucagon levels were 
detected by an ELISA kit (H203, H183, Jian Cheng, NanJing, China). 
Experimental steps were performed according to the instruction 
manual.

2.6 | Polymerase chain reaction

The midbrain total RNA was extracted using TRIzol reagent 
(Invitrogen, Carlsbad, CA) according to the manufacturer's instruc‐
tions. After treated with DNase I (2270A, Takara Bio, Kusatsu, 
Shiga, Japan), total RNA (2 μg) was reverse transcribed to cDNA 
in a final 20 μL by the M‐MLV Reverse Transcriptase (Promega, 
Madison, WI) and random 9 primer (Takara Bio Inc., Osaka, Japan) 

F I G U R E  1   Sampling of the hypothalamus and midbrain in mice

TA B L E  1   PCR primer sequence of genes related to the 
dopamine reward system

Gene Primer sequence (5′−3′)

DRD1 F: CAG TCC ATG CCA AGA ATT GCC AGA

R: 5CCAAATCGATGCAGAATGGCTGGGTCT‐3C

DRD2 F: 5172AATCGATGCAGAATGGCTGGGTCT‐3T

R: 5GATCTGGTGCTTGACAGCATCTC‐3G

DAT F: 506‐AAATGCTCCGTGGGACCAATG‐3A

R: 5GCTCGTCTCCCGCTCTTGAACCTC‐3C

β‐actin F:	5′‐CCCTGTGCTGCTCACCGA‐3′

R:	5′‐ACAGTGTGGGTGACCCCGTC‐3′
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according to the manufacturer's instructions. SYBR Green Real‐
time PCR Master Mix reagents (Toyobo Co., Ltd.) and sense and 
antisense primers (200 nM for each gene) were used for real‐
time quantitative polymerase chain reaction (PCR). The results 
were normalized to the expression of the housekeeping gene β‐
actin. PCR reactions were performed in an Mx3005p instrument 
(Stratagene, La Jolla, CA). The primer sequences are presented in 
Table 1 (Cai et al., 2016).

2.7 | Western blot analysis

Radioimmunoprecipitation assay (RIPA) lysis buffer and protease 
inhibitor (Biosino Bio‐Technology and Science Inc., Beijing, China) 
were added to an appropriate amount of tissue according to the 
instructions. The tissue was ground in a homogenizer at a fre‐
quency of 60 Hz for 1 min. Finally, the lysed tissue was trans‐
ferred to a centrifuge tube, centrifuged at 15294 g and 4°C for 
10 min, the supernatant was separated, and the protein content 
was measured. The total protein of the tissue lysate was de‐
tected using BCA protein assays (Thermo Scientific Technologies, 
Wilmington, DE).

Equivalent amounts of protein (20 µg) were separated by 
10% SDS‐PAGE, and the samples were transferred onto nitro‐
cellulose membranes (Bio‐Rad, Hercules, CA). The samples were 
then blocked with 6% (w/v) nonfat dry milk in Tris‐buffered sa‐
line that contained Tween 20 for 2.5 hr at room temperature. 
The PVDF membranes were then subjected to immunoblotting 
with rabbit anti‐POMC (1:1,000, ab180766; Abcam), rabbit anti‐
NPY (1:500, sc‐28943; Santa Cruz), rabbit anti‐β‐actin (1:2,000, 
bs‐0061R; Bioss), mouse anti‐DRD1 (1:1,000, sc‐33660; Santa 
Cruz), rabbit anti‐DRD2 (1:1,000, AB5084P; Millipore), and rabbit 
anti‐TH (1:1,000, AB152; Millipore). The primary antibodies were 
incubated at 4°C overnight, followed by incubation with the ap‐
propriate secondary antibody (Bioss) for 1 hr at room tempera‐
ture. Western blots were visualized with SuperSignal West Pico 
Chemoluminescence substrate (Thermo Fisher Scientific) and 
quantified by ImageJ software.

3  | RESULTS

3.1 | GPS promoted food intake in mice

Supplementation of 1.5 g/L GPS in the drinking water significantly 
increased the average daily food intake of mice from the second 
week onward. Based on the fact that GPS promoted the food in‐
take of mice, we investigated whether GPS affected the appetite 
of the mice. We used a CPP test to explore mice's preference for 
highly palatable food. Testing found that GPS increased the time the 
mice spent in the HFD region, indicating that GPS increased the he‐
donic feeding behavior of mice but had no significant effect on body 
weight (Figure 2).

3.2 | GPS reduced anxiety‐like behavior of mice

To detect the effect of GPS on the anxiety‐like behavior of mice, 
we conducted an open‐field test. We placed the mice in the center 
of the open‐field chamber and allowed them to move freely for 
15 min. The anxiety‐like behavior of the mice in each group during 
the open‐field session is summarized in Figure 3. The results showed 
that compared with the control group, the GPS group did not have an 
increased number of mice entering the center of the open field but 
the distance traveled and the time spent in the central area were in‐
creased. This showed that GPS relieved anxiety in mice. In the open 
field, we also observed that the average speed of the GPS‐treated 
mice was significantly reduced with the total distance unchanged. 
This shows that GPS reduced the autonomous activity of mice and 
had a calming effect.

3.3 | GPS reduced blood glucose in mice

To investigate the effect of GPS on glucose metabolism in mice, we 
tested blood glucose‐related indicators in mice, and the results are 
shown in Figure 4. We found that GPS significantly reduced blood 
glucose and glucagon levels in mice but had no significant effect on 
insulin. We speculate that the effect of GPS on the feeding behavior 
of mice may be caused by affecting glucose metabolism.

F I G U R E  2   The effect of GPS on (a) average daily food intake, (b) CPP, and (c) weight of mice. Error bars indicate the SEM. *p < 0.05 versus 
mice in the control group
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3.4 | Orexigenic effects in the hypothalamus and 
reward in the midbrain were activated by GPS

To investigate the mechanism by which GPS promoted food intake, 
we examined the expression of appetite‐related proteins in the 
hypothalamus of mice. We found that GPS significantly increased 
orexigenic NPY expression and reduced anorexigenic POMC ex‐
pression. There were no differences in the expression of c‐fos 
between the GPS‐treated mice and the control mice. To further 
explore the effect of GPS on the DA system in the midbrain, we 
examined the expression of DA receptors, DA transporter, and ty‐
rosine hydroxylase (TH). We found that compared with the con‐
trol group, GPS significantly reduced the expression of dopamine 
D1 receptor (DRD1) and TH but had no significant effect on the 
expression of dopamine D2 receptor (DRD2) and dopamine trans‐
porter (Figure 5).

4  | DISCUSSION

Different polysaccharides have different effects on the feeding be‐
havior of animals. A study by Wee showed that soy proteoglycan had 
no effect on animal energy intake (Wee, Yusoff, Chiang, & Xu, 2017). 
Gao et al. (2015) found that cactus polysaccharide significantly re‐
duced the food intake and water intake of diabetic mice caused by 
streptozotocin, while weight gain was enhanced. Lentinus edodes 
polysaccharide alleviated abnormal feeding behavior caused by TNF 
(Tamura, Tanebe, Kawanishi, Torii, & Ono, 1997). A large number 
of studies have shown that polysaccharides may regulate animal 
metabolism and feeding. In our study, GPS significantly increased 
the average daily food intake and the preference for HFDs in mice 
probably through regulation of circulating glucose levels. But the 
weight of mice did not change significantly. We determined the body 
composition of the mice and found that the muscle ratio decreased 

F I G U R E  3   The effect of GPS on anxiety‐like behaviors of mice evaluated by the open‐field test. (a) The number of entries into the center 
of the open field. (b) Distance traveled in the center area relative to total distance. (c) Time in the center area relative to total time. (d) Total 
distance traveled in the open field. (e) Average speed in the open field. (f) Representative paths of mice in the open field. Error bars indicate 
the SEM. *p < 0.05 versus mice in the control group

F I G U R E  4   The effect of GPS on glucose metabolism in mice. (a) Blood glucose levels in mice detected by blood glucose test strips. (b) 
Serum insulin and (c) glucagon detected by an ELISA kit. Error bars indicate the SEM. *p < 0.05 versus mice in the control group
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significantly, while the thymus and the spleen indexes increased sig‐
nificantly (Figure S2). Studies have shown that GPS as an immune 
adjuvant can increase the weight of immune organs (Ilnytska & 
Argyropoulos, 2008; Kwast et al., 2016). In addition, studies have 
shown that GPS can promote energy metabolism in the body by in‐
creasing the ratio of ATP/ADP and ATP/AMP. Therefore, the energy 
intake may be used to improve immunity and metabolism (Li, Chen, 
Jin, & Chen, 2009).

When an animal's blood glucose concentration is lowered, feed‐
ing behavior is promoted. Some studies have shown that glucose 
can directly inhibit the secretion of AgRP in the hypothalamus 
(Chalmers, Jang, & Belsham, 2014). A large number of experiments 
have indicated that GPS has a significant effect on the sugar me‐
tabolism of animals. Xie, Wu, Mehendale, Aung, and Yuan (2004) 
found that an injection of GPS into obese mice significantly re‐
duced their fasting blood glucose levels without affecting the body 
weight of the mice. Sun also found that GPS had hypoglycemic and 
antioxidant activities in diabetic mice (Sun et al., 2014). Our study 
found that GPS promoted animal feeding behavior and significantly 
reduced blood glucose and serum glucagon levels in mice. It is spec‐
ulated that GPS may regulate the expression of appetite‐associated 
proteins in the hypothalamus by lowering blood glucose and serum 
glucagon levels.

Activating the midbrain DA reward system can make an 
animal feel pleasant, and a positive strengthening effect can 
promote hedonic feeding behavior because DA binds to its 
receptor and activates downstream signaling pathways to 
generate reward effects (Marsden, 2006). A Watanabe study 

found that added ginseng extract significantly increased stri‐
atal DA utilization in young mice and reduced autonomic ac‐
tivity in mice in the fifth week (Watanabe et al., 1991). The 
Sclafani study showed that a small amount of polysaccharide 
was more palatable than maltose, sucrose, and glucose, and the 
polysaccharide activated the reward system of mice (Sclafani & 
Clyne, 1987). We found that in the CPP test, GPS significantly 
increased the preference of mice for the HFD, and the level 
of autonomous exercise in the GPS‐treated group was signifi‐
cantly reduced in the open‐field test. These findings all suggest 
that GPS increased the utilization of DA in mice and increased 
their preference for palatable foods. Many researchers have 
found that DA has different effects on rewards, which may be 
due to the different subgroups of DA (Lammel, Lim, & Malenka, 
2014).

Based on structural and pharmacological functions, five dif‐
ferent DA receptors have been divided into two broad catego‐
ries: the D1‐like receptors, which stimulate intracellular cAMP 
levels, D2‐like receptors can inhibit intracellular cAMP levels 
(Zhou & Palmiter, 1995). Dopamine receptors may be associated 
with a positive strengthening effect in the DA reward system. D1 
receptor antagonists can block the expression of cocaine‐CCP in 
mice (Galaj, Manuszak, Arastehmanesh, & Ranaldi, 2014). More 
studies have shown that various drug rewards and natural re‐
wards can be attenuated by DRD1 antagonists and D2 receptor 
antagonists (Elmer et al., 2005). We found that the expression of 
D1 receptors was decreased in the GPS‐treated group. Studies 
have shown that activation of the D1 receptor can inhibit eating 

F I G U R E  5   (a, b) The effect of GPS on the hypothalamus and midbrain. NPY, POMC, and c‐fos detected by Western blot. The effect of 
GPS on reward‐related RNA and protein in the midbrain. (c) DRD1, DRD2, and DAT detected by real‐time quantitative PCR. (d, e) DRD1, 
DRD2, and TH detected by Western blot. Error bars indicate the SEM. *p < 0.05 versus mice in the control group
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of mice (Prado & Luis‐Islas, 2016). Durst found that intrauter‐
ine protein‐restricted mice were prone to hyperphagia, and the 
expression of D1 receptor in the NAc was significantly reduced 
(Durst, Konczol, Balazsa, Eyre, & Toth, 2018). Therefore, the in‐
crease in food intake in mice may be associated with a decrease 
in D1 receptor levels.

The VTA, NAc, and amygdala are brain regions associated 
with reward effects, and the amygdala plays a fundamental role 
in the regulation of anxiety‐related behavior (Tye et al., 2011). It 
has been found that eating highly palatable foods has a reward‐
ing effect, and withdrawal from these foods can cause a decrease 
in the ability to experience pleasure in animals and further cause 
anxiety. Studies have shown that in the reward circuit, the with‐
drawal from highly palatable foods can cause changes in DA and 
plasticity‐related signals, which may lead to anxiety and overeating 
(Sharma, Fernandes, & Fulton, 2013). Clinically, it also shows that 
anxiety is highly correlated with dopaminergic neurotransmission 
and DA‐related reward effects (Piazza & Le Moal, 1996). Lehner 
found that mice with low levels of anxiety had higher levels of 
DA in the brain than mice with high anxiety levels and were more 
sensitive to rewarding effects than mice with high anxiety levels 
(Lehner et al., 2014). These studies suggested that anxiety levels 
are associated with reward effects and that high levels of anxiety 
may reduce the reward effect. Our study found that GPS increased 
the preference of mice for HFD, and GPS reduced the anxiety level 
of mice in the open‐field test. Kim found that ginseng can produce 
anxiolytic effects by downregulating the expression of TH (Kim  
et al., 2010). We also found that the expression of TH in mice from 
the GPS‐treated group was significantly reduced. These data indi‐
cate that GPS may reduce the anxiety level of animals by reducing 
the expression of TH in the midbrain and increase the sensitivity to 
rewarding effects.

5  | CONCLUSION

We found that supplementation with 1.5 g/L GPS in water can pro‐
mote feeding in mice, mainly by increasing the average daily food 
intake and the preference for highly palatable food. This may be 
attributed to reduced peripheral blood glucose levels that regulate 
hypothalamic appetite‐regulating peptides while affecting the mid‐
brain DA reward system. Moreover, GPS decreased anxiety in mice, 
which may also change the feeding behavior through the HPA axis.
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