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Hidden Markov induced Dynamic 
Bayesian Network for recovering 
time evolving gene regulatory 
networks
Shijia Zhu & Yadong Wang

Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships 
from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, 
and therefore, several research efforts have been recently proposed to relax this restriction. However, 
those methods suffer from three challenges: long running time, low accuracy and reliance on parameter 
settings. To address these problems, we propose a novel non-stationary DBN model by extending 
each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the 
underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed 
to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving 
computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion 
under the non-stationary assumption (called BWBIC), which can help significantly improve the 
reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all 
parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to 
the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic 
and real biological data demonstrates more stably high prediction accuracy and significantly improved 
computation efficiency, even with no prior knowledge and parameter settings.

Among diverse tools available for analyzing temporal sequences, Dynamic Bayesian Network (DBN) has been one 
of the most widely used to infer regulatory relationships in systems biology. The standard assumption underlying 
DBN is stationarity, that is, the structure and parameters of DBN are fixed over time. However, this hypothesis is 
too restrictive and does not hold for many real biological problems. For instance, gene regulatory relationships 
and signal transduction processes in the cell are usually adaptive and change due to the environmental stimuli and 
growth phases, such as immune responses, cancer progression, and developmental processes.

There have been various efforts to relax the stationary assumption for undirected graphical models, such as 
Markov Chain Monte Carlo (MCMC) and convex optimization-based Gaussian graphical models1,2, and especially, 
the widely used l1-norm regression-based time-varying networks3–7. While these methods are all promising, their 
restriction is that the undirected graphical models lack semantic interpretability when compared to the directed 
probabilistic graphical model DBN. The directed edges in DBN bear a natural causal implication and are more 
likely to suggest regulatory relations.

Relaxing the stationary restriction in DBNs is a very recent research topic8–13. These approaches are all based on 
a combination of DBN with a multiple change-point process, and the application of a Bayesian inference scheme 
via Reversible Jump Markov Chain Monte Carlo (RJMCMC) sampling. To be specific, the works8,9 proposed a 
discrete non-stationary DBN, which allows for different structures in different segments of the time series, with 
global change points for all variables. The works10,11 proposed a continuous inhomogeneous DBN, which assumes 
a fixed network structure and only allows the parameters to vary with time. The works12,13 proposed an alterna-
tive continuous regression-based time-varying DBN with node-specific change points, that is, network structures 
associated with different nodes are allowed to change with time in different ways. These extended DBN models, 
however, still have obvious limitations, leaving room for further methodological innovation.
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Running time
These works employ RJMCMC sampling to infer the non-stationary network. The primary disadvantage of sam-
pling methods in comparison to search methods is that they often take much longer before converging on accu-
rate results. Additionally, it is very important but difficult for sampling technique to identify when the algorithm 
converges. User experience is sometimes required to specify a suitable iteration step based on the complexity of 
the problem.

Parameter settings
In these methods, different probabilistic distributions are assumed to penalize the number of change points, such as 
exponential, negative binomial and Poisson distributions. Various parameters are introduced accordingly. However, 
these works did not infer all parameters from data, with some of them set manually. The prediction under different 
parameter settings might change largely, thereby resulting in inference uncertainty.

Scoring criteria
The relaxation of stationary hypothesis for DBN leads to a highly flexible model. This might lead to over-fitting 
or inflated inference uncertainty, especially when the subsequent transition times are close together, and the net-
work structures must be inferred from short time series segments. To address this problem, previous works have 
proposed to couple information sequentially8,9,14,15 or globally16,17 by assuming similar parameters for networks on 
different time segments. However, the traditional metrics for evaluating a stationary DBN, e.g. Bayesian-Dirichlet 
equivalent (BDe) metric18 and Bayesian Information Criteria (BIC)19, only use the data in each time segment to sep-
arately evaluate each individual network. These metrics cannot benefit from information sharing among different 
time segments. The works9,11 extend the traditional BDe and BGe scores for non-stationary networks in discrete 
and continuous conditions, called nsBDe and cpBGe, respectively. However, they are still simple applications of 
traditional BDe and BGe to stationary DBNs on each time segment.

In this paper, we propose a novel node-specific, non-stationary DBN model by extending each hidden node 
of Hidden Markov Model (HMM) into a DBN that is capable of modeling the underlying time-evolving net-
work structures. Next, we propose an improved Structural Expectation Maximization (SEM) algorithm to learn a 
HMDBN model from a time-series dataset. On the basis of SEM, we first derive the re-estimation formulas for all 
parameters of our model by maximizing the objective function of SEM; meanwhile, we derived a novel generalized 
BIC under non-stationary assumption; finally, we propose a heuristic time-efficient approach to reduce searching 
space of the SEM algorithm. Compared to some recent state-of-art methods in the literatures, the experimental eval-
uation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction 
accuracy and significantly improved computation speed, even without prior knowledge and parameter settings.

Our approach has the following attractive contributions:

Novel non-stationary DBN model
Two well-studied methods, HMM and DBN, are combined to address real-biological problems. The existing 
research achievements for these two models, such as the well-known Viterbi algorithm, Baum-Welch algorithm20 
and score-based greedy climbing algorithm, motivate us to propose a search-based method to decode the transition 
time as well as learn the parameters and network structures.

Estimation for all parameters from data
The derived re-estimation formulas for all parameters enable us to infer all parameters from data.

Novel reasonable non-stationary BIC metric
This novel metric can benefit from the information sharing among networks on different time segments. This 
sharing allows our proposed metric to more reasonably evaluate a candidate non-stationary network. Compared 
to traditional metrics, it can greatly improve the prediction accuracy and reduce over-fitting.

Time-efficient heuristic searching method
A heuristic approach is proposed to reduce the searching space for a non-stationary DBN to the identical one for 
a stationary DBN, thereby substantially improving the computation speed.

Methods
DBN. Consider a finite set = ≤ ≤X X{ }i i N1

 of N variables (nodes), and let the lowercase letter 
= ( )

≤ ≤ ≤ ≤
x x t{ }i i N t T1 ;0

 represent the realization of variables X1:N across T +  1 time points. Note that, we specify 
that time points start at zero.

DBNs are flexible models for representing probabilistic relationships between interacting variables (nodes), 
X1:N, via a directed graph G. An edge pointed from Xj to Xi encodes the conditional dependence of xi(t) on xj(t−1). 
The parent node set of Xi in G, denoted by Gi, is the set of all nodes from which an edge points to node Xi in G. In 
DBN, a variable is conditionally independent of its non-descendants given all its parents (called conditional inde-
pendence), and accordingly, the joint probability over all variables X can be factorized into the following chain rule:

∏ ∏θ θ( , ) = ( ( ) ( − ), ) ( )= =P X G P X t G t 1 1i
N

t
T

i i i1 1

where θ are the network parameters, composed of node-specific subvectors θi, which specify the local conditional 
distributions in the factorization.

The common approach of learning a DBN structure is to first give a scoring function that evaluates each network 
with respect to the training data. BDe and BIC scores are two most widely used scoring metrics. Next, given a met-
ric, a strategy for finding the best network must be decided. Heuristic search methods (e.g., greedy hill-climbing) 
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can be used to find the best network topology. Alternatively, sampling methods can be used to estimate posterior 
probabilities over all networks. If the best network is all we need, heuristic search methods typically find it more 
quickly than sampling methods.

HMM. A HMM can be presented as the simple example of DBN. It is a graphical probabilistic model that 
models the observed inputs are generated by unobserved hidden states, using transitions between hidden states 
to model their temporal/spatial relationships. The HMM model is characterized by its transition probability, 
emission probability and prior distribution. Standard HMM algorithms for path inference and parameter learn-
ing include Viterbi algorithm20, Baum-Welch algorithm21 and Viterbi training algorithm22. The Viterbi algorithm 
is a dynamic programming algorithm for identifying the optimal hidden state sequence. Baum-Welch algorithm 
is an Expectation Maximization (EM) algorithm for finding parameters that locally maximize the likelihood 
given a HMM model, and Viterbi Training algorithm (as opposed to the “Viterbi algorithm”) is the equivalent 
hard-updates learning algorithm, which is much faster but also less precise, because it assumes the data at each 
time point is generated from a single hidden state.

The HMDBN Model. The traditional stationary DBN is too restricted to describe the behavior of a network 
topology evolving over time; in contrast, HMM captures the transitions among different states, although it cannot 
capture the conditional dependencies among variables. Motivated by such observations, we sought to combine 
the advantages of DBN and HMM, and propose a novel non-stationary DBN, called Hidden Markov induced 
Dynamic Bayesian Network (HMDBN). The HMDBN extends each hidden node of the traditional HMM into a 
hidden DBN (called hidden graph), and develops the transition between nodes to describe the transition between 
network structures. It models that multiple observed inputs ( ) ≤ ≤ ≤ ≤x t{ }i i N t T1 ;0

 are generated by the unobserved 
hidden graphs. Correspondingly, the conditional probability of observation data with respect to each DBN and 
the conditional probability between DBNs are used as the emission probability and the transition probability for 
HMDBN, respectively. This extension integrates the description of conditional dependencies among variables 
(nodes) together with the network structure evolution over the time.

Next, we give the definition of HMDBN. We specify the node-specific attributes for HMDBN, and later, we 
will show that, similar to DBN, the likelihood for HMDBN can be also factorized into the product of likelihood 
for each node-specific HMDBN.

HMDBN is a 4-tuple θ π, , ,G A{ }:

•	 = ≤ ≤ ≤ ≤G G{ }i
h

i N h Hi1 ;1
 represent hidden graphs; G is a set of DBNs for N variables (nodes), X1…N ; we define 

Hi to be the number of configurations of parent node sets, which Xi may change over time; Gi
h represents the 

h-th configuration of parents of Xi;
•	 let = ( )

≤ ≤ ≤ ≤
q q t{ }i i N t T1 ;0

 be the hidden graph sequence that generates the observation x(1:T), with ( ) =q t hi  
representing that Xi(t) takes the parents, Gi

h;
•	 θ θ= ≤ ≤ ≤ ≤{ }i

h
i N h Hi1 ;1

 represent network parameters; in this paper, θi
h is assumed to be independent and 

multinomially distributed, and thus, θ = ( = = ), P X k G ji jk
h

i i
h , with ≤k ri  and ≤j gi

h , parameterizes the 
conditional probability of variable Xi given its parents Gi

h, where ri and gi
h are the numbers of discrete states of 

Xi and its parent set Gi
h, respectively;

•	 π π= ≤ ≤ ≤ ≤{ }i
h

i N h H1 ;1 i
, with π∑ == 1h

Hi
i
h

1 , represent the prior distribution, where π = ( ( ) = ) = ( )P q h P G1i
h

i i
h  

is the distribution for the initial hidden graph Gi
h;

•	 = ≤ ≤ ≤ , ≤A a{ }i
hu

i N h u H1 ;1 i
, with ∑ == a 1u

Hi
i
hu

1 , represent the transition matrix, where = ( ( )=a P q ti
hu i  

( − ) = )u q t h1i  = ( )P G Gi
u

i
h  represents the transition probability from hidden graph Gi

h to Gi
u;

•	 Finally, the conditional probability of observation xi(t) given hidden graph Gi
h is used to represent the emission 

probability, i.e., θ( ( ) ( ) = ) = ( ( ) , )P x t q t h P x t Gi i i i
h

i
h  .

The likelihood function of HMDBN for all variables X1…N takes the following form:

( , ) = ( ) ( , ) ( )P q X HMDBN P q HMDBN P X q HMDBN 2

The transition between hidden graphs is assumed to follow the 1st order Markov chain. Moreover the current 
observation is assumed to be statistically independent of the previous observations, i.e. , 
( ( ) ( )) = ∏ ( ( ) ( ))=P x T q T P x t q t1: 1: t

T
1 . Accordingly, it is easy to prove that

∏ ∏( ) ( , ) = ( ( )) ( ( ) ( − )) ( ( ) ( )) ( )= =P q HMDBN P X q HMDBN P q P q t q t P x t q t1 1 3t
T

t
T

2 1

Additionally, we assume that hidden state qi for variable Xi is statistically independent of those for other vari-
ables. Meanwhile, the hidden graph, which is also a DBN, follows the assumption of conditional independence. 
So, the above formula becomes

∏ ∏ ∏ ∏ ∏
∏ ∏ ∏π θ

( ( )) ( ( ) ( − )) ( ( ) ( ))

= ( ( ( ) , )) ( )

= = = = =

=
( )

=
( − ) ( )

=
( ) ( )

P q P q t q t P x t q t

a P x t G

1 1

4

i
N

i i
N

t
T

i i i
N

t
T

i i

i
N

i
qi

t
T

i
qi t qi t

t
T

i i
qi t

i
qi t

1 1 2 1 1

1
1

2
1

1

Thus, we decomposed the likelihood function for all variables into a product of terms, where each term depends 
only on the choice of parents for a particular variable and the relevant node-specific properties (e.g., network 
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parameters and transition probabilities). This allows for a modular evaluation of a candidate non-stationary net-
work and of all local changes to it. Later, we use HMDBNi to represent the set of θ π, , ,G A{ }i i i i , which locally 
models the non-stationary sub-network for variable Xi. Figure 1 presents the graphical illustration of a 
non-stationary sub-network HMDBNi. The HMDBNs for other variables are similar to HMDBNi. In HMDBNi, the 
graph in each rectangle represents a sub-network, which only models the conditional dependencies of variable Xi 
and its parents Gi. The digits in the parentheses represent time points. For simplicity, contemporaneous edges in 
DBN are not allowed, i.e. the conditional dependencies are modeled only between Xi at time t and its parents at 
previous time t −  1. The shaded nodes represent the observable states. Each hidden graph associates with an 
observable state. The full connection between hidden graphs indicates that the hidden graphs could transit from 
one state at the current time point to any state at the next time point with certain probabilities. For one variable, 
the time-points are referred to as transition times, for which the regulatory inputs of the variables change. The 
HMDBN is node-specific, which allows different transition times and hidden graphs for each non-stationary 
sub-network HMDBNi.

Learning HMDBN. For traditional HMM, a well-known EM algorithm (Baum-Welch algorithm) is used to 
learn parameters, while for HMDBN, we need to infer the number of hidden graphs H, estimate the transition 
probabilities A, and recover the hidden graph structure G. Therefore, we turn to the SEM algorithm23. It combines 
the standard EM algorithm, which optimizes parameters, with structure search for model selection.

BWBIC score. The E-step of the SEM algorithm searches for the value of the Q function for HMDBN models, i.e. 
the expected value of ( , )p x q HMDBNlog with respect to the current estimate of HMDBN, represented by 

′HMDBN , where θ π= , , ,HMDBN G A{ }. The Q function can be written as follows (details refer to Supplementary 
File 1):

(
)

( ) ( )

( )

∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ( )

π

θ

( , ′)= ( , ′) ( , )

= ( )= , ′ + ( − )= , ( )= , ′

+ ( )= , ′ ( ( ) , )

= = = = =

= = 5

Q HMDBN HMDBN P q x HMDBN P x q HMDBN

P q h x HMDBN P q t h q t u x HMDBN a

P q t h x HMDBN P x t G

log

1 log 1 log

log

q

i
N

h
Hi

i i
h

h
Hi

u
Hi

t
T

i i i
hu

h
Hi

t
T

i i i
h

i
h

1 1 1 1 2

1 1

The first two terms in parenthesis of Eq. (5) can be maximized by solving with respect to π and A. Then, we can 
get their re-estimates:

∑π = ( , ( ) = ′)/ ( , ( ) = ′)
( )

′

=
P x q h HMDBN P x q u HMDBN1 1

6i
h

i
u

Hi

i
1

∑ ∑= ( , ( − ) = , ( ) = ′)/ ( , ( − ) = ′)
( )

′

= =
a P x q t h q t u HMDBN P x q t h HMDBN1 1

7i
hu

t

T

i i
t

T

i
2 2

Next, to obtain ′Gi
h , which optimizes the third term, we first get the marginal likelihood for each hidden graph 

Gi
h, and then, solve the following optimization problem,

∫∏ θ θ θ= ( ( ) , ) ′ ( )
( )

′
=

( ( )= , )
G P x t G P G darg max log

8
i
h

G
t
T

i i
h

i
h P qi t h x HMDBN

i
h

i
h

i
h

1
i
h

This term, however, is very hard to maximize directly with respect to the network structure G in the M-step, 
since it is a NP-complete problem24. To address this problem, the SEM algorithm does not maximize the marginal 

Figure 1. The graphical illustration of HMDBNi for variable Xi. Shaded nodes represent observed states; 
here, we use lowercase letter xi to represent realization of variable Xi. The graphs in rectangles denote the latent 
DBN structures over time,where the blank nodes X represent the variables (nodes) in DBN, Gi

1:Hi represent the 
parent node set for variable Xi, and (t) represents the time point.

(5)
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likelihood at each iteration, but attempts to find a better network structure that progressively improves the mar-
ginal likelihood. This is a generalized EM algorithm, which still guarantees to converge to a local maximum. Thus, 
the next question is how to calculate the logarithmic marginal likelihood with respect to a network structure in 
formula (8). To get an efficient way, we derived an asymptotic approximation to this integral using a large-sample 
approximation technique, Laplace approximation. The basic idea is that, as the sample size increases, the above 
integral can be approximated around its point of maximum using a multivariate Gaussian distribution. Detailed 
derivation is given in Supplementary File 1. Thus, the logarithmic marginal likelihood in formula (8) is approxi-
mated to the following formula:

∑∑∑ ∑

θ

χ θ

( ) − =

( ( ) = , ′) ( , , ( )) −
( − )

( ( )

= , ′) ( )

′

= = =
,
′

=

l d m

P q t h x HMDBN i j k x t
g r

P q t

h x HMDBN

2
log

: log
1

2
log

9

i
h i

h

i
h

j

g

k

ri

t

T

i i jk
h i

h
i

t
T

i
1 1 1

1

i
h

where

θ
χ

χ
=

∑ ( , , ( )) ( ( ) = , ′)

∑ ∑ ( , , ( )) ( ( ) = , ′) ( )
,
′ =

= =

i j k x t P q t h x HMDBN
i j k x t P q t h x HMDBN

:
: 10

i jk
h t

T
i

k
ri

t
T

i

1

1 1

In the above formulation, θ( )
′l i

h  represents the logarithmic marginal likelihood of θi
h evaluated at θ ′i

h ; di
h rep-

resents the number of independent parameters in θi
h; mi

h represents the expected sample size; θ ′,i jk
h  is the maximum 

likelihood estimate for parameter θ ,i jk
h ; χ( , , )i j k O: t  is a Kronecker delta, representing the number of times Xi takes 

on the value k when its parents take on the value j in observation x at time point t. ( ( ) = , ′)P q t h x HMDBNi  
represents the probability that observation ( )x ti  is generated by the hidden graph Gi

h. It can be calculated using the 
Baum-Welch algorithm (here, we do not give details).

This approximation is an extended BIC score by incorporating Baum-Welch algorithm, so, we call it 
Baum-Welch BIC (BWBIC). BWBIC is a generalized form of BIC under the non-stationary assumption. Its first 
term is the maximized value of the likelihood function; the second term is the penalty for model complexity, 
including the edge number and the hidden graph number. Note that, all the re-estimates for π, A and the BWBIC 
score can be factorized into terms of HMDBN for each variable Xi. This fact allows for a modular evaluation of a 
candidate non-stationary network and of all local changes to it. For instance, the evaluation of a particular change 
(e.g., adding an edge from Xi to Xj) remains the same after changing a different part of the network (e.g., removing 
an edge from Xi to Xk). Thus, after making one change, we do not need to re-estimate the parameters and reevaluate 
the score of the other non-stationary sub-networks. These properties allow for the proposal of the following algo-
rithm by separately learning each HMDBNi.

The SEM algorithm incorporating a heuristic searching approach. The searching space for a non-stationary DBN 
is much bigger than a stationary DBN. To obtain the optimal time-evolving network for each variable Xi, we need 
to search among ∑ =

+ ( − )2h
Hi h N

1
1 1  candidates. The searching space is explained as follows: given a fixed number of 

hidden graphs, say h, search for the optimal hidden graph among ( − )2h N 1  combinations of network structures, 
where each hidden graph has −2N 1 possible network structures; this step repeats with h changing from 1 to Hi +  1 
at least, until the optimal Hi is figured out, and consequently, the accurate time-evolving network is obtained. 
Accordingly, the total searching space is ∑ = ( )=

+ ( − ) O2 2h
Hi h N HiN

1
1 1 .

In SEM, the BWBIC-based greedy-climbing strategy (a generalized EM algorithm) enables us to make com-
parisons between ( )O 2HiN  candidates and find out the accurate HMDBNi. However, due to huge searching space, 
the traditional SEM algorithm is still very time-consuming. To address this problem, we propose a heuristic 
approach. Its intuitive idea is similar to the greedy hill-climbing method for learning a stationary DBN: start at a 
random stationary DBN configuration; repeatedly change the network configuration by adding or deleting one 
edge until its BWBIC score cannot be improved. However, differing from learning a stationary DBN, our method, 
in each step, uses the Baum-Welch algorithm to infer the time-evolving probability of each single edge in the 
stationary DBN, and next, combine these probabilities together to infer the transition times and transform the 
candidate stationary DBN into the corresponding non-stationary DBN. Consequently, this heuristic approach 
only needs to search among −2N 1stationary networks, thereby dramatically reducing the searching space from 
( )O 2HiN  to ( )O 2N  and giving a locally optimal solution.

Due to the factorization of re-estimates of parameters and scoring function as well as no contemporaneous 
edges, the HMDBN model for each variable Xi can be learned separately by evaluating its BWBIC score inde-
pendently and adding edges without concern about feedback loops with other variables. The separate models for 
different variables then reconcile in the final network model. Figure 2 provides the flow chart for this algorithm. 
The steps are listed as follows:

1. Set a stationary network for Xi without parent nodes as the initial network;
2. On the basis of former stationary network, select an operation from the set {add a parent node and delete a 

parent node} to generate a new stationary network for Xi;
3. Treat parent nodes in the stationary DBN as the possible parent node set of HMDBNi, and next, identify the 
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accurate HMDBNi, which may generate the observation data most likely;

3.1.  identify putative hidden graphs;
3.2.  set initial values for π, A and ( ( ) , )P q t x HMDBNi , and furthermore, estimate θ using Eq. (10);
3.3.   iteratively re-estimate transition parameters π and A using Eq. (6–7), refine ( ( ) , )P q t x HMDBNi , and 

furthermore, re-estimate parameter θ using Eq. (10);

4. Calculate the BWBIC score using Eq. (9); keep this non-stationary network, if its BWBIC score is higher 
than that for the former; otherwise, give it up;

5. Repeat step 2–4, until the BWBIC score cannot be improved.

Step (3) is to directly identify the number of hidden graphs, and transform the stationary network into a 
non-stationary network. Its detailed description is given in Supplementary File 1. Briefly, step (3) first transforms 
the stationary network for variable Xi, in which Xi has only one parent node Xj, into a non-stationary network 
HMDBNi. This is simple, as the corresponding non-stationary network HMDBNi has at most two hidden graphs, 
referred to here as Gij

1 and Gij
2, one without parent nodes and the other with one parent node Xj . Meanwhile, dis-

tributions ( ( ) = | , )P q t G orG x HMDBNi ij ij i
1 2  for two hidden graphs are obtained, which may reflect the extent of 

dependence of Xi on Xj along different time steps. Similar step applies so that we can get distributions for other 
parents of Xi, e.g., ( ( ) = , )P q t G orG x HMDBNi ik ik i

1 2 . Next, the resulting distributions for Xi with single parent, 
e.g., ( ( ) = | , )P q t G orG x HMDBNi ij ij i

1 2  and ( ( ) = , ),P q t G orG x HMDBNi ik ik i
1 2   are employed to build the distribu-

tion ( ( ) , )P q t x HMDBNi i for Xi with two parents Xj and Xk. Based on the new generated ( ( ) , )P q t x HMDBNi i , 
we can identify the most likely hidden graphs. Moreover, ( ( ) , )P q t x HMDBNi i  continues to be iteratively refined 
until it converges to the accurate value. The similar method is used to transform stationary networks with more 
parents.

These steps comprise the structural EM algorithm. Steps (1–3, 5) comprise the M-step, which updates the 
transition matrix and refines the hidden graphs, respectively, thereby improving the Q function. Step (4) is the 
E-step, which calculates the Q function. This algorithm does not simultaneously optimize the network structure 
and parameters, but instead optimizes the parameters given the fixed network structure, and next, optimizes the 
network structure. Either of the two steps can improve the Q function. Note that, to obtain a consensus structure 
prediction, existing methods separately evaluate the importance for each edge by applying a threshold for the 

Figure 2. Flow chart for the HMDBN structure learning algorithm. The left are the steps in the algorithm, 
and the right is the output of each step.
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marginal posterior probability, while our method directly identifies the network with the highest joint probability 
at each time point, thereby avoiding selection of thresholds.

Results
Evaluation Using Simulated Data. To evaluate the effectiveness of our method, we applied it to a sim-
ulated dataset generated by the work8. The dataset includes 1,019 observations from an in silico time-varying 
gene regulatory network with ten nodes. The truth of the time-varying network topology is shown in Fig. 3a. 
There are six single-edge changes between seven epochs where the length of each epoch varies between 20 and 
400 observations. To make comparisons, three representative non-stationary DBN methods, nsDBN8, ARTIVA13 
and nhDBN11 were also used to recover the network topologies and transition times. The methods nsDBN and 
ARTIVA are RJMCMC-based discrete and continuous DBN methods, respectively, and both assume that the 
global network topology evolves over time; nhDBN is a RJMCMC-based continuous DBN method, but assumes 
the network topology is kept fixed, while only the parameters are allowed to vary over time.

Reduced running time. All methods were tested without parallel computation on a 3.2 GHz Intel Core i5 machine 
with 4 GB of RAM. The sampling iteration steps for nsDBN, ARTIVA and nhDBN are set according to their original 
papers9,13 or default settings of the software11. Table 1 gives the running time for four methods on the simulated 
dataset. Our HMDBN method takes 9 minutes to converge to the accurate result, while the others all take tens of 
hours. Compared to sampling methods, our method takes strikingly less time. This supports that our proposed 
heuristic approach largely reduces the searching space, thereby effectively decreasing the running time.

Outperforming prediction without parameter setting. In contrast to HMDBN, which learns all parameters from 
observation datasets, nsDBN, ARTIVA and nhDBN require parameter settings (part of required parameters are 
listed in Supplementary Table 1). Therefore, we first tested different combinations of parameters (Supplementary 
File 2–3) and showed their best inference results (Fig. 3b–e). Overall, the prediction by four methods are all close to 
the true topology. However, the best prediction by nsDBN is obtained with known transition number, while, without 

Figure 3. Structure learning for a simulated dataset:  (a) The true non-stationary DBN. (b) The non-
stationary DBN reconstructed by nsDBN under the settings of known transition number and unknown 
transition times. (c) The non-stationary DBN reconstructed by ARTIVA. (d) The globally fixed network 
reconstructed by nhDBN that includes the edges across all time segments. (e) The non-stationary DBN 
reconstructed by HMDBN without knowing transition times and the transition number.



www.nature.com/scientificreports/

8Scientific RepoRts | 5:17841 | DOI: 10.1038/srep17841

the prior knowledge, nsDBN recovers only six time segments (refer to the work8). The method nhDBN recovers all 
true edges, but also predicted some indirect associations; on the other hand, nhDBN failed to recover any transition 
times, even after trying different parameter settings and more sampling iterations. Among four methods, ARTIVA 
and our method HMDBN obtained the best reconstruction accuraries. The predicted networks by ARTIVA and 
HMDBN are both very close to the true topology. Moreover, both of these two methods successfully recovered 
seven time segments and the corresponding transition times are very close to the truth. Notably, the above results 
by nsDBN, ARTIVA and nhDBN are all obtained based on their best parameter settings. These facts suggest that 
our HMDBN method, even without parameter settings, can also obtain excellent or even better prediction.

After observing the prediction under the best parameter settings by nsDBN, ARTIVA and nhDBN, we further 
explored the influence of different parameter settings on their inference results. As shown in Supplementary Files 
2–3, the predicted networks by three methods are very different across different parameter settings. Since the true 
structures are known, we can obtain the corresponding precision and recall values. Similar to the work8, we cal-
culated individual precision and recall estimates for each network at each observation, then averaged them over 
all observations. The precision-recall curves25 are drawn for each method. As shown in Fig. 4a,b, the AUC scores 
show a large range across the different parameter settings for both methods. The curves for nsDBN under (λm =  5, 
λs =  1) and (λm =  1, λs =  1) give the highest and lowest AUC scores, and their top right points reach the corre-
sponding highest F1-measures 0.991 and 0.434, respectively (the curves for nsDBN directly refer to the original 
paper9). The curves for ARTIVA under (cCP =  0.5, cEdges =  0.5) and (cCP =  0.01, cEdges =  0.01) give the highest 
and lowest AUC scores, and their top right points reach the corresponding F1-measures 0.985 and 0.578, respec-
tively. Compared to the above two methods, the reconstructions by nhDBN are relatively stable under different 
parameter settings (Fig. 4c); all of their top right points reach the F1-measures 0.7788. In those methods, the 
parameter settings show the huge influence on the prediction, but the best one cannot be directly inferred from 
data. Thus, our method presents a distinct advantage.

The prediction by our method for only one simulation dataset has been shown in Fig. 3e. Next, to better 
demonstrate the effectiveness, we applied our method to 400 randomly generated datasets. Since our method 
directly identifies the network with the highest joint posterior probability at each time point, it obtained one 
unique precision and recall point for each dataset. The purple boxplots in Fig. 5a give the distributions of 400 pre-
cision, recall and F1-measure values by our HMDBN method on 400 datasets. Our method obtained stably high 
prediction accuracies for all datasets (for precision, median =  0.986, for recall, median =  0.945, for F1-measure, 
median =  0.966). Furthermore, to give an indication of our method performance with varying number of samples, 
we progressively reduced the sample sizes of 400 simulated datasets, with average 100, 50, 30, and 20 samples for 
each time segment. As shown in Fig. 5c, the prediction accuracy is gradually decreased with the reduced sample 
size. While the low number of samples impairs the inference of robust networks, the HMDBN method can still 
give high prediction accuracy using as few as 20 samples for each time segment (median =  0.861 for F1-measure). 
Additionally, to evaluate how our approach scales with a higher number of nodes, we, similarly to the work9, also 
applied our method to a 100 variable network with 50 edges over five time segments spanning 5000 samples, 
and one to three edges changing between each time segment. 10 datasets were simulated from this network. As 
a result, the medians of precision, recall and F1-measure of prediction are 0.827, 1.000 and 0.905, respectively. 
The reconstruction result on one of the simulated datasets is shown in Supplementary Fig. 2. Only the nodes are 
demonstrated, whose parent nodes evolve over time. It is shown that all of the predicted transition times are correct.

Reasonable metric BWBIC for non-stationary DBN. In this section, we will show that SEM-derived BWBIC score 
enables our HMDBN method to obtain stably high prediction accuracy.

Our method takes into account the information sharing for the networks across different time segments from 
two aspects. On the one hand, we leverage the transition between different networks to model the dependencies or 
similarities between networks. This tactic is similar to the information coupling proposed by the previous works, 
but it is not limited to the models with global information coupling16,17 or the models with sequential informa-
tion coupling8,9,14,15. On the other hand, we use our derived BWBIC score to evaluate a candidate non-stationary 
network. Differing from the traditional BDe or BIC score, which assume that the samples in one time segment 
belong entirely to the corresponding network, BWBIC score assumes that one sample belongs to each network in 
different time segments with a certain probability. Therefore, the information from all samples can be leveraged 
to evaluate a network in one specific segment, even if some samples are not in this segment. This is consistent with 
the advantage of Baum-Welch algorithm (using weighted samples) over Viterbi training algorithm (using clearly 
demarcated samples) for learning a HMM26.

We want to investigate whether the information sharing introduced by BWBIC can help improve the predic-
tion accuracy and reduce over-fitting, compared to traditional metrics BIC and BDe. To reduce the evaluation 
bias resulting from different methods, we compared with three metrics based only on our searching method. The 
rationale is two-fold: on the one hand, the other algorithms require additional modifications to support BWBIC; on 
the other hand, our method is not limited to the hypothesis of sequential or global information sharing. Moreover, 
to demonstrate that our searching method is unbiased for three metrics, based on our searching method, metrics 
BIC and BDe are also applied to the above 400 simulation datasets to reconstruct the non-stationary networks. As 

Method nsDBN ARTIVA nhDBN HMDBN

Time 58 hours 11 hours 23 hours 9 minutes

Table 1. Running time of four methods on the simulated dataset.
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shown in Fig. 5a, the prediction accuracies by two metrics are also high, and very close to the accuracy by BWBIC 
(the median of F1-measures for BWBIC, BIC and BDe are 0.97, 0.93 and 0.91, respectively). This suggests that our 
proposed searching method is a general method, which can work well together with all three metrics.

Next, we explore whether these three metrics can still recover the true network without information sharing 
introduced by our searching method (i.e. the optimized transition probabilities). We abolish the automatic opti-
mization and manually set the transitions between different networks equally, so that the dependencies between 

Figure 4. Precision and Recall curves on the simulated dataset for three methods:  (a) nsDBN, (b) ARTIVA, 
and (c) nhDBN.The Precision does not necessarily change linearly with the varying levels of Recall. Therefore, 
according to the relationship between Precision-Recall and ROC curves, we first plotted the ROC curves for 
different thresholds, and next, translate the curves in ROC space to Precision-Recall space.

Figure 5. Comparsion between three metrics BWBIC, BIC and BDe. Boxplots of Precision, Recall and F1-
measure values of three metrics with optimized transition probabilities (a) and without optimized transition 
probabilities (b). (c) Prediction accuracies of HMDBN scales with varying number of samples. Boxplots for 
Precision, Recall and F1-measure values were given for 400 simulated datasets with average sample size 100, 50, 
30 and 20 for each time segment.
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similar networks are removed. As shown in Fig. 5b, the F1-measure for BWBIC remains high (median =  0.75), 
while the F1-measures for BIC and BDe dramatically decrease to 0.21 and 0.17, respectively. The prediction results 
are shown in Supplementary Fig. 3. This fact suggests that, in spite of no dependencies between different networks, 
BWBIC can still benefit from information sharing, providing a more stable prediction than the other two metrics. 
Similar to our analysis, nsDBN has applied the sequential information sharing scheme and the extended BDe metric 
(nsBDe) to reconstruct the time-varying network structures. As shown in Fig. 4a, with the change of priors λs and 
λm, which specify the extent of information sharing, the reconstruction accuracy also deteriorates. This is consistent 
with our above observation, supporting the idea that traditional evaluation scores cannot benefit from information 
sharing to reconstruct the accurate non-stationary network.

Furthermore, we explored the influence of short time segments on the reconstruction accuracies of these three 
metrics. We progressively decreased the transition probability from one hidden network to itself and check the 
prediction accuracy under each setting. With the decreased self-self transition probabilities, the networks tend 
to transit to the others, and consequently, the time segment will be divided into small pieces. We expected that 
our BWBIC, by benefiting from the adjacent time segments, can still recover the accurate non-stationary network 
globally, even if each network has to be learned from the short time segments. As shown in Fig. 6a–c, with the 
decreased self-self transition probabilities, the prediction results by BIC and BDe varied wildly in precision, recall 
and F1-measure, coupled with the dramatic over-fitting in each short time segments. Conversely, the reconstruction 
accuracy by BWBIC remained stable. Even when the transition probability is decreased to 0.1, the F1-measure 
by BWBIC remains near 0.76, which is much better than those offered by BIC and BDe (0.20 and 0.17). This fact 
suggests that BWBIC can help reduce over-fitting by assuming samples belong to all networks with certain proba-
bilities. Thus, more information sharing between networks can be included to more accurately learn the networks.

Evaluation Using Small-Scale Drosophila Gene Expression Data. To evaluate the performance of the proposed 
approach on real biological data, we implemented our method on Drosophila gene expression data27, which is the 
most frequently used real dataset for testing non-stationary network methods. This dataset contains expression 
measurements over 66 time points of 4028 Drosophila genes throughout development and growth during the 
embryonic, larval, pupal, and adult stages of life. The true transition times of four drosophila life periods are located 
at 30, 40 and 58. We preprocessed continuous expression data into binary values using the methods described by 
the paper28.

A small set of 11 genes (eve, gfl/lmd, twi, mlc1, sls, mhc, prm, actn, up, myo61f, and msp300) was chosen 
for an initial analysis based on their reported involvement in Drosophila muscle development. Before applying 
non-stationary DBN methods, we first tested an intuitive approach that uses hierarchical clustering to group 
developmental stages, and applies a stationary DBN method to each group, respectively. This approach, however, 
proved to be infeasible. On the one hand, the hierarchical clustering can group expression profiles, but not regula-
tory relationships. As shown in Fig. 7a, the time points are mixed together by hierarchical clustering, as different 
expression profiles could share the same regulatory relationship. On the other hand, in spite of a big sample size 
across all development stages, the samples allocated to each group could be too small to recover the statistically 
confident relationships. As shown in Fig. 7b, four stationary DBNs are independently learned using the samples 
of 1:30, 31:40, 41:58 and 59:66, respectively. The networks for larval and adult, recovered using 10 and 9 samples 
respectively, both find only two edges. Moreover, the networks in four stages are very different from each other, 
which is indicative of over-fitting for each dataset in four segments. These facts to some extent support the impor-
tance of the non-stationary network method.

The methods nsDBN, ARTIVA, nhDBN and HMDBN were applied to this dataset. The iteration steps for the 
sampling-based method nsDBN, ARTIVA, and nhDBN are set according to their original papers9,13 and default 

Figure 6. Prediction accuracies of three metrics BWBIC, BIC and BDe on simulation datasets under 
different parameter settings. Error bar indicates the corresponding standard deviation. (a) Precision, (b) 
Recall, and (c) F1-measure values of three metrics under different self-self transition probabilities.
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settings of the software11. The nsDBN, ARTIVA, and nhDBN methods take 31, 25, and 49 minutes, respectively, while 
our method takes 2 minutes to converge to the optimal result. Next, we made the comparison between different 
methods from two aspects: transition time and gene regulatory network structure.

Transition time. Presented in Fig. 8 is the predicted probability P(q(t)|x,HMDBN) by the HMDBN method for 
genes mlc1, sls, and up, whose regulators change over time. The distribution suggested that the regulators of gene 
mlc1 and up change at time point 61, while the regulators of gene sls change at 31 and 37. We therefore predicted 
four stages whose transition times are 31, 37 and 61, which are very close to the true transition times. Furthermore, 
in each stage, we combined sub-networks for all genes and obtained the non-stationary DBN for the entire gene 
regulatory network (Fig. 9a).

Next, we tried various parameter settings for the other three methods. As shown in Supplementary File 2–3, 
inconsistent results were observed under different settings. Here, we present their best results, whose transition 
times are the closest to the truth. First, the nsDBN method only predicts three segments with the posterior peaks 
located at 11 and 21, under the best parameter setting λm =  2, λs =  2, unknown transition number and unknown 
transition times (the best parameter settings are referred to the original paper8). Second, the ARTIVA method 
predicts the transition number ranging from 4 to 9, under different parameter settings. Since we know the true 
transition times, we report the best result, which presents four segments with the posterior peaks located at 40, 48 
and 54, under the settings cCP =  0.5 and cEdges =  0.5. To exclude the possibility that the inaccurate prediction is 
the result of data discretization, we also applied ARTIVA to the continuous dataset and tried different parameters. 
However, ARTIVA predicts only 1 to 2 time segments; moreover, under the best settings for discrete datasets, it 
did not predict any transition times. All predictions are shown in Supplementary File 2. Third, in contrast to the 
simulated datasets, the method nhDBN successfully predicts the transition times for the real datasets. However, 
the results show obvious inference uncertainty and reliance on parameter settings. With the increased change-point 
parameter, the predicted number of segments increases substantially, ranging from 3 to 66. The number 66 is the 
same with the number of time steps, which is indicative of over-fitting. The result closest to the truth is three time 
segments, whose transition times are located at 39 and 52 (under parameter setting p =  1e-4, k =  2). We also applied 
nhDBN to the continuous dataset and tried different parameters. Similar to the discrete datasets, the predicted 
transition times for continuous datasets also show obvious inference uncertainty, ranging from 3 to 66 
(Supplementary File 3). These facts suggest that our method can obtain more stable and accurate prediction than 
the other methods, even when their best parameter settings are selected.

Network structure. Our HMDBN method predicted the unique non-stationary network structure (Fig. 9a). Similar 
to the transition times predicted by the other three methods, the predicted network structures are also different 
under various parameter settings (Supplementary File 2–3). The reference regulatory network on the muscle 
development of Drosophila is not fully available. Here, we show the best results from these three methods: the 
result for nsDBN is shown in Fig. 9b, which is obtained under the setting of known transition number and known 
transition times; the evolving networks for ARTIVA and nhDBN are shown in Fig. 9c,d, whose corresponding 
transition times are the closest to the truth among their predictions.

Figure 7. The accurate time-varying networks cannot be learned from each time segment separately. 
(a) The hierarchical clustering for the expression profiles of 11 genes across 66 time points. (b) The time-varying 
networks learned separately in each time segment.
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Despite certain similarities, we observed many differences between our results and other predictions. In the 
other predictions, a cluster forms around myo61f, msp-300, up, mhc, prm, and mlc1. With the exception of up, 
all of these genes are in the myosin family, which contains genes involved in muscle contraction. Our prediction 
also indicates intense associations among these genes, although the inferred relationships are different from those 
in other predictions. In our prediction, the gene up is not as intensely connected with this cluster as other genes, 
and up is disassociated with this cluster in the adult stage. This is consistent with the fact that gene up is not in 
the myosin family. Additionally, our results suggested that mhc may play a crucial role in the regulatory network 
for Drosophila muscle development, whereas other methods predicted that msp-300 is the primary hub gene for 
regulating the cluster of 11 genes.

To validate the recovered relationships by different methods, we refer to the FLIGHT database29 and the other 
existing literatures, where a number of relevant biological experiments were found. The interaction network 
recorded by FLIGHT is shown in Supplementary Fig. 4. Based on the recorded interactions, we compared the 
prediction performances of different methods.

First, we assess the proportion of retrieved interactions that are validated by existing biological experiments 
(similar to precision). As shown in Fig. 9e, among 17 recovered interactions by our method, 8 interactions were 
validated, where 6 are validated by the recorded direct interactions (yellow) and 2 are validated by the recorded 
indirect interactions via only one intermediate gene (green). Second, we evaluated the proportion of the recorded 
interactions that are successfully retrieved (similar to recall). As shown in Fig. 9f, among 14 interactions in litera-
tures, 10 interactions are recovered, where 5 are recovered directly (yellow) and 5 are recovered indirectly via only 
one intermediate gene (green). In contrast, the other three methods all give much lower values for both evaluations. 
The exact precision and recall values for all four methods are shown in Table 2.

Moreover, it is worth noting that most of the recorded interactions in FLIGHT result from undirected inter-
actions, while one prominent evidence for directed regulatory relationship is that the gene gfl/lmd and twi are 
indicated to direct upstream regulators of mef230,31 that directly regulates some target myosin family genes at all 
stages of muscle development32, such as mhc and mlc1. The method nhDBN and ARTIVA fail to obtain these rela-
tionships. Under the settings of known transition time and known transition number, the nsDBN still misses such 
associations. Our algorithm successfully captures these interactions. In our resulting network, gene gfl and twi 
are both direct regulators of gene mhc. Gene twi is inferred to be regulated by gene mlc1, and gene mhc and mlc1 
can regulate each other. These connections comprise a feedback loop, suggesting that there are intense regulatory 
effects among these genes.

In addition to the non-stationary directed graph methods, another promising time varying undirected graph 
method, htERGMs3, was also applied to this small gene expression dataset. Compared to our method, it also gives 
lower prediction accuracies in both transition times and network structures (Supplementary Fig. 5).

Evaluation Using Large-Scale Drosophila Gene Expression Data. After evaluating our method on 
a small-scale dataset, we next applied our method to the whole expression dataset of 4,028 Drosophila genes that 
has been previously used to validate the methods TESLA4 and ARTIVA. First, similar to ARTIVA, we selected the 
potential parent genes with known transcriptional activity based on Gene Ontology information: Transcription 
activator activity (GO:0016563), Transcription repressor activity (GO:0016564), Transcription factor activity 

Figure 8. P(q(t)|x,HMDBN) for genes whose regulators change over time:  Horizontal axis denotes time. 
Vertical axis represents the probability density. The red and blue curves respectively denote P(q(t)|x,HMDBN) 
over two graphs in same colors on the left of vertical axis. The green dash lines are the transition times.
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(GO:0003700) and Transcription cofactor activity (GO:0003712). Next, we reconstructed the network using our 
HMDBN method. Our method predicts 5,708 total edges (Embryo: 5,702, Larva: 5,354, Pupal: 5,218, Adult: 
5,319 and edges shared by four stages: 4,555). Out of the 4,028 analyzed genes, 3,992 (99%) were indicated to 
be involved in the time-varying regulatory networks during the Drosophila life-cycle, suggesting that nearly all 
genes are regulated by transcription factors (including transcription factor themselves), whereas ARTIVA only 
inferred that 1,623 genes (40%) are regulated by 134 transcription factors (137 in total). Figure 10a shows the 
distribution for the predicted transition times by the three methods, HMDBN, ARTIVA, and TESLA. Significant 
peaks observed by our method are located at time points 23, 30, 40 and 56. It is known that the time points 30, 
40 and 58 correspond to the transition times from embryo to larva, from larva to pupal and from pupal to adult, 
respectively. Furthermore, mid-embryogenesis (around 20) corresponds to a major morphological change related 
to a modification of transcriptional regulations27. Therefore, compared to the other methods, our result is even 
closer to the truth.

Figure 9. Structure learning for Drosophila muscle development data:  (a) The non-stationary DBN 
reconstructed using our proposed method. The edges in blue are the time-varing edges across time segments. 
(b) The non-stationary DBN by nsDBN under the settings of known epoch number and known transition times. 
(c) The non-stationary DBN by ARTIVA. (d) The globally fixed network for all stages reported by nhDBN. (e) 
The retrieved interactions by four methods that are also validated by the recorded interactions. (f) The recorded 
interactions in the database that are also retrieved by four methods. The interactions marked by yellow represent 
the ones validated (or recovered) by direct interactions, and the interactions marked by green represent the ones 
validated (or recovered) by the indirect interactions via only one intermediate gene.

Method Precision Recall F1-Measure

nsDBN 0.45 0.29 0.35

ARTIVA 0.50 0.14 0.22

nhDBN 0.39 0.29 0.33

HMDBN 0.50 0.71 0.59

Table 2. Prediction accuracies by four methods on the Drosophila muscle-related gene expression dataset. 
Both of the directly and indirectly (via only one intermediate gene) validated interactions are treated as correct; 
the bi-directional edges are counted only once.
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To assess our prediction, we first refer to the high-quality, manually curated database REDfly33, which con-
tains a rich collection of Drosophila regulatory relationships. All Transcriptional Factor Binding Sites (TFBS) 
information given in database REDfly was employed. The REDfly TF-target network has 590 edges, connecting 
169 TFs with 213 targets. The enrichment between two networks was defined as the number of interactions 
that are present in both networks divided by the number of such interactions expected by chance and statistical 
significance for the enrichment was evaluated using Fisher exact test. Our predicted network showed significant 
enrichment with the REDfly TF-target network, the edges being 7.86-fold more likely to be present in the REDfly 
network than expected by chance (p-value =  3.38e–04). Moreover, the physically interacting genes should tend 
to be co-regulated34. Therefore, we also evaluated the enrichment of Protein-Protein Interactions (PPI) for genes 
that are co-regulated. A set of high confidence PPIs35 was utilized, where high-throughput yeast two-hybrid data 
were excluded. By an analogous enrichment analysis to that performed on the REDfly network, our predicted 
network also showed a significant enrichment for PPIs (fold-enrichment =  2.56, p-value =  9.01e–03). Next, we 
compare our predicted network with the PPIs from all other major databases collected by the work35. The result also 
showed a strong enrichment (fold-enrichment =  4.17, p-value =  4.13e–06). Thus, all of these validations support 
the functional relevance of our inferred networks.

During the developmental stages of Drosophila, many genes are expected to play different roles at different 
times, with various proteins of different functions interacting. According to Flybase (http://flybase.bio.indiana.edu), 
4,028 genes in our dataset are divided into 3 primary gene ontology (GO) groups: cellular component, molecular 
function, and biological process. They can be further divided into 47 secondary gene ontology groups. To further 
assess the functional relevance of our predicted network, we mapped the time varying edges to 47 secondary gene 
ontology groups (1,147 time-varying edges for embryo, 799 edges for larva, 663 edges for pupae, and 764 edges for 
adult; Fig. 10b using software Circos36). We selected the parent genes in advance, and accordingly, the regulators 
in these networks are only related to transcriptional factor binding activity. In contrast to the GO interaction net-
work by TELSA, which reflects a large topology change, our predicted network shows a relatively stable topology. 
Through all of the stages of developmental process, we observed that the time-evolving target genes mainly belong 

Figure 10. The time-evolving regulatory network for the whole set of Drosophila genes. (a) The distribution 
for the predicted transition times over time-points and developmental stages. The number of transition times is 
normalized via dividing each value by the maximum one. (b) The time-evolving networks among gene ontology 
groups during Drosophila development. The 4,028 measured genes are grouped according to 47 ontology 
groups; the weight of an edge between 2 ontology groups counts the number of connections between genes 
across these 2 groups. The width of an edge in the visualization is proportional to its weight. The legend for 
ontology groups is shown on the left of four networks. The ontologies in rectangles are the ontologies, for which 
the time-evolving target genes are enriched.

http://flybase.bio.indiana.edu


www.nature.com/scientificreports/

1 5Scientific RepoRts | 5:17841 | DOI: 10.1038/srep17841

to the following GO groups: ‘Developmental process’, ‘Organelle’, ‘Cell part’, ‘Cellular component organization or 
biogenesis’ and ‘Metabolic process’. The GO ‘Developmental process’ and ‘Organelle’ show the most significant 
differentiation. Moreover, progressive changes of regulatory extent can be observed from the temporal patterns 
between these gene ontology groups, and the GO ‘Developmental process’ and ‘Organelle’ are most active during 
embryo stage. In addition, the GO ‘Reproduction’ and ‘Transporter activity’ were found to be unique in embryo 
stage. These observations are all consistent with our expectation about the development, further reinforcing our 
confidence about the functional relevance of our inferred networks.

Discussion
In conclusion, our proposed HMDBN model together with an improved SEM algorithm addressed the major prob-
lems for the existing non-stationary DBN methods: long running time and reliance on manual parameter settings. 
In addition, one novel non-stationary BIC score: BWBIC was derived based on SEM algorithm. This score, when 
compared to other traditional scoring criteria, better facilitates the information sharing, thereby largely improving 
prediction accuracy and reducing over-fitting.

Differing from the traditional BDe and BIC scores, BWBIC score utilized a distributed sample to learn the 
non-stationary network structure. The advantage of distributed samples over non-distributed samples, to some 
extent, has been shown from the comparison between soft EM (standard EM)37 and hard EM38. The hard EM algo-
rithm makes a hard or demarcated choice for the hidden variable (non-distributed), while the soft EM algorithm 
instead determines the probability of each possible value of hidden variable for each data point, and then uses the 
probabilities associated with a particular value of hidden variable to compute a weighted average over the entire set 
of data points (distributed). The hard EM doesn’t give the full conditional likelihood of the hidden parameters, and 
ends up with reducing the accuracy but saving significant computational time, while the soft EM algorithm ends 
up with the full conditional likelihood for hidden parameters, and use the information from all samples to better 
estimate the parameter and obtain more robust results. Furthermore, when applied to HMM, the soft EM and hard 
EM algorithms correspond to Baum-Welch algorithm21 and Viterbi training algorithm22, respectively. Briefly, the 
Baum-Welch algorithm is essentially the soft EM algorithm applied to a HMM and guarantees to converge to at 
least a local maximum. The Viterbi training algorithm segments the data and then applies the Viterbi algorithm 
to get the most likely state sequence in the segment; next uses that most likely state sequence to re-estimate the 
hidden parameters. As discussed in the work26, Viterbi training algorithm makes a limited use of the training 
data, since only observations inside the segments corresponding to a given HMM state are used to re-estimate the 
parameters of that state, resulting in sharper but less robust models, while Baum-Welch algorithm exhaustively 
uses all the available data to produce robust and optimal estimates. Finally, when used for learning time-evolving 
DBNs, the distributed samples also showed consistent advantages over non-distributed samples. On both syn-
thetic and real biological datasets, our work has shown that the traditional non-distributed sample-based BDe or 
BIC scores might lead to over-fitting, especially when the subsequent transition times are close together, and the 
network structures must be inferred from short time series segments; while the distributed sample-based BWBIC 
score can help largely improve the prediction accuracy and reduce over-fitting, and moreover, it can still maintain 
relatively high performance even with no other information sharing from dependencies among different networks.

In addition to the three major challenges, another relevant one is how to generate long time series data. To 
overcome this, we will adopt the strategy of combining multiple short time series39. It has been shown that data 
combined from multiple short time series is as informative as a long time series. Moreover, uncertainty quanti-
fication of network structures has received significant attention on stationary DBN reconstruction40. However, 
extending these results to non-stationary DBN remains an open problem: in addition to network structures, the 
distribution of transition times is also needed to characterize. Therefore, in the future, we will focus our work on 
how to appropriately estimate the uncertainty and the statistical significance for HMDBNs.

An extension of ARTIVA was recently proposed15 that makes promising improvements on both prediction 
accuracy and parameter inference. In addition, a somewhat related paper41 was proposed. Methodologically sim-
ilar to the existing non-stationary DBN methods, it also estimates parameters via a sampling approach particle 
filtering. However, it is subject to the online estimation scenario with applications e.g. in tracking. This is different 
from most systems biology applications, where the regulatory relationship is typically recovered off-line after 
completing various high-throughput experiments.

Finally, in spite of only a basic framework, HMDBN can be easily improved by borrowing experience from abundant 
existing research achievements for HMM and DBN methods. We believe that HMDBN, as introduced here, will serve as 
a foundational graph theoretic tool for non-stationary directed graphs in many problems of network science and other 
fields. Microarray data has been used in this paper, however, due to the rapid advances in data collection technologies 
and deeper understanding about biological mechanisms, the high-dimensional, and feature-rich data from complex 
dynamic processes will grow progressively. We expect our proposed method HMDBN to lead to a rich set of applications 
and offer deeper understanding in network science, molecular and cell biology and many other fields.
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