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Abstract

An important fraction of microbial diversity is harbored in strain individuality, so identification of 

conspecific bacterial strains is imperative for improved understanding of microbial community 

functions. Limitations in bioinformatics and sequencing technologies have to date precluded strain 

identification owing to difficulties in phasing short reads to faithfully recover the original strain-

level genotypes, which have highly similar sequences. We present ConStrains, an open-source 

algorithm that identifies conspecific strains from metagenomic sequence data and reconstructs the 

phylogeny of these strains in microbial communities. The algorithm uses single-nucleotide 

polymorphism (SNP) patterns in a set of universal genes to infer within-species structures that 

represent strains. Applying ConStrains to simulated and host-derived data sets provides insights 

into microbial community dynamics.

Understanding how individual organisms co-exist within a microbial community is crucial 

to understanding community functions. For example, the study of microbial community 
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dynamics is important in human health, including how to maintain or restore a healthy 

human microbiome. Metagenomics has revolutionized microbiology by addressing some of 

these issues in a culture-independent manner. However, state-of-the-art metagenomics 

approaches are often limited to the species level1–3 or to partially assembled population 

consensus genomes4–6. Evidence that the unit of microbial action can fall below the species 

level comes from multiple sources, including culturing7, single-cell genomics8, redundant 

bacterial 16S rRNA gene sequencing9, internal transcribed spacer sequencing10, multilocus 

sequence typing11, and high-resolution genomic variation12. Therefore methods that enable 

strain resolution from metagenomics datasets are desirable.

Most existing culture-free approaches to identify bacterial strains in communities-have 

drawbacks that have limited wide adoption. For example, single-cell sequencing requires 

expensive and laborious efforts in cell sorting and suspension so that analyzing a large 

community using this approach is not done. Similarly, Hi-C, a sequencing-based 

approach13, requires extra steps and budget for cross-linking, library construction, and 

sequencing. Strain typing methods leveraging strain-level gene copy number variations14 or 

strain-level phylogenetic marker SNPs such as canSNPs15, PathoScope16, and Sigma17 rely 

on the availability of complete reference strain genomes and, with current limitations on 

these resources, run into challenges when studying the broader diversity found using 

metagenomic sequencing approaches. An assembly-based approach is dependent on several 

factors, including genome structure and intra-species divergence. With rare exceptions, 

assemblers usually fail to produce individual strain assemblies, instead creating either highly 

fragmented contigs or contigs that only represent population consensus sequences18,19; a 

recent effort in using variation-aware contig graphs for strain identification20 relies on 

manual inspection and hence its accuracy is subject to users’ experience. In all of these 

approaches, only a relatively small fraction of strain genomes have been successfully 

analyzed, and their distribution is usually biased21. On the other hand, methods based on 

single marker genes such as the 16S rRNA gene often lack the resolution to reliably capture 

intra-specific genomic differences22.

To overcome this difficulty and increase the utility of metagenome dataset, we developed 

ConStrains (Conspecific Strains), an algorithm that exploits the polymorphism patterns in a 

set of universal bacterial and archaeal genes to infer strain-level structures in species 

populations. Using both in silico and previously published host-derived datasets we show 

that ConStrains recovers intra-specific strain profiles and phylogeny with high accuracy, and 

captures important features of community dynamics including dominant strain switches and 

rare strains. The simulated data sets address performance in the context of different within-

population diversities, different numbers of strains, the interference from other species 

within the same community, as well as the scalability of the method using a large in silico 

cohort with 322 samples. Predicted within-species structures as well as the strain genotypes 

were highly accurate across these simulated datasets. Applying this method to an infant gut 

development metagenomic data set reveals new insights of strain dynamics with functional 

relevance. ConStrains is implemented in Python, and the source code is available with this 

paper (Supplementary Code) and freely available together with full documentation at https://

bitbucket.org/luo-chengwei/constrains.
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RESULTS

The ConStrains algorithm

Guided by reference species, the ConStrains algorithm compares raw metagenomic reads to 

reference genomes and identifies patterns in SNPs as the basis for differentiation and 

quantification of conspecific strains. This approach is fundamentally different from other 

reference-dependent methods such as Sigma and PathoScope 16,17, because, unlike these 

methods, using ConStrains can provide reliable predictions for those species with only one 

genome (complete or draft), as opposed to approaches that rely on availability of a 

comprehensive reference strain collection. For confident SNP calling, a species requires a 

minimum of tenfold coverage (Supplementary Fig. 1) within or across all samples 

considered, which is obtained for all species with a relative abundance of >1% at typical 

sequencing depths of 5 Gbp. When applied to multiple samples, for example a longitudinal 

time series or otherwise related samples, strain identities can be traced across the different 

samples. The algorithm achieves this in two operations: (1) identifying species for which 

SNPs are detected and quantified, and (2) transforming individual SNPs into SNP profiles 

representing individual strains.

The first operation is a two-step process. Because the algorithm identifies strains only for 

those species with sufficient sequencing depth (≥10-fold coverage in at least one sample; 

Supplementary Fig. 1), the first step uses MetaPhlAn1 for rapid species composition 

profiling. For those species with sufficient sequencing depth, a custom database of marker 

genes is created from the comprehensive PhyloPhlAn marker set23, against which the raw 

reads are mapped using Bowtie224. This targeted approach allows for optimized time and 

computational efficiency. Resulting marker gene alignments are processed with SAMtools25 

to generate a table of coverage by base position from which SNPs are identified. It is 

important to note that in this process the reference sequences are removed and SNPs are 

identified de novo to minimize reference dependency (Fig. 1a–d and Online Methods). We 

verified that such a SNP selection procedure is sufficiently accurate and uniquely sensitive 

to disentangle intra-specific diversity (Supplementary Note 1 and Supplementary Fig. 2).

In the second operation, individual SNPs are combined into unique SNP profiles from which 

strains are identified. Previous methods have approached the challenge of identifying 

individual organisms from microbial communities using SNPs (for example, oligotyping26 

and minimum entropy decomposition27), but were limited to SNPs within the span of a 

sequence read length. ConStrains overcomes this read length limitation and represents each 

strain by a barcode-like string of concatenated SNPs spanning hundreds of genes, referred to 

as the “uniGcode.” To derive the strain’s uniGcodes within a data set, ConStrains constructs 

candidate models of strain combinations using a combination of SNP-flow and SNP-type 

clustering algorithms. Sequentially, the relative abundance of strains in each candidate 

model across the cohort is estimated using a Metropolis-Hastings Markov Chain Monte-

Carlo approach (Fig. 1e–g and Online Methods). Finally, to choose the optimal model with 

the principle of balancing model fitness and complexity, corrected Akaike information 

criterion (AICc) is employed (Fig. 1h and Online Methods). ConStrains repeats these steps 

for each species with sufficient coverage, then outputs the number of strains and their 
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respective uniGcodes and relative abundances (Fig. 1i). The uniGcode allows downstream 

analysis such as cross-sample comparisons and evolutionary studies.

ConStrains identifies strains in large data sets

To validate the performance of ConStrains for strain profiling, we used in silico and host-

derived data sets. A total of 36 different sets of k-strain mixtures were generated using in 

silico genome-based Illumina paired-end read simulation based on ten different Escherichia 

coli strains whose complete genomes are publicly available, representing real-life scenarios 

of strain admixtures (k = 2–7; Fig. 2a–b and Supplementary Fig. 3a, Supplementary Table 

1). These 36 sets of reads were profiled by ConStrains using default settings. Predicted 

results were compared with the ‘true’ strain compositions using Jensen-Shannon divergence 

(JSD; Fig. 2b and Supplementary Fig. 3b). ConStrains successfully predicted the underlying 

intra-species compositions in all 36 data sets (P < 1 × 10−5; two group t-test against random 

guesses; Fig. 2b), demonstrating a substantial advantage (Supplementary Fig. 4) over 

reference-base approaches (see Supplementary Note 1 and Supplementary Fig. -5 for details 

and comparisons). Furthermore, in 34 of the 36 sets of reads (94.44%), the numbers of 

strains inferred exactly matched the ground truth (Fig. 2a), with the remaining two sets of 

reads having an additional chimeric strain predicted at an extremely low level (<0.1%). We 

therefore set the recommended detection limit at 0.1% to reduce such errors 

computationally. Since this is a relative abundance threshold, one can still target low 

abundance organisms by increasing sequence depth. In similar simulations with up to 30 E. 

coli strains, ConStrains predicted the strain composition with high confidence when the 

strain number was less than ten (Fig. 2c), which represents the intra-specific upper bound for 

more than 95% of metagenomic species (Fig. 2d and Supplementary Note 1). To assess the 

impact of intra-species recombination on performance, both real sequencing reads from 

highly recombined Burkholderia pseudomallei strains28 and in silico-simulated recombinant 

strain-derived reads were generated, and no significant adverse impact was identified 

(Supplementary Note 1). We also further tested the performance in a more realistic 

metagenomic scenario by embedding E. coli strains within communities with various levels 

of complexity and found our approach remained robust (Online Methods, Supplementary 

Note 2, and Supplementary Table 2). We also found no significant correlation between 

admixture compositions’ alpha diversity and prediction accuracy. These results collectively 

suggested good algorithm performance (Supplementary Note 1).

We then tested ConStrains using a host-derived metagenomic data set that had previously 

been analyzed using a manually curated strain identification approach. Using manual strain 

curation the authors had for the first time described the changes in an infant gut microbiome 

during the first 24 days of life4. All three manually curated Staphylococcus epidermidis 

strains reported in this study were successfully predicted by ConStrains in a fully automated 

manner, with the predicted relative abundances of each strain over time having highly 

similar values to the original compositions quantified from the scaffold coverage (JSD avg. 

= 0.024, s.d. = 0.021; Supplementary Fig. 6). Because the performance of ConStrains’ fully 

automated approach matched well with the manually curated, semi-automated approach 

described previously4, but required far less machine and manual resources (ConStrains 

completed the infant gut data set in 8.5 CPU hours with RAM peak footprint of < 2GB on a 
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Linux server with Xeon 2.6GHz processors, in contrast to days to weeks of manual curation 

following assembly), we next applied ConStrains to a very large data set for which a manual 

effort would not be feasible (for detailed resource usage, see Supplementary Note 5 and 

Supplementary Table 3).

In the absence of the existence of such a large data set (especially one where true results 

were known), we used a simulated shotgun data set with intra-specific structure mimicking 

the natural relative abundance of taxa informed by a recent gut microbiome collection effort 

for which samples were collected daily over the course of one year29 (Online Methods and 

Supplementary Note 3) (Fig. 3a). ConStrains analyzed 91 species with sufficient depth in the 

322 in silico samples. In total, ConStrains analysed 3.2 terabases of paired-end reads 

contained 1,361 strains from 320 species, with minimal runtime and infrastructure 

requirements (Supplementary Note 3). ConStrains achieved high accuracy in individual 

samples, and also captured crucial information such as dominant strain type changes, for 

example in Bacteroides fragilis (Fig. 3a–c and inset windows 1–3; see Supplementary Table 

4 and Supplementary Note 3 for details). This large cohort also enabled us to test factors that 

might affect the performance of ConStrains, including population complexity, coverage, and 

relatedness. We found that 10× coverage was necessary for accurate profiling, and that strain 

relatedness could also affect performance (Supplementary Fig. 7 and Supplementary Note 

3). With this thorough benchmarking, we next applied ConStrains to two previously 

published clinical data sets to illustrate the biological insights strain level analyses can 

provide.

ConStrains reconstructs strain phylogeny

Lieberman and co-workers previously reported on the genetic variation of Burkholderia 

dolosa in cystic fibrosis patients by combining a selective culturing step with a deep 

population sequencing approach30. We re-analyzed their data set using our ConStrains 

algorithm and predicted a total of six B. dolosa strains in the population with an abundance 

well above 0.1% (pop-I to pop-VI; Fig. 4a). We compared the uniGcodes from the six 

strains inferred by ConStrains with the isolate genome sequence by building a phylogenetic 

tree, and found that all of the colony strains and two population strains (pop-I and pop-II) 

were closely related (Fig. 4a). Moreover, the combined relative abundance of pop-I and pop-

II represented the majority of the population (51.3% and 27.9% for pop-I and pop-II, 

respectively). This finding corroborated observations based on the colony sequencing 

approach. In addition, the ConStrains algorithm identified four additional, less abundant 

strains (pop-III to pop-VI). None of these strains could be inferred by the colony sequencing 

approach alone, likely because of their low abundance (11.2%, 8.1%, 1.0%, and 0.5%, 

respectively). To validate these additional predictions, we further examined the 

polymorphism patterns in these four strains, and compared them against pop-I and pop-II. 

As shown in Fig. 4b, we found patterns that are unlikely to have resulted from chimeric 

mixtures of SNPs from pop-I and pop-II (P < 0.01, permutation test). This analysis 

demonstrated that application of ConStrains to cross-sectional datasets, used in addition to a 

culture-based approach, allows for a comprehensive and efficient discovery of rare strains.
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Uncovering strain dynamics in infant gut development

We next analyzed an infant gut development dataset containing 54 samples from 9 subjects 

collected over the first three years of life (Online methods and Supplementary Fig. 8) to 

further explore the ability of ConStrains to reveal strain dynamics. ConStrains analysis was 

run on a total of 75 species that had sufficient sequencing depth for analysis (10×; Fig. 5). 

Because previously reported strain detection algorithms were limited to studying the 

population consensus sequences12, and ConStrains has the capability to untangle intra-

species diversity, we first examined the number of strains observed within each species. 

Nearly all species (94.66%) had more than two strains, with an average of 4.88 strains per 

subject (±1.54 s.d.; Supplementary Fig. 9). By tracking the uniGcode of each strain in 

separate individuals, we identified several unique strain-level longitudinal patterns. For 

instance, the population of Fecalibacterium prausnitzii was usually comprised of several 

strains that maintained a co-dominant profile, in which the strains maintained the same order 

of abundance; Ruminococcus gnavus had highly variable behaviors over time, with different 

strains dominating the intra-species composition at different time points; in contrast, 

Bacteroides ovatus contained one dominant strain over time keeping other strains relatively 

rare. Bifidobacterium bifidum strains demonstrated comparable dynamic patterns similar to 

F. prausnitzii; moreover, the strains reestablished the same intra-specific diversity even after 

the abundance of the species dropped below the detection limit (Fig. 5, open boxes). We 

anticipate that the capability of generating better insights in intra-species dynamics of such 

health-related species31–33 will shed light on the role of these organisms in human 

physiology.

With this goal in mind, we pursued our findings in Bifidobacterium longum, an organism 

linked to human gut health and applied to prevention and treatment of several diseases33. 

We first observed that the phylogeny of B. longum strains strongly correlated with their host 

origins (Fig. 5, phylogenetic treem insert box), which indicated strong individuality of B. 

longum strains. Moreover, in two subjects (4 and 6, Fig. 6a), we observed switches in 

dominant strain types that were highly correlated with the overall relative abundance of the 

B. longum species. As previous work has shown that a single operon can affect the 

competitiveness of different Bacteroides fragilis strains34, we evaluated functional 

differences between different dominant strains. In both subjects, the different strains 

dominating during consecutive phases (period 2 in subject 4 and period 1 for subject 6; Fig. 

6a) carried additional functions that might be crucial to B. longum’s successful colonization 

of the host gut. In particular, presence of the human milk oligosaccharide (HMO) utilization 

cluster has been shown to result from an adaptation to the human infant gut35 (Fig. 6b; 

highlight IV). Some additional functions might underlie formation of a B. longum bloom 

including the presence of the fructose and L-fucose utilization gene clusters (Fig. 6b; 

highlights I and III). Together, these findings might explain why strains with these functions 

were associated with higher relative abundance of B. longum in the infant gut microbiome. 

We also observed functions specific to strains that were dominant in periods when B. 

longum was less abundant (periods 1 and 3 in subject 4 and period 2 in subject 6; Fig. 6a), 

most notably that the capsular polysaccharide biosynthesis genes were absent from dominant 

strains when B. longum was more abundant (Fig. 6b; highlight II). Taken together, strain-
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level insights provided by ConStrains, combined with functional analyses, could offer 

candidate targets and hypotheses for future studies.

DISCUSSION

We have shown that the ConStrains algorithm accurately predicts strain-level profiles in 

large cohorts of metagenomic samples, and that the inferred uniGcodes reconstruct strain 

phylogeny, within or across cohorts, allowing combined cohort studies. ConStrains is 

scalable and has minimal resource requirements. In contrast, other approaches14,16,17 are 

largely dependent on prior knowledge of reference strain genomes, with sub-species 

resolution being directly dependent on the number of available reference strains per species. 

This greatly limits the application of such methods on real metagenomic data, as for most of 

the human microbiome species only one reference genome is available14. Current databases 

are quickly gaining in intra-species genome representation, but are still far from saturating 

natural diversity. With just one genome per species, ConStrains can resolve natural diversity 

occurring within that species, and is therefore agnostic to unknown strains. Future 

improvements for strain-level analysis include identification of strains in the absence of any 

reference genomes. It is conceivable that combinaing ConStrains with de novo genome 

assembly from metagenomic data could be an appropriate candidate to overcome this hurdle.

ConStrains is particularly effective for obtaining insights that were previously overlooked 

using species level findings (Supplementary Note 4 and Supplementary Figs. 10–12), and 

will thus enable new types of studies. As shown above with the B. longum example, 

combining strain-level profiles with reference genome-based gene coverage analysis can 

reveal candidate genes for understanding strain-specific beneficial effects and the functions 

that might contribute to successful colonization in the human gut. ConStrains could also 

identify strains or genes associated with disease and link variable genomic regions to 

individual strains, a major challenge in shotgun metagenomics. Strain-level profiles, 

together with appropriate metadata, could link reference-based or de novo assembled genes 

with individual strains and further interpret unknown strain-specific functions. Our study of 

the infant gut development cohort captured HMO utilization cluster enrichment shifts in 

different development periods, which is particularly important because products of the HMO 

utilization cluster are essential for B. longum to exert its probiotic effects36. Finally, strain 

phylogeny could be used across cohorts and add metagenomic means to test fundamental 

ecological hypotheses, including neutral theory and other adaptive and nonadaptive 

mechanisms for maintaining sympatric diversity among strains. Although we have applied 

ConStrains to human microbiome datasets, it can also be applied to environmental samples 

to test fundamental hypotheses about the role of microbes in the environment that can only 

be addressed at the strain level.

Online methods

ConStrains algorithm

Extracting target species and informative SNPs—With raw reads from samples S1, 

S2, …, Sn, ConStrains starts with profiling input metagenomes using MetaPhlAn1 (v1.7) 

with default settings, with the exception that alignment options are set to “very-sensitive”; 
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species with average coverage higher than a coverage cutoff (default: 10×) in at least one 

sample are selected for further strain analysis. For each of the selected species, the 

corresponding set of the universally conserved genes reported by Segata et al.1 are used as a 

database, and Bowtie224 mapping with default setting is carried out to map reads against 

those reference genes. Only reads with proper pairing and orientation, no indels, >30 

mapping quality, >90 length mapped (overhanging part at gene 5′ and 3′ ends is clipped off 

before calculation), and at least 95% nucleotide identity with the reference gene are further 

used. These reads are then piled up onto their respective reference sequences using 

SAMtools25, and the reference gene coverage is subsequently calculated on a per-base basis. 

To filter out genes with spurious mappings due to hypervariable regions or conserved 

universal motifs, sites with less than default minimum coverage, as well as those that fall 

outside of the 1.5 interquartile coverage range across the gene length, are masked. Any gene 

with more than 30% of its length masked is discarded from further analysis. Single 

nucleotide polymorphism sites (SNPs) are then counted across samples as those unmasked 

positions where the minor allele has at least two counts or more than 3% in relative 

abundance.

Strain typing by SNP-flow algorithm—With SNPs extracted, ConStrains first infers 

the strain composition and their SNP-types using the “SNP-flow” algorithm in per-species 

per-sample fashion. In this algorithm, all SNP sites are first hierarchically clustered by the 

Euclidean distance between the frequencies of different alleles defined as

where a and b are the frequency vector of the four bases sorted in descending order of the 

respective SNPs. Clusters that contain less than 5% of the overall SNPs or fewer than ten 

SNPs are discarded. The centroid of each cluster is selected as representative. These SNP 

cluster centroids (SCCs) are then ranked in descending order based on their weight 

quantified as the number of SNPs they represent. Finally, a directed graph is constructed 

using these SCCs, in which nodes are alleles in these SCCs and each is assigned a 

“capacity” defined by the allele frequency, and these alleles from neighboring SCCs are 

connected by edges (Fig. 1e).

In the directed graph constructed in the previous step, nodes are denoted from the same SCC 

as a layer. With m layers in the graph, SNP-flow will explore all possible combinations of 

paths from the first layer to the last. This way, every such path represents a strain genotype, 

and its relative abundance, c, is defined as the lowest node capacity among all nodes on the 

path. Once a path is visited, all nodes on this path would subtract their capacity by the path’s 

relative abundance c (Fig. 1e). Such a pathfinding and visiting step is repeated until all 

nodes” capacities are zero, and the visited paths constitute one combination. ConStrains 

exhausts all possible SNP-type (strains) combinations β = {β1, β2, …, βk} in each sample 

with the i-th sample’s SNP-type βi = bi
1bi

2…bi
h where bi

j is one of the four bases, A, C, G, 

and T, and the associated strain profile αi = (αi
1,α

i
2,…αi

h) with
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For each sample, ConStrains picks the optimal combination that minimizes the fitting error, 

defined as the discrepancy between expected SNP frequencies and observed frequencies, ε, 

defined as:

where Eij is expected frequency of the i-th base at the j-th SNP locale; and similarly, Oij is 

the observed frequency of the i-th base at the j-th SNP locale in the pileup of aligned reads 

from the corresponding sample. For instance, C is the second base (i = 2), and if we 

observed two C’s and eight A’s at the fifth SNP locale (j = 5) in the pileup of aligned reads 

against reference, the frequency of C is 0.2 at that position and thus is referred to as O25 = 

0.2. Eij is inferred using αi and βi such that

Inferring strain compositions—To unify these optimal SNP-types into cohort-wide 

strains, ConStrains next constructs a neighbor-joining tree of the SNP-types from different 

samples based on sequence percentage identity, and utilizes an internal parameter, Δd, 

defined as the distance between the tree-cutting point and the leaves, to cut the tree. Rather 

than using a preset value, the algorithm cuts this tree using all possible Δd. Each internal 

node created by such a cut could be viewed as the representative of all the children nodes 

(SNP-types) on the tree. In doing so, it identifies all possible k clusters defined by the 

structure of the tree of SNP-types (Fig. 1f), which we refer to as candidate strains.

With the proposed k strains from the previous step, in each sample, we need to find a 

composition, α*= (α*
1, α*

2, …, α*
k) with

to minimize the discrepancy between expected SNP frequencies and observed frequencies, 

ε, as defined previously. This is carried out by a Metropolis-Hasting Monte-Carlo method. 

ConStrains first generates a number of seeds (default: 1,000) at uniform random on k−1 

simplex. The top 50 seeds are then selected and each such seed’s vicinity on the k−1 simplex 

is iteratively searched. In iteration t, a new point, αt
ik, is picked within the 0.01 radius of the 

previous point, αt−1
ik; and it is accepted as the new point with probability min(1, q(αt

ik, 

αt−1
ik)), where q(αt

ik, αt−1
ik) = ε(αt

ik)/ε(αt−1
ik). It repeats the iteration until |1−q(αt

ik, 
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αt−1
ik)|is smaller than 0.001 or the maximum number of iterations (10,000) is reached. The 

composition yielding the lowest ε is selected as optimal α*
ik. ConStrains repeats this step for 

all samples and all k, yielding solutions for each k, α*
k = (α*

1, α*
2, …, α*

n), with 

corresponding error (Fig. 1g):

Selecting the optimal strain model—Corrected Akaike information criterion (AICc) is 

employed to select optimal k. The AICc of each k is calculated as:

where L = 1−εk denotes the model likelihood. ConStrains selects the k with the lowest AICc 

and outputs the associated SNP-types and compositions as final results (Fig. 1h). As noted 

previously, we suggest filtering strains with less than 0.1% in relative abundance as they 

present a high probability of being chimeric.

In silico data sets

To simulate in silico single species data sets, 62 complete E. coli genome sequences were 

downloaded from NCBI. Ten genomes were selected and their relatedness was shown by a 

maximum likelihood tree (Supplementary Fig. 3a) constructed from concatenated nucleotide 

sequences of core genes among the 10 strains using a method similar to Luo et al.19. 1,000 

random compositions were sampled on a Gamma distribution with k = 1 and θ = 0.5 for each 

number of strains (N = 2–7). In each set of these 1,000 compositions, Shannon entropy was 

calculated and based on which these compositions were ranked. The compositions on the 

15th, 30th,…, 90th percentiles were picked to form a gradient of intra-specific diversity for 

each N. ART simulator37 was employed to simulate 100× coverage of 100 bp paired-end 

Illumina reads using these compositions with default settings for Illumina and library 

settings as “-m 350 -s 50” (Supplementary Fig. 3a). These samples were further grouped 

together to simulate single strain series samples (Supplementary Table 1).

These simulated E. coli reads were then spiked into in silico-constructed metagenomes to 

measure the impact from other species. Three human microbiome-like metagenomes with 

low, medium, and high complexity level (referred as LC, MC, and HC, respectively) were 

simulated based on an aggregated MetaPhlAn1 profile over all 690 Human Microbiome 

Project (HMP) samples38. E. coli and Shigella were excluded from the profile, and the rest 

of the species were ranked based on their average abundance in the HMP cohort. The top 20, 

50, and 100 most abundant species were selected for LC, MC, and HC, respectively. The 

species composition in each in silico metagenome was calculated as their relative abundance 

in the HMP cohort, normalized by their total sum. Genomes of these species were 

downloaded from NCBI, and a representative strain was selected at random if multiple 

strains of the same species were present. A total of 100 million 100 bp paired-end Illumina 

reads were simulated for each set by ART simulator37 with the same settings as mentioned 
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previously. Additional data sets for testing the sensitivity and the performance on different 

numbers of strains and recombined strains were generated in a similar fashion using ART 

(Supplementary Note 1 for details).

The year-long shotgun metagenome cohort with 322 samples was simulated based on donor 

A’s 16S rRNA amplicon profiles reported in David et al.29. The operational taxonomy unit 

(OTU) table was used as a guide for community composition in human microbiomes. To 

allow simulation at the strain level, however, taxonomy in the OTU table was shifted down 

by one level. For instance, species composition in the original OTU table was shifted to be 

the strain composition. NCBI draft and complete genomes were used to match as closely as 

possible the phylogeny of the original OTUs. Reads were then simulated by ART simulator 

as previously described. The coverage was set to be 1× per 25 read counts in the 16S OTU 

table.

Biological data sets

The two infant gut development longitudinal metagenomic data sets used in this study were 

from a previous study4 and from our recent effort in tracking nine subjects in a three-year 

period since birth. For the former set, all metagenomic samples were downloaded from 

NCBI SRA under accession number SRA052203, and the corresponding assembled 

Staphylococcus epidermidis strains and phage genomes were downloaded from ggKBase as 

described by Sharon et al.4. For the latter set, 54 stool samples were collected from nine 

infant subjects between September 2008 and August 2010 in Finland. Samples were first 

collected by the subjects’ parents and stored in the household freezer before being 

transferred on dry ice to a laboratory −80 °C freezer. Samples were then shipped to the 

Broad Institute for DNA extraction, in which QIAamp DNA Stool Mini Kit (Qiagen, Inc., 

Velencia, CA, USA) was used as described previously39. Library construction was carried 

out following Human Microbiome Project’s standard protocol (http://hmpdacc.org/

tools_protocols/tools_protocols.php), and 101bp paired-end reads were produced on an 

Illumina HiSeq 2000 platform. The raw sequences of these samples are available at SRA 

under BioProject accession number PRJNA269305, and the corresponding sample 

information is available in Supplementary Table 5.

Prediction accuracy measurement

To measure how close the predicted composition, P, is from the true composition, Q, we 

applied Jenson-Shannon divergence with minor modifications. Since it is possible that P and 

Q are of different dimensions, we first padded the one with lower dimension with zeros to 

match the one with the higher dimension, and then defined a composition M based on sorted 

P and Q, P′ and Q′, as:

Therefore the Jenson-Shannon divergence is:
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where D(X||Y) is the Kullback-Leibler divergence defined as:

We calculate the SNP typing accuracy as the distance between the inferred SNP tree of 

strains, Tp, and the true strain tree constructed from concatenated core genes, Tq. First, a 

distance similar to the symmetric difference introduced by Robinson and Foulds is applied 

to calculate the distance, d, between these two trees. We then normalize d to the expected 

basal distance from a random tree with the same leaves. The expected basal distance, d, is 

the mean distance between Tq and 1,000 randomly generated trees with the same leaves.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Natalia Nedelsky for editorial support. This work was supported in part by the Crohn’s and Colitis 
Foundation of America, the Leona M. and Harry B. Helmsley Charitable Trust, National Institutes of Health (NIH) 
grants U54 DK102557 (R.J.X.) and R01 DK092405 (R.J.X.)., and the Howard Hughes Medical Institute (R.K.).

References

1. Segata N, et al. Metagenomic microbial community profiling using unique clade-specific marker 
genes. Nat Methods. 2012; 9:811–814. [PubMed: 22688413] 

2. Sunagawa S, et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat 
Methods. 2013; 10:1196–1199. [PubMed: 24141494] 

3. Darling AE, et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2014; 
2:e243. [PubMed: 24482762] 

4. Sharon I, et al. Time series community genomics analysis reveals rapid shifts in bacterial species, 
strains, and phage during infant gut colonization. Genome Res. 2013; 23:111–120. [PubMed: 
22936250] 

5. Nielsen HB, et al. Identification and assembly of genomes and genetic elements in complex 
metagenomic samples without using reference genomes. Nat Biotechnol. 2014; 32:822–828. 
[PubMed: 24997787] 

6. Imelfort M, et al. GroopM: an automated tool for the recovery of population genomes from related 
metagenomes. PeerJ. 2014; 2:e603. [PubMed: 25289188] 

7. Luo C, et al. Genome sequencing of environmental Escherichia coli expands understanding of the 
ecology and speciation of the model bacterial species. Proc Natl Acad Sci USA. 2011; 108:7200–
7205. [PubMed: 21482770] 

8. Kashtan N, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild 
Prochlorococcus. Science. 2014; 344:416–420. [PubMed: 24763590] 

9. Faith JJ, et al. The long-term stability of the human gut microbiota. Science. 2013; 341:1237439. 
[PubMed: 23828941] 

10. Maslunka C, Gifford B, Tucci J, Gurtler V, Seviour RJ. Insertions or deletions (Indels) in the rrn 
16S–23S rRNA gene internal transcribed spacer region (ITS) compromise the typing and 
identification of strains within the Acinetobacter calcoaceticus-baumannii (Acb) complex and 
closely related members. PLoS ONE. 2014; 9:e105390. [PubMed: 25141005] 

Luo et al. Page 12

Nat Biotechnol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. Han D, et al. Population structure of clinical Vibrio parahaemolyticus from 17 coastal countries, 
determined through multilocus sequence analysis. PLoS ONE. 2014; 9:e107371. [PubMed: 
25225911] 

12. Schloissnig S, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013; 
493:45–50. [PubMed: 23222524] 

13. Beitel CW, et al. Strain- and plasmid-level deconvolution of a synthetic metagenome by 
sequencing proximity ligation products. PeerJ. 2014; 2:e415. [PubMed: 24918035] 

14. Greenblum S, Carr R, Borenstein E. Extensive Strain-Level Copy-Number Variation across 
Human Gut Microbiome Species. Cell. 2015; 160:583–594. [PubMed: 25640238] 

15. Karlsson E, et al. Eight new genomes and synthetic controls increase the accessibility of rapid 
melt-MAMA SNP typing of Coxiella burnetii. PLoS ONE. 2014; 9:e85417. [PubMed: 24465554] 

16. Hong C, et al. PathoScope 2.0: a complete computational framework for strain identification in 
environmental or clinical sequencing samples. Microbiome. 2014; 2:33. [PubMed: 25225611] 

17. Ahn TH, Chai J, Pan C. Sigma: strain-level inference of genomes from metagenomic analysis for 
biosurveillance. Bioinformatics. 2015; 31:170–177. [PubMed: 25266224] 

18. Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. 
Genomics. 2010; 95:315–327. [PubMed: 20211242] 

19. Luo C, Tsementzi D, Kyrpides NC, Konstantinidis KT. Individual genome assembly from complex 
community short-read metagenomic datasets. ISME J. 2012; 6:898–901. [PubMed: 22030673] 

20. Nijkamp JF, Pop M, Reinders MJ, de Ridder D. Exploring variation-aware contig graphs for 
(comparative) metagenomics using MaryGold. Bioinformatics. 2013; 29:2826–2834. [PubMed: 
24058058] 

21. Lasken RS, McLean JS. Recent advances in genomic DNA sequencing of microbial species from 
single cells. Nat Rev Genet. 2014; 15:577–584. [PubMed: 25091868] 

22. Ivanova N, et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus 
anthracis. Nature. 2003; 423:87–91. [PubMed: 12721630] 

23. Segata N, Bornigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved 
phylogenetic and taxonomic placement of microbes. Nat Commun. 2013; 4:2304. [PubMed: 
23942190] 

24. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357–
359. [PubMed: 22388286] 

25. Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078–
2079. [PubMed: 19505943] 

26. Eren AM, et al. Oligotyping: Differentiating between closely related microbial taxa using 16S 
rRNA gene data. Methods Ecol Evol. 2013; 4:1111–1119.

27. Eren AM, et al. Minimum entropy decomposition: Unsupervised oligotyping for sensitive 
partitioning of high-throughput marker gene sequences. ISME J. 2014; 9:968–979. [PubMed: 
25325381] 

28. Nandi T, et al. Burkholderia pseudomallei sequencing identifies genomic clades with distinct 
recombination, accessory, and epigenetic profiles. Genome Res. 2015; 25:129–141. [PubMed: 
25236617] 

29. David LA, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014; 
15:R89. [PubMed: 25146375] 

30. Lieberman TD, et al. Genetic variation of a bacterial pathogen within individuals with cystic 
fibrosis provides a record of selective pressures. Nat Genet. 2014; 46:82–87. [PubMed: 24316980] 

31. Sokol H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium 
identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008; 
105:16731–16736. [PubMed: 18936492] 

32. Crost EH, et al. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is 
strain-dependent. PLoS ONE. 2013; 8:e76341. [PubMed: 24204617] 

33. Di Gioia D, Aloisio I, Mazzola G, Biavati B. Bifidobacteria: their impact on gut microbiota 
composition and their applications as probiotics in infants. Appl Microbiol Biotechnol. 2014; 
98:563–577. [PubMed: 24287935] 

Luo et al. Page 13

Nat Biotechnol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Lee SM, et al. Bacterial colonization factors control specificity and stability of the gut microbiota. 
Nature. 2013; 501:426–429. [PubMed: 23955152] 

35. Schell MA, et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the 
human gastrointestinal tract. Proc Natl Acad Sci USA. 2002; 99:14422–14427. [PubMed: 
12381787] 

36. Sela DA, et al. The genome sequence of Bifidobacterium longum subsp infantis reveals 
adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA. 2008; 
105:18964–18969. [PubMed: 19033196] 

37. Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator. 
Bioinformatics. 2012; 28:593–594. [PubMed: 22199392] 

38. Human Microbiome Project. C. Structure, function and diversity of the healthy human 
microbiome. Nature. 2012; 486:207–214. [PubMed: 22699609] 

39. Morgan XC, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and 
treatment. Genome Biol. 2012; 13:R79. [PubMed: 23013615] 

Luo et al. Page 14

Nat Biotechnol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Overview of the ConStrains algorithm: from raw metagenomic data to strain profiles and 

uniGcodes. (a) ConStrains requires raw metagenomic reads from a single or series of 

metagenomic samples as input. (b) To select species that satisfy a predefined sequencing 

depth cutoff, the algorithm starts with determining the species composition with 

MetaPhlAn1. (c) Next, Bowtie224 is used to recruit all reads to a reference database of 

species-specific marker genes23. (d) SNPs are called on these recruited reads after quality 

filtering, removal of reference gene sequence, and reference-free read realignment. (e) 

Resulting SNPs are used by a SNP-flow algorithm to infer all possible SNP-types for each 

of the samples. (f) Such SNP-types across samples are clustered using a tree structure based 

on their distances to represent candidate strain models; the internal distance cutoff, Δd, is 

varied to exhaust all possible SNP-type clusterings. (g) The Metropolis-Hastings Monte-

Carlo method is then carried out to infer relative abundances per sample and per species for 

every candidate strain model. (h) These models are then evaluated by corrected Akaike 

information criterion (AICc) and the model with minimum AICc is selected as the optimal 

model. (i) Finally, the associated strains’ relative abundances across samples and their 

uniGcodes are generated for every species.
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Figure 2. ConStrains correctly predicts the strain composition of in silico-simulated data sets
A comparison of true and predicted strain composition profiles of in silico-simulated multi-

strain mixtures is shown. (a) An increasing number of multi-strain mixtures (n = 2–7; rows) 

was analyzed with ConStrains either containing only the target strains (pure) or in the 

context of a metagenome of low, medium, and high complexity (+LC, +MC, and +HC, 

respectively). In each box of barcharts, the colors represent different strains that were mixed 

in six different ratios (x axis, relative abundance) with a Shannon index (y axis) increasing 

from top to bottom. In the resulting 144 admixtures, all strains were correctly identified. (b) 

To compare the predictions in abundance for each strain, the Jensen-Shannon Divergence 

(JSD) between predicted composition and the true composition was determined. Blue 

dashed lines mark the expected errors from random guesses. The box marks the interquartile 

range, the red bar marks the interquartile median, whiskers represent the top and the bottom 

25% data range, and outliers are marked by crosses. Good performance was obtained for all 

compositions, with minimal difference in the accuracy of results between pure mixtures and 

metagenomic mixtures; see also Supplementary Fig. 3b for more detailed graphs. (c) Graph 

showing ConStrains’ ability to correctly infer intra-specific structure as a function of the 

number of strains contained in a sample. Shown is a typical case with the species’ relative 

abundance ranging from 1% to 5% and a sequencing depth of 100 million paired-end reads, 

though higher abundance or sequencing depth would improve its accuracy. The ConStrains’ 

prediction JSD errors (blue dashed line and boxes) were below 1% of null informative 

prediction errors (random guess; red dashed line) when the number of strains within a 
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species was less than ten. (d) For comparison, three metagenomic samples were randomly 

chosen from seven different niches, ranging from adult gut microbiome to a marine 

planktonic community. More than 95% of the species from these metagenomic samples 

possessed fewer than ten strains (dashed horizontal line). Dashed lines and whiskers mark 

the interquartile range; plusses mark the outliers.
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Figure 3. 
ConStrains scales to large time series and accurately predicts strain dynamics. In the absence 

of existing large time series metagenomic data sets, a simulated set with 322 samples was 

created. Shown are the strain predictions within the Bacteroides fragilis species. The (a) true 

and (b) ConStrains-predicted relative abundance (y axis) of B. fragilis strains (stream ribbon 

width, with different colors representing different strains) in different samples sorted in 

longitudinal order (x axis, sample index) are illustrated. Inset windows 1–3 in a indicate 

periods with different dominant strains. (c) Prediction errors (red line) in each sample were 

measured between the true and predicted profiles using Jenson-Shannon Divergence (y axis, 

JSD). For comparison, random guess error (blue line) is shown to indicate a lower 

performance boundary. Spikes in error rates above 0.1 JSD are mostly related to time points 

in which the species average coverage drops below 10×, preventing reliable SNP profiling 

(Supplementary Fig. 7b).
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Figure 4. High sensitivity identification of strain phylogeny within a cystic fibrosis Burkholderia 
dolosa population data set
ConStrains was used to re-analyze data from a published study on the genetic variation of 

Burkholderia dolosa populations within cystic fibrosis patients30. (a) A total of six B. dolosa 

strains (pop-I to pop-VI) were predicted with an abundance of > 0.1% of the species 

(diameter of green circles proportional to relative abundance). An unrooted neighbor-joining 

tree on the alignments of the unweighted concatenated SNP profiles was constructed for the 

predicted strains (green circles) and the corresponding genomic data for the 29 cultured 

isolates (red circles; gray bar indicates the tree distance scale). These results show that the 

original study retrieved numerous isolates for the two most dominant strains within the 

population, but could not isolate the lower abundance strains. Distance between predicted 

strains and isolates fall within the prediction sensitivity of the ConStrains algorithm (same 

strain individuals differ with no more than 5% of all SNPs). (b) To demonstrate the 

sensitivity of the algorithm for differentiating strains, the color-coded allelic difference for 
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each of the predicted strains is shown in reference to the most dominant strain, pop-I. Sites 

with the same allele as reference (pop-I) were not marked.
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Figure 5. 
ConStrains analysis reveals species longitudinal dynamics and functional shifts within an 

infant gut development cohort. A cohort of nine infants that were sampled throughout the 

first three years of life, and for which metagenomic data was available for up to nine time 

points, were analyzed with ConStrains. For a total of 75 species, the depth was sufficient to 

interpret the underlying strains. The circular tree is constructed using a representative 

sequence for each species, with the colored outer rings indicating the number of strains 

observed for each of the nine subjects. Open boxes show the longitudinal dynamics of 

strains in four selected species; the phylogeny tree insert box shows all strains including the 

available reference genome of B. longum.
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Figure 6. Functional differences in Bifidobacterium longum strains at different time points 
during infant gut microbiome development
(a) Two subjects experienced dominant strain switches within the species B. longum 

(flanking panels, periods marked by numbered gray shadows). Each track in the middle 

panel shows the corresponding sample’s coverage over the B. longum reference genome. 

Time points (days after birth) are marked by red triangles. Windows I–IV capture gene 

content differences before and after dominant strain switches, reflected by the reference 

genome. (b) The four highlighted regions (I–IV in a) indicate strain-specific functional 

cohesion that is also strongly associated with B. longum relative abundance in gut 

microbiome development.
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