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SUMMARY

It is well established in the microbiome field that antibiotic (ATB) use and metabolic disease 

both impact the structure and function of the gut microbiome. But how host and microbial 

metabolism interacts with ATB susceptibility to affect the resulting dysbiosis remains poorly 

understood. In a streptozotocin-induced model of hyperglycemia (HG), we use a combined 

metagenomic, metatranscriptomic, and metabolomic approach to profile changes in microbiome 

taxonomic composition, transcriptional activity, and metabolite abundance both pre- and post-

ATB challenge. We find that HG impacts both microbiome structure and metabolism, ultimately 

increasing susceptibility to amoxicillin. HG exacerbates drug-induced dysbiosis and increases both 

phosphotransferase system activity and energy catabolism compared to controls. Finally, HG and 

ATB co-treatment increases pathogen susceptibility and reduces survival in a Salmonella enterica 
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infection model. Our data demonstrate that induced HG is sufficient to modify the cecal metabolite 

pool, worsen the severity of ATB dysbiosis, and decrease colonization resistance.

In brief

Wurster et al. find that streptozotocin-induced hyperglycemia significantly changes the 

metabolome and transcriptional behavior of the cecal microbiome. These changes potentially 

exacerbate amoxicillin-induced dysbiosis and decrease colonization resistance against Salmonella 
enterica. Together these data suggest that modifications to host metabolism may perturb 

microbiome metabolism and potentiate antibiotic susceptibility.

Graphical Abstract

INTRODUCTION

Exposure to antibiotics (ATB) is one of the most significant known microbiome 

perturbations. Drug-induced dysbiosis occurs within hours of treatment, and is characterized 

by loss of total bacterial load, taxonomic diversity, and significant transcriptional changes 

(Cabral et al., 2019, 2020; Dethlefsen and Relman, 2011). This alters the intestinal 

metabolome, placing the host at higher risk for opportunistic infection (Bäumler and 

Sperandio, 2016; Buffie et al., 2012; Chang et al., 2008; Croswell et al., 2009; Kaiko and 

Stappenbeck, 2014; Rivera-Chávez et al., 2016; Theriot et al., 2016; Theriot and Young, 

2015). Given the severity of ATBs on the microbiome and the near ubiquitous use of 

Wurster et al. Page 2

Cell Rep. Author manuscript; available in PMC 2022 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these drugs, it is critical to mechanistically understand ATB activity within the gut and the 

external factors that dictate susceptibility.

Microbial metabolism is a key determinant of ATB susceptibility (Stokes et al., 2019). 

Microbes performing ATP-generating processes like aerobic respiration have increased 

bactericidal drug sensitivity and experience a lethal respiratory burst during in vitro exposure 

(Adolfsen and Brynildsen, 2015; Belenky et al., 2015; Dwyer et al., 2014; Kohanski et 

al., 2007; Lam et al., 2020; Lobritz et al., 2015). Meanwhile, fermentation, diversion away 

from the tricarboxylic acid (TCA) cycle, or overall reduction in metabolism can confer drug 

tolerance in some species (Ahn et al., 2016; Conlon et al., 2016; Lobritz et al., 2015; Meylan 

et al., 2017; Thomas et al., 2013). We demonstrated that this trend holds true within the 

context of the microbiome, where ATB exposure dramatically reduces community metabolic 

capacity (Cabral et al., 2019). Surviving taxa like Bacteroides thetaiotaomicron (B. theta) 

can endure amoxicillin (AMX) exposure by transcriptional adaptation that prioritizes fiber 

fermentation over the utilization of simple sugars (Cabral et al., 2019). When considering 

mechanisms of in vivo susceptibility, it is important to consider the role of local nutrients on 

microbial metabolism. Host diet is likely one of the largest factors shaping the cecal nutrient 

pool; dietary changes can perturb microbiome diversity and activity, and thus may impact 

ATB susceptibility (Albenberg and Wu, 2014; Bisanz et al., 2019; Collins et al., 2018; David 

et al., 2014; Ley, 2014; Smits et al., 2017; Tanes et al., 2021). Congruently, we showed that 

added dietary glucose potentiates AMX toxicity within the cecum, reducing total bacterial 

load and B. theta’s drug tolerance (Cabral et al., 2019). This also occurs with the bactericidal 

drug ciprofloxacin, where consumption of a high fat/sugar diet increases mucus and simple 

sugar breakdown, increases gut glycolysis, and enhances microbiome drug susceptibility 

(Cabral et al., 2020). This suggests that the local nutrient pool can drive the severity of ATB 

activity in the microbiome by altering the metabolic rate of resident taxa.

Diet composition is not the sole determinant of nutrient availability within the gut. 

Normally, a small fraction of digested material reaches the dense communities of the lower 

gastrointestinal tract (GI). The composition of dietary molecules presented to the lower 

GI is impacted by multiple small intestinal (SI) digestive gradients and pancreaticobiliary 

secretions (Reese and Carmody, 2019; Shin et al., 2019). For example, the host controls 

colonic sugar concentrations via a combination of SI transporter expression, gastric 

emptying rate, and enteroendocrine function (Chen et al., 2016; Holst et al., 2016; Koepsell, 

2020; Ussar et al., 2017). Disruptions of host metabolism, like digestive and metabolic 

disorders, are correlated with microbial dysbiosis, highlighting the connection between 

host and microbial systems in the GI (Brestoff and Artis, 2013; Westfall et al., 2015; 

Qin et al., 2012; Sabatino et al., 2017). For example, dysglycemic patients demonstrate 

bacterial infiltration of the intestinal epithelial mucosa, suggesting that dysglycemia 

triggers an inflammatory intestinal phenotype by prompting microbial breakdown of mucus 

glycoproteins (Chassaing et al., 2017).

Host hyperglycemia (HG) may cause potent modulation of the lower GI metabolic 

environment. Currently, the relationship between dysregulated host metabolism, the local 

metabolite environment of the GI, and the severity of ATB-induced dysbiosis remains 

relatively understudied. We hypothesize that changes in host metabolism associated with 
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induced HG will alter the microbiota-accessible cecal metabolite pool and place the 

community in a metabolically permissive state that increases susceptibility to bactericidal 

ATBs. To test this, we used the single-dose streptozotocin (STZ) model rather than a diet- 

or genetically based model of glucose disruption (Deeds et al., 2011; Kobayashi et al., 2000; 

Wang and Liao, 2011). STZ is a glucosamine nitrosourea compound that induces HG via the 

selective and irreversible destruction of insulin-producing pancreatic β cells (Eleazu et al., 

2013; Wu and Yan, 2015). STZ is quickly metabolized by the host, with a serum clearance 

time of about 15 minutes (Lee et al., 2010; Eleazu et al., 2013). Thus, STZ provides the 

benefit of rapidly-induced and irreversible HG without potentially microbiome-confounding 

factors like diet and host genetics (Deeds et al., 2011; Xiao et al., 2017; Yang et al., 

2019). Existing research on glucose dysregulation and the microbiome is impacted by 

the use of dietary metabolic animal models like the high-fat diet-induced diabetes mouse 

(Fujisaka et al., 2016). In this study we used a multi-omic approach that profiled the 

taxonomic composition, transcriptional activity, and small molecule repertoire of the cecum 

to characterize the impact of STZ-induced HG on microbiome disruption during AMX 

treatment. We then profiled the effects of HG on AMX-induced pathogen susceptibility by 

challenging mice with Salmonella enterica. Our data show that HG is sufficient to modulate 

the cecal metabolite pool, and that these changes both potentiate ATB-induced dysbiosis and 

worsen the dysbiosis-related complication of opportunistic infection.

RESULTS

To examine the combined effect of HG and ATBs on microbiome structure and function, 

male C57BL/6J mice were given an intraperitoneal injection of either STZ or a sham 

(control). Mice were checked for HG 48 hours post injection and were then randomized. 

The next day, animals were given AMX or a sham (vehicle) for 24 hours ad libitum, which 

is sufficient to profile acute microbiome ATB responses without encountering significant 

extinction events (Cabral et al., 2020; 2019). After AMX delivery, mice were sacrificed and 

cecal contents were harvested for multi-omic profiling (Figure 1A).

STZ caused significant and sustained HG (Figures 1B and S1A). Because STZ’s mechanism 

of action involves organ cytotoxicity, we quantified plasma cytokines to evaluate systemic 

inflammation (Eleazu et al., 2013). We found no statistical difference in cytokine levels 

prior to ATB administration (Figures S1B and S1C), but did observe an increase in 

IFN-γ 24 hours later (Figure S1D) that is likely correlated with the early stages of 

disease progression in this model (Hanafusa and Imagawa, 2008). We then assessed GI 

histopathology and quantified GI lipocalin-2 to profile for localized inflammation. STZ-

treated mice had minimal to no edema or inflammation compared to controls (Figure S1E), 

and no difference in lipocalin-2 levels (Figure S1F). Together, these data show minimal 

differences in inflammatory phenotypes between STZ-treated and control mice during the 

time frame used in this study.

We profiled the effect of HG and AMX on microbiome structure using 16S rRNA 

sequencing. STZ treatment did not reduce diversity (Figure S1G) but did alter community 

composition when combined with AMX (Figures 1C, S1H, and S1I). Because 16S 

sequencing has limited phylogenetic resolution, we conducted the remaining analyses with 

Wurster et al. Page 4

Cell Rep. Author manuscript; available in PMC 2022 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whole metagenomic sequencing (WMGS) (Cabral et al., 2020; 2019; Clooney et al., 2016; 

Poretsky et al., 2014; Ranjan et al., 2016). WMGS showed that STZ alone did not impact 

α-diversity but bolstered the reduction in diversity and taxonomic shifts caused by AMX 

(Figures 1D and 1E).

Since STZ ablates insulin synthesis, and insulin helps regulate intestinal glucose absorption 

(Ussar et al., 2017), we asked if GI-localized glucose levels were altered by HG. 

However, we found that STZ-treated mice and controls had no significant difference 

in cecal glucose levels (Figure 1F). Therefore, glucose availability cannot explain the 

changes in community composition between experimental groups. Thus, we profiled the 

metabolome using quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and liquid 

chromatography tandem mass spectrometry (LC-MS/MS) (Tables S1 and S2). By assessing 

cecal metabolite diversity using Principal Coordinates Analysis, we found that both STZ 

and AMX significantly impacted the cecal metabolome’s composition (Figure 2A). We 

hypothesized that STZ-induced HG establishes a transcriptional and metabolic environment 

that alters the microbiome’s response to ATB exposure. To confirm this, we assessed the 

impact of HG on microbiome function both pre- and post-AMX treatment.

HG significantly modifies the cecal metabolome and metatranscriptome

Unlike dietary models, STZ was associated with a single significant phylum-level change: 

the expansion of Verrucomicrobia (Figures 1E and S1I) (Xiao et al., 2017; Yang et al., 

2019). We confirmed that this expansion was driven by Akkermansia muciniphila using 

differential abundance testing (Figure 2B) (Love et al., 2014). A. muciniphila forages carbon 

from epithelial mucins and has been proposed to breakdown gut lining integrity, which may 

contribute to cecal metabolome divergence via imbalances in the local carbon pool that 

impact microbial cross-feeding networks (Belzer et al., 2017; Cabral et al., 2020; Desai et 

al., 2016; Zhang et al., 2019). For example, we observed a reduction in the abundance of 

Blautia sp. YL58 after STZ (Figure 2B). Members of this genus are short-chain fatty acid 

(SCFA) producers that use mucin as a carbon substrate (Bui et al., 2019; Oliphant and Allen-

Vercoe, 2019; Rey et al., 2010; Vacca et al., 2020). A. muciniphila may outcompete Blautia 
for mucins in the HG host, which would disrupt any syntropic reactions Blautia participates 

in. Because the pre-AMX community structure was similar between hosts, we felt that the 

disparity in ATB susceptibility was due to modified metabolic and transcriptional activity, 

rather than baseline taxonomic differences.

We paired differential abundance testing (Love et al., 2014) and pathway-level projection 

(Aggio et al., 2010) of our Q-TOF-MS data with random forest classification of LC-MS/MS 

features to identify distinctive metabolites between HG mice and controls (Figures S2A–

S2C; Tables S1, S2, and S3). We then paired these findings with community- and species-

level transcriptomics to better profile the microbiome’s functional capacity prior to ATB 

exposure. Despite consuming identical diets, HG and normoglycemic (NG) mice had varied 

levels of metabolites related to polysaccharide processing. We saw STZ-specific enrichment 

of the flavones apigenin, schaftoside, and daidzein; and significant reduction of major 

metabolites from apigenin breakdown such as 3–3-hydroxyphenyl propanoate (Figure 2C; 

Table S1). These metabolites can generate either hydroxyphenylacetic acids or phenolic 
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intermediates that are converted to SCFAs by Firmicutes (Braune and Blaut, 2016), and 

their accumulation may indicate diminished SCFA generation. To that end, STZ-treatment 

reduced valerate levels (Figure 2C). HG also lowered phytate degradation and multiple 

polysaccharide-targeted carbohydrate-active enzymes (CAZymes; Figures 2C, 2D, and S2D; 

Tables S1, S4, and S6). Polysaccharide-fermenting taxa like B. theta (Martens et al., 2008; 

Sonnenburg et al., 2005) had reduced expression of targeted fiber import loci (Figure S2E: 

BT3086, BT3087, BT3090, and BT4581; Table S5). These data suggest that STZ may 

impair microbial fiber fermentation and alter the level of polysaccharide-derived carbon 

sources.

Amino acids (aa) are another significant bacterial carbon source (Wang et al., 2019a) 

that was impacted by STZ treatment. Multiple metabolites related to aromatic amino acid 

(AAA) generation, like 3-(3-hydroxyphenyl)propanoic acid and phenylethyl alcohol, were 

reduced by STZ (Figure 2C; Table S1). We saw enrichment of metabolites involved in 

aa catabolism like 6-methylnicotinamide, 2-ketoisocaproate and α-ketovaline, as well as 

pathway enrichment of AAA degradation and protein digestion, suggesting a shift toward 

aa catabolism rather than de novo synthesis (Figures S2A and S2B; Tables S1 and S3). 

Shikimate pathway intermediates like 3-dehydroquinate, 3-dehydroshikimate, and shikimate 

were enriched after STZ treatment, and likely caused by a block in a terminal component of 

the pathway, as transcription of both AAA and chorismate synthesis were reduced (Figures 

2C and 2D; Tables S1 and S6). The shikimate pathway feeds directly into AAA generation 

via chorismate; thus, reduced transcription and accumulation of metabolic intermediates 

suggests a shift from anabolic to catabolic aa metabolism.

The shikimate pathway is also involved in B-vitamin generation and impacts the availability 

of energy carriers like coenzyme A (CoA) (Tzin and Galili, 2010). We observed 

enrichment of metabolites involved in pantothenate and CoA biosynthesis coupled with 

reduced pathway transcription (Figures 2D and S2B; Tables S3 and S6). STZ increased 

expression of thiazole biosynthesis, which is critical for generating vitamin B1 and 

thus key metabolic enzymes like pyruvate dehydrogenase, pyruvate decarboxylase, and 

a-ketoglutarate dehydrogenase (Andersen et al., 2015; Allaway et al., 2020; Yoshii et 

al., 2019) (Figure 2D; Table S6). We observed increased pyruvate, glycolysis, and 

gluconeogenesis-related metabolites, including glutamine and glycerol-3-phosphate (Figures 

S2A and S2B). This enrichment was coupled with elevated ATPase, phosphoenolpyruvate 

hydratase, and succinate dehydrogenase transcription (Figure 2E; Table S8), that, when 

considered in tandem with increased inosine and tRNA processing (Figure 2D; Tables S1 

and S6), suggests that STZ bolsters respiration within the microbiome.

These data describe community-level changes to microbiome function. To identify species-

specific contributors to metabolome variation, we taxon stratified our Q-TOF-MS data 

using MIMOSA (Figure 2F) (Noecker et al., 2016). A. muciniphila had the largest 

contribution to community metabolism, followed by B. theta (Figure 2F; Table S9). 

A. muciniphila significantly contributed to acetate variation between hosts, speaking to 

STZ-related difference in SCFAs. Metabolic signatures of increased metabolism, including 

glutamine, inosine, and glycerol-3-phosphate accumulation, could be explained by synthesis 

and degradation from A. muciniphila (glutamate and inosone) and synthesis from B. theta 
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(inosine and glycerol-3-phosphate). Finally, variation in phosphatidylethanolamine, a major 

component of microbial cell walls, could be somewhat explained by A. muciniphila (Figure 

2F), suggesting increased cell wall synthesis by this taxon. These data highlight that these 

two taxa are key in HG-specific changes to microbiome function. STZ has robust impacts 

on cecal microbiome function. While A. muciniphila and B. theta are involved in this 

phenotype, it is important to consider that there is redundancy in species function and 

in substrate utilization across biochemical pathways (Tian et al., 2020). Thus, it is likely 

that the cumulative effect of multiple metabolic disruptions incurred from STZ increases 

metabolic demand on the community and leads to increased AMX susceptibility.

HG modifies the composition of Bacteroidetes and Firmicutes after AMX exposure

Given the connection between microbial metabolism and ATB susceptibility (Belenky et 

al., 2015; Cabral et al., 2019; Lobritz et al., 2015; Stokes et al., 2019), we hypothesized 

that STZ-induced metabolic disruption bolstered AMX susceptibility. HG mice had a highly 

divergent microbial composition after ATB exposure compared to controls (Figures 3A 

and S3). Specifically, HG exacerbated the AMX-related reduction in α-diversity (Figure 

1D). Only HG mice had a reduction in Verrucomicrobia, although this may be due to 

the pre-AMX expansion of A. muciniphila (Figures 1E and 3B). Interestingly, the loss of 

Actinobacteria, Firmicutes, and Proteobacteria, and the bloom in Bacteroidetes that was 

expected after AMX were greater in HG mice (Figures 3C–3F) (Cabral et al., 2019). 

Consistent with our previous work (Cabral et al., 2019), the Bacteroidetes bloom was driven 

by expansion of B. theta in both hosts (Figure 3G).

We calculated the interaction of HG and AMX to examine host-specific changes in species 

abundance (Love et al., 2014). In addition to B. theta, many members of the Bacteroides 
genus increased after AMX, with significantly elevated abundance in HG mice (Figures 

3H and S3A). Meanwhile, the species with reduced abundance in HG mice after AMX 

treatment were primarily within the order Clostridiales (Figures 3H, S3B, S3C, S3D, S3E, 

S3F, S3G, S3H, and S3I). These taxa are key starch degraders and SCFA producers, and 

their reduction suggests an increased dysbiotic state in STZ and AMX co-treated mice 

(Bui et al., 2016; Iino et al., 2007; Kazemian et al., 2020; Newman et al., 2018). Overall, 

these data show that STZ-induced metabolic shifts can exacerbates the post-AMX bloom 

of Bacteroides and significantly worsen the loss of key SCFA-producing Firmicutes. This 

likely impacts the local metabolome and metatranscriptome, and thus AMX susceptibility, 

given the syntrophic nature of Bacteroides and Firmicutes metabolism (Fischbach and 

Sonnenburg, 2011).

HG exacerbates ATB dysbiosis and shifts microbial metabolism

As with taxonomic changes, the majority of detected functional AMX responses were highly 

host dependent. We used the same interaction calculation to profile host-specific changes in 

CAZyme and SEED subsystem transcript abundances (Figures 4A and 4B). Interestingly, 

HG animals lack the reduction in glycoside hydrolase (GH) 43 seen in controls, suggesting 

modified processing of hemicelluloses, pectins, xylans, and arabinose (Figure 4A; Table 

S4; Mewis et al., 2016). Given the reduced polysaccharide foraging in the STZ baseline, 

it is likely that the HG microbiota is unable to adapt its CAZyme expression in response 
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to AMX. HG communities had overall fewer GH transcripts at the SEED subsystem level, 

and a greater loss of GH abundance relative to controls (Figures S4A and S4B; Tables S4 

and S7). We saw STZ-specific accumulation of polyphenols and polysaccharides, providing 

further support for host-dependent modifications in polysaccharide metabolism (Figure 5A; 

Table S1). HG mice had accumulations of multiple phenylpropanoids, phenylacetic acids, 

polyphenols, alkaloids, flavonoids, and isoprenoids (Figure 5A; Table S1) and pathway-level 

enrichment of metabolites related to flavonoid/isoflavonoid synthesis after AMX treatment 

(Table S3). Because fiber metabolism can confer a protective phenotype to select gut 

microbes (Cabral et al., 2019), we anticipated that reduced fiber and polyphenol metabolism 

may directly contribute to the severity of AMX-induced dysbiosis in HG mice.

Mucus foraging by the microbiota after AMX was also perturbed. In our CAZyme dataset, 

HG mice had a loss of GHs that target the chitobiose core of mucins (GH115), and 

did not upregulate GH84, GH129, and GH89 which target N-acetylglucosamine, class-III 

mucins, and mucus glycoproteins, respectively (Figure 4A, Table S4). Simultaneously, STZ 

and AMX co-treatment downregulated expression of multiple pathways involved in mucin-

derived carbon metabolism, including the Leloir pathway (foraging of mucus galactose 

residues), 4-deoxy-L-theo-hex-4-enopyranuronate degradation (breakdown of heparin and 

hyaluron into pyruvate), and D-galacturonate degradation (Figures 4C and 4D; Table S6; 

Tang et al., 2016). The sialic acid residue N-acetylneuraminic acid (NANA) was enriched 

in NG but not HG animals after AMX (Table S1). Because NANA is liberated by mucus 

breakdown (Crost et al., 2016), this suggested reduced muciniphilic activity by STZ and 

AMX co-treated communities. Ultimately, HG-related modifications in glycan foraging 

occur both before and after AMX, indicating that STZ-induced HG impacts the composition 

of the cecal carbon pool.

Further evidence of perturbed carbon foraging in the HG AMX-treated microbiome arose 

from examination of host and ATB interaction for SEED subsystem transcript abundances 

(Figure 4B; Table S7). We found an STZ-specific increase in phosphotransferase system 

(PTS) transcripts (Figure 4B, Table S7) as well as enrichment of PTS metabolites like 

mannitol 1-phosphate (Figure 5A; Table S1). PTS systems function to rapidly import target 

saccharides into bacterial cells, and increased PTS activity may be the result of higher 

environmental sugar concentrations (McCoy et al., 2015). Although AMX reduced cecal 

glucose concentrations in both hosts, HG mice had significantly higher glucose levels than 

controls (Figure 1F) and we observed STZ-specific enrichment of sugars like acetylated 

maltose (Figure 5A; Table S1).

Elevated sugars and PTS likely also increased catabolism. To that end, we observed 

significant HG-specific increases in glycolysis and gluconeogenesis (Figure 4B; Table S7) 

and pyruvate fermentation transcripts compared to controls (Figures S4A and S4B; Table 

S7). The metabolome of HG AMX-treated mice was specifically enriched in catabolism and 

catabolism-supporting pathways like 2-oxocarboxylic acid metabolism, glycolysis, starch/

sucrose utilization, nicotinate/nicotinamide, and propanoate generation (Figure 5B; Table 

S3). The abundance of vitamin cofactors was also impacted; in our LC-MS/MS dataset, we 

saw HG-specific enrichment in riboflavin (Figure S4C: Cluster 699, Figure S4D; Table S2) 

(Steinert et al., 2020). The enrichment of nicotinate/nicotinamide, propanoate generation, 
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and cofactor-related metabolites may impact the abundance of energy carriers (Belenky 

et al., 2007). Together these data suggest that carbon metabolism is disturbed in the HG 

AMX-treated microbiome, in part due to higher environmental concentrations of readily-

metabolized sugars.

We stratified our metabolomics and transcriptional data with MIMOSA to identify 

taxonomic drivers of community behavior during AMX treatment (Figures 5C and 5D; 

Table S9). Regardless of host, B. theta was the major metabolome-contributing taxa, which 

is congruent with its dominance of the microbiome during AMX perturbation (Figures 

3A, 3G, 5C, and 5D; Table S9). Of the metabolites correlated with differential community 

activity in HG mice, B. theta was responsible for enrichment of B-vitamins like riboflavin 

(via synthesis) and pantothenate (via synthesis and degradation). Additionally, sucrose and 

glycerol-3-phosphate levels could be partially explained by synthetic reactions from B. theta 
(Figure 5D; Table S9).

The fact that B. theta significantly shapes the metabolic function of the microbiome after 

AMX in both hosts prompted us to compare the post-ATB transcriptome and metabolome 

(Figure 6). We found that HG AMX-treated metabolomes were significantly enriched 

for metabolites involved in multiple aa generation pathways, nucleotide biosynthesis, and 

linoleic acids (Figure 6A; Table S3). Additionally, we saw significant enrichment of 

metabolites related to carbon processing (fructose/mannose metabolism, ABC transporters, 

PTS) and metabolic homeostasis (pyruvate metabolism, ubiquinone/terpenoid-quinone 

biosynthesis, and glutathione metabolism) (Figure 6A). At the MetaCyc pathway level, 

we observed HG-related increases in pyruvate fermentation and nucleotide biosynthesis 

(Figure 6B; Table S6). Unsurprisingly, B. theta was the major contributing taxon to this 

variation (Figure 6C; Table S9). Thus, we performed single-species transcriptomics on B. 
theta during AMX challenge in HG and NG mice. Interestingly, B. theta downregulated 

the expression of multiple polysaccharide utilization loci (BT4293-BT4299, BT4296–4298, 

BT3025, BT1761, and BT1762) and sugar import systems for fructose (BT1759–1763, and 

BT1759), ribose (BT2804), and fucose (BT3665) (Figure 6D; Table S5) only in HG mice 

(Figure 6D; Table S5; Lynch and Sonnenburg, 2012; Mardo et al., 2017; Mimee et al., 2015; 

Townsend et al., 2020). The combination of STZ and AMX treatment also coincided with 

significant upregulation of the NADH dehydrogenase complex (BT4058–4067) which is a 

primary redox balance locus (Fischbach and Sonnenburg, 2011). We also saw elevation of 

another NADH ubiquinone reductase operon (BT0616) (Goodman et al., 2009), and ATPase 

(BT1746) (Figure 6D; Table S5). Our community-level metabolomics indicated HG-specific 

loss of phosphoenolpyruvate (Table S1), which may be related to the differential regulation 

of respiration-related complexes in B. theta. Together these data show that HG, and the 

resultant changes in environmental metabolites, are sufficient to dramatically modify the 

transcriptional and metabolic behavior of B. theta during AMX treatment. This change 

ultimately impacts the AMX susceptibility of other taxa within the community and greatly 

perturbs the functional response of the larger community to ATB pressure.
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STZ and AMX co-treatment increases susceptibility to Salmonella enterica infection

We noticed that fatty acid metabolism was differentially impacted by STZ and 

AMX treatment. Specifically, co-treated communities were enriched for multiple N-

acylethanolamines (Figure 5A; Table S1) and the precursor phosphatidylethanolamine 

(Table S1). Higher ethanolamine concentrations may suggest more fatty acid epoxidation 

and dysbiosis-associated inflammation within the GI (Ormsby et al., 2019; Thiennimitr et 

al., 2011). Ethanolamines are naturally generated by phosphatidylethanolamine breakdown 

during cell turnover, however, most of the microbiota is unable to ferment ethanolamines, 

and these compounds can increase the colonization and virulence of multiple enteric 

pathogens (Anderson et al., 2015, 2018; Nawrocki et al., 2018; Rowley et al., 2018; 

Garsin, 2010). Specifically, some Enterobacteriaceae are enriched for the genetic machinery 

required to use ethanolamines, and can funnel their breakdown products into both nitrogen 

metabolism and respiration (Anderson et al., 2015; Garsin, 2010; Srikumar and Fuchs, 

2011; Thiennimitr et al., 2011). In Salmonella, exogenous ethanolamine signals a cascade of 

metabolic and virulence genes that promote intestinal colonization (Anderson and Kendall, 

2016). ATB-induced dysbiosis is also associated with increased S. enterica colonization, 

likely through the induction of a respiratory-favorable environment and disruption of the 

endogenous microbiota (Yoon and Yoon, 2018; Zeng et al., 2017). The transcriptional 

changes we observed in B. theta are highly indicative of a respiratory-favorable environment 

in the HG AMX-treated GI (Figure 6D). Thus, we asked if the microbiome modifications in 

HG AMX-treated mice would increase infection susceptibility to S. enterica (Figure 7A).

We found that co-treatment with STZ and AMX lowered the infective dose required to 

establish S. enterica colonization and significantly increased intestinal, hepatic, and splenic 

pathogen burden (Figures 7B and S5A). Host HG increased lethality by day 7 of infection 

(Figures 7C and 7D). In the control group, all vehicle-treated mice survived, and AMX-

treated mice in the high dosage groups (1 × 104 and 1 × 105) experienced 75 and 50 percent 

survival respectively (Figure 7C). In the STZ group, vehicle-treated mice in the highest 

dosage groups (1 × 105 and 1 × 106) had 75 and 40 percent survival, while the AMX-treated 

mice experienced between 25 to 80 percent survival with lethality events starting as early as 

24 hours (Figure 7D).

To check for any significant differences in GI physiology or immunocompetence, we 

assessed GI edema and inflammation between HG and control mice (Figure S5B). We 

saw no differences in GI physiology, but noticed slight differences in some serum cytokines 

(Figures S5C–S5I). For IL-1α, IL-6, and IL-12p70, variation was between vehicle-treated 

mice and may represent progression of the STZ model rather than responses to infection. 

For GM-CSF, IFN-β, IL-10, and IL-17A, plasma concentrations were only elevated in HG 

AMX-treated mice after infection and thus may be the result of differential susceptibility 

(Figure S5C–S5I).

Infection with S. enterica represents another form of microbiome dysbiosis in conjunction 

with ATBs. Thus, we profiled the fecal microbiome during the first 4 days of infection to 

assess if HG worsened infection-related dysbiosis (Figures 7E, 7F, 7G, S5J, S5K, and S5L). 

The initial infection significantly impacted microbiome β-diversity (Figure S5). However, 

diversity remained divergent in accordance with preinfection experimental treatment (Figure 

Wurster et al. Page 10

Cell Rep. Author manuscript; available in PMC 2022 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7E). This indicates that regardless of infective dose, the microbiome changes induced 

by STZ or AMX remain the drivers of β-diversity. Interestingly, we noticed that only 

HG mice experienced significant reduction in α-diversity (Figure S5K). During the 4-day 

period following infection, Salmonella expansion was only detected in AMX-treated animals 

(Figure 7F). We then quantified the difference in Salmonella reads between control and HG 

mice after AMX, and found that HG mice had notably higher levels of Salmonella (Figure 

7G). Together, these data suggest that the combination of STZ and AMX severely reduces 

the probability of survival after S. enterica challenge and increases pathogen burden and 

microbiome dysbiosis relative to NG controls. It is possible that the enrichment of favorable 

metabolites or change in respiratory potential in HG AMX-treated communities promotes 

the expansion and virulence of S. enterica, although more work is required to confirm this 

hypothesis.

DISCUSSION

Recent estimates of HG global prevalence suggest that metabolic disruption occurs in 

approximately 10 percent of all people, with incidence increasing annually (Saeedi et 

al., 2019). Thus, understanding how host metabolism impacts ATB-induced dysbiosis is 

key to the development of microbiomeprotective therapeutic strategies. To address this 

knowledge gap, we used an integrated multi-omic strategy to examine how HG modifies the 

microbiome’s response to AMX. Specifically, we combined WMGS, metatranscriptomics, 

and untargeted metabolomics to examine differences in microbiome composition and 

function, both pre- and post-ATB treatment, and to characterize the severity of dysbiosis-

related complications like enteric infection.

A key goal of this study was to profile the impact of altered host metabolism and 

the microbiota-accessible metabolite pool on microbiome function during ATB treatment. 

Since dietary modulation has inherent limitations involved in restructuring microbiome 

composition, we opted for a rapid-chemotherapeutic method to perturb the GI metabolite 

pool. We chose STZ, in part, due to its widespread use and quick onset of changes. However, 

it is critical to address limitations of the model, as it does not perfectly replicate the 

pathology of clinical HG. STZ has been used to replicate both type-1 and type-2 diabetic 

phenotypes in animals since the mid-1960s (Deeds et al., 2011; Eleazu et al., 2013). Models 

of STZ administration vary widely in their dosage concentration, injection frequency, and 

inclusion or exclusion of high-fat feed typically due to differences in research goals (Deeds 

et al., 2011; Furman, 2021). Because STZ does not perfectly mimic type-2 diabetes, the 

inclusion of a high-fat feeding period before injection was recently proposed as a method 

to induce hyperinsulinemia and insulin resistance in STZ-treated animals (Furman, 2021; 

Chao et al., 2018). Regardless, STZ consistently induces the characteristic symptoms of HG, 

insulin deficiency, polydipsia, and polyurea (Furman, 2021; Kolb, 1987). Although there 

is conservation of immunological responses to β cell ablation (Eleazu et al., 2013), one 

must consider that microbiome-related phenotypes derived from STZ-induced HG are likely 

specific to the submodel and may not readily translate across studies. For example, the only 

taxonomic changes we found after STZ treatment were the expansion of A. muciniphila and 

collapse of Blautia sp YL58. This contrasts with the many taxonomic shifts seen in existing 

work examining STZ-treated rats, but this may be due to inherent differences between mice 
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and rats, use of multiple STZ doses, sample collection, sequencing depth, use of a diet in 

combination with STZ, or the time frame of weeks rather than days (Liu et al., 2019a; Ma et 

al., 2020; Patterson et al., 2015; Yin et al., 2020).

Interestingly, serum metabolomics in multiple low-dose STZ treated mice found enrichment 

of AAAs, bile acids, dipeptides, fatty acids, nucleotides, sphingolipids, and vitamins (Ugarte 

et al., 2012). These results are congruent with our pre-AMX metabolomics data and may 

represent true HG-related changes. Metabolomic studies focused on prediabetic patients 

have found shifts in aa catabolism as a potential biomarker of progression to type-1 diabetes, 

and spikes in both aromatic and branched-chain aa as predictive of type-2 diabetes (Wang 

et al., 2011; Neis et al., 2015), supporting our observed aa changes as a true HG phenotype. 

A potential explanation for this enrichment is that fiber use within the GI impacts the 

production of several aa-based metabolites by members of the Firmicutes phylum (Neis et 

al., 2015; Tanes et al., 2021), suggesting an intrinsic link between metabolic dysregulation 

and shifts in gut aa metabolism.

We found that STZ initiated a cascade of changes related to fiber and SCFA generation. 

Specifically, the loss of SCFA-producing Firmicutes may perturb syntropic reactions 

involved in fiber-fermentation (Bui et al., 2016; Oliphant and Allen-Vercoe, 2019; Rey 

et al., 2010; Vacca et al., 2020). Because the microbiome is responsible for this 

fermentation (Holscher, 2017), we anticipate that disturbances in polysaccharide processing 

are microbially-driven rather than host-derived. In the case of polyphenol substrates and 

metabolites, bacteria can coopt and liberate sugars from these compounds for use in their 

own metabolism (Fraser and Chapple, 2011; Braune and Blaut, 2016; Moore et al., 2002; 

Wang et al., 2019b; Lundgren and Thaiss, 2020; Vollmer et al., 2018) For example, some 

taxa can directly utilize flavones as a carbon source, fueling them into their respiratory 

cycle (Burlingame and Chapman, 1983). Thus, shifts in the abundance of dietary-derived 

polyphenols could modify microbial metabolism in the GI.

Reduced fiber use by the microbiota may be partially explained by a side-effect of STZ 

treatment. Rodents receiving a multiple low-dose regime (i.e., 50 mg/kg/day for 5 days) of 

STZ exhibit an initial reduction in food consumption (Motyl and McCabe, 2009). However 

animals exhibit hyperphagia one week post-injection (Motyl and McCabe, 2009; Zhang 

et al., 2008). It is possible that our experimental time point for AMX administration and 

sample collection (3 and 4 days-post injection, respectively) is associated with reduced food 

intake, which would lower the availability of fiber. Regardless, reduced fiber and polyphenol 

intake has been recognized as a form of dysbiosis, increasing susceptibility to bactericidal 

ATBs via modification of microbial metabolism (Cabral et al., 2020; 2019; Makki et al., 

2018; Ng et al., 2019), and we propose that a similar disruption of the microbiome occurs 

here.

We observed that the HG microbiome was enriched for transcripts and metabolites involved 

in pyruvate metabolism and glycolysis. It is likely that the overall enrichment of aa 

catabolism directly contributes to increased community respiration because many of the 

altered amino acids are glucogenic (Berg et al., 2002). A key consideration of any ecological 

network is its taxonomic composition (Coyte and Rakoff-Nahoum, 2019). Polymicrobial 
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interactions are a significant component of the microbiome’s ecology and changes to 

taxonomic structure or function will directly impact the overall activity (Coyte and Rakoff-

Nahoum, 2019; Layeghifard et al., 2017; Boon et al., 2014). Because Firmicutes have been 

characterized to perform a bulk of aa, nitrogen, and sulfur metabolism reactions within the 

GI, it is possible that these taxa are driving the increased metabolic rate. This may prime 

the microbiome as a whole for increased AMX susceptibility, but more work is needed 

to confirm this hypothesis (Bernal et al., 2007; Böttcher et al., 2014; Gao et al., 2018; 

Meadows and Wargo, 2015). Overall, these data make a strong argument for the degree 

of control that changes in the baseline function of the microbiome has on compositional 

restructuring after ATB perturbation.

When comparing HG and NG communities during and after AMX treatment, the increased 

dysbiosis in HG mice was expected given both the increased basal metabolic rate and the 

elevation of simple sugars and PTS activity during AMX. Increased sugar availability and 

decreased polysaccharide utilization have been demonstrated to potentiate ATB toxicity 

within the GI (Cabral et al., 2019; 2020). The most striking finding to us was how 

divergent the transcriptional behavior of B. theta was between hosts. We previously 

identified that polysaccharide fermentation by B. theta functions as an amoxicillin tolerance 

response in NG animals (Cabral et al., 2019). However, this study complicates that 

understanding, as STZ-specific reductions in B. theta’s polysaccharide and mucus foraging 

suggests that these may not be universal amoxicillin tolerance responses. There may be 

non-mucosal or non-polysaccharide metabolite species that induce a protective phenotype 

to members of the Bacteroides genus. Alternatively, members of this genus possess b-

lactamases, and differences in the expression of these resistance genes may be involved 

in the observed enrichment of Bacteroides in HG AMX-treated mice (Edwards, 1997). 

Regardless, reduction in fiber fermentation by Bacteroides disrupts the balance of nutrients 

available for syntrophic metabolism with Firmicutes and Actinobacteria (Fischbach and 

Sonnenburg, 2011). These changes may induce a proinflammatory state and contribute to 

the increased dysbiosis experienced by HG mice during ATB exposure. Given the total 

ecological complexity of the gut microbiome, a more robust understanding of cross-feeding 

networks will be integral to the full characterization of a given perturbation’s impact on the 

microbiome.

Lastly, we examined if the increased severity of AMX toxicity in HG mice would increase 

susceptibility to enteric infection. Overall, HG AMX-treated animals had both increased 

susceptibility to S. enterica and reduced overall survival after one-week of infection (Figure 

7). Recent work by Thaiss et al. has shown that decreased barrier function caused by 

STZ increases S. enterica susceptibility (Thaiss et al., 2018). However, this study used a 

multiple-dose STZ model and did not infect mice until a few weeks after STZ treatment, 

thus these results may not translate to our study. For example, we found that, at low 

infection doses, STZ treatment had no impact on susceptibility in the absence of ATBs. 

Thus, it is possible that the HG ATB-treated microbiome is structurally, functionally, and 

metabolically perturbed in a way that promotes the pathogen colonization and expansion. 

For example, we found enrichment of multiple ethanolamines, which are a carbon source 

that cannot be used by the microbiota but can be utilized by Salmonella (Anderson et 

al., 2015; Srikumar and Fuchs, 2011; Thiennimitr et al., 2011). S. enterica has flexible 
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metabolism compared to the bulk of the microbiota (Taylor and Winter, 2020), and can 

use inaccessible carbon sources like ethanolamines to promote colonization and niche 

adaptation in mammals (Anderson et al., 2015). Other metabolites that may have impacted 

S. enterica infection severity include acetyl-maltose, as Salmonella are equipped with 

tightly controlled maltose import systems and readily fuel this carbon source into their 

respiratory cycle (Erhardt and Dersch, 2015; Jain et al., 2020; Miller et al., 2013). Another 

metabolite of interest was pantetheine, which Salmonella can shunt into its CoA synthesis, 

potentially providing a fitness advantage through competitor exclusion (Ernst and Downs, 

2015) (Table S1). An alternate explanation for the increased expansion of Salmonella is an 

overall increase in ATB-induced intestinal oxygenation. Salmonella are facultative anaerobes 

and can readily switch to aerobic respiration when needed (Rhen, 2019). Additionally, 

Salmonella can use inflammation-related metabolites like tetrathionate as terminal electron 

acceptors, and can coopt the oxygenated and inflamed gut for growth (Winter et al., 2010). 

Although more work is required to parse what components of the HG microbiome provide 

a competitive advantage to Salmonella after AMX treatment, our data provides strong 

preliminary evidence that STZ-induced HG can directly impact the acute consequences 

of ATB dysbiosis. Ultimately, our study shows that host-related physiology and metabolic 

state must be a key consideration of any current and future therapeutic strategy aimed at 

mitigating ATB-induced microbiome damage.

Limitations of the study

While our multi-omic approach robustly characterizes the cecal microbiome during 

dysglycemia and ATB perturbation, there are limitations in the study design and 

methodology that complicate the interpretation of the results. First, our study exclusively 

uses male mice. Female mice are partially resistant to STZ-induced HG and require 

significantly higher doses and (or) repetitive dosing regimens compared to males to induce a 

metabolic phenotype (Deeds et al., 2011; Goyal et al., 2016). An additional consideration is 

that STZ’s mechanism of action involves organ cytotoxicity (Deeds et al., 2011). Although 

STZ is rapidly eliminated from the host, it is nearly impossible to guarantee that off-target 

effects of pancreatic toxicity are not contributing to some microbiome phenotypes.

A key considerations of our metagenomic and metatranscriptomic-reliant analyses is the 

dependence on existing databases that possess annotation-based limitations and the need 

for imperfect alignment algorithms (HMP (Human Microbiome Project Consortium), 2012). 

While WMGS provides increased resolution over 16S rRNA sequencing, the taxonomic 

classification of sequencing reads is still subject to currently available reference genomes, 

which are biased toward some taxa over others (HMP (Human Microbiome Project 

Consortium), 2012; McLaren et al., 2019). Further, WMGS data is complicated by the 

fact that taxonomic levels are reported as relative abundances. Even metabolomic-focused 

pipelines like MIMOSA are limited by their reference databases. Specifically, full reaction 

annotations within the KEGG database are required for this pipeline (Noecker et al., 2016).

For untargeted metabolomics, ion annotation is still considered the primary bottleneck of 

analysis (Gertsman and Barshop, 2018; Schrimpe-Rutledge et al., 2016). The diversity 

in chemical modification, polarity, solubility, and ionization of chemical structures from 
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complex biological samples often requires multiple analytical modes (i.e., positive versus 

negative ion mode) to be run in order to characterize all structures, and that can 

subsequently complicate ion identification (Gertsman and Barshop, 2018; Lei et al., 2011; 

Luan et al., 2019). While metabolomics offers a powerful examination of the small 

molecule repertoire of the cecum, it does not distinguish between bacterially-derived, 

fungal-derived and host-derived metabolites (Gertsman and Barshop, 2018). While pairing 

these data with metatranscriptomics and using networking models like MIMOSA helps 

improve inference of metabolite origin it does not eliminate the possibility of host-derived 

metabolites being mistaken for bacterially derived compounds and vice versa. Additionally, 

our metabolomics preparation is unable to separate intracellular- and extracellular-derived 

metabolites, potentially complicating biological interpretation. Ultimately, further work will 

be required to correlate STZ and AMX-induced metabolomic changes with individual 

taxa, and greater annotation of metabolic syntrophy in the gut will aid in the biological 

interpretation of subsequent metabolomic analyses.

STAR⋆METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the Lead Contact, Peter Belenky 

(peter_belenky@brown.edu).

Materials availability—This study did not generate new, unique reagents.

Data and code availability

• Illumina sequencing read data have been deposited at the NCBI Short Read 

Archive (SRA) and are publicly available as of the date of publication. 

Accession numbers are listed in the key resources table. LC-MS/MS and GNPS 

data have been deposited to MassIVE: https://massive.ucsd.edu and GNPS: 

https://gnps.ucsd.edu, respectively, and are publicly available as of the date of 

publication. DOIs are listed in the key sources table.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal housing—Experimental procedures involving mice were conducted in accordance 

with protocols approved by the Institutional Animal Care and Use Committee (IACUC) of 

Brown University. Five-week-old male C57BL/6J mice were purchased from the Jackson 

Laboratories (Bar Harbor, ME, USA) and given a two-week habituation period immediately 

following their arrival at Brown University. All animals were cohoused together in specific-

pathogen-free (SPF), temperature controlled (21 ± 1.1°C), and 12-hour light/dark cycling 

conditions within Brown University’s animal care facility, while being fed a standard chow 
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(Laboratory Rodent Diet 5001, LabDiet, St. Louis, MO, USA). After habituation, mice were 

randomized into new cages to reduce potential cage effects.

Bacterial strains—S. enterica Typhimurium SL1344 (GFP+, AmpR) was generously 

donated by Dr. Venessa Sperandio (University of Texas, Southwestern). Cells were grown 

at 37°C under shaking aerobic conditions in Luria-Bertani (LB) broth containing ampicillin 

(100 μg/mL). Colony forming units (CFU) were quantified on LB agar plates containing 

ampicillin (100 μg/mL). Because S. enterica Typhimurium SL1344 constitutively expresses 

green-fluorescent protein, CFU counts were confirmed by UV-imaging using the ChemiDoc 

Imaging System (Bio-Rad, Hercules, CA, USA).

METHOD DETAILS

Animal experiments—All animal work was conducted in accordance with protocols 

approved by the Institutional Animal Care and Use Committee (IACUC) of Brown 

University. To induce HG, 7-week-old male C57BL/6J mice were fasted for 4–6 hours, 

then given an intraperitoneal injection of either Na-Citrate buffered streptozotocin (STZ) 

(150 mg/kg, pH 4.5) or a Na-Citrate sham (pH 4.5). All mice were given overnight 

supplementation of 10% sucrose water to avoid post-procedural hypoglycemia. Sucrose 

water was then replaced with standard filter-sterilized water the following morning. 

Two days post-injection, fasting blood glucose was assessed in all mice using the 

CONTOUR®NEXT blood glucose monitoring system (Bayer AG, Whippany, NJ, USA). 

Mice with HG (fasting blood glucose ≥ 250 mg/dL) were selected for subsequent ATB 

treatment along with NG controls. 24-hours after glycemic assessment, all mice were 

randomized again to reduced potential cage effects and given either amoxicillin (25 mg/kg/

day) or a pH-adjusted vehicle via filter-sterilized drinking water ad libitum for 24 hours 

(Cabral et al., 2019). Mice were subsequently sacrificed and dissected to collect blood, 

tissues, and cecal contents. Cecal contents were weighed then divided to be processed 

according to their downstream application (nucleic acid extraction, Q-TOF-MS, or LC-MS/

MS). Exact processing methods are described in each application section below.

The 16S ribosomal RNA sequencing, whole metagenome sequencing, metatranscriptomic 

sequencing, metabolomics, and infection studies are the result of independent biological 

replicates conducted several months apart from one another. The 16S rRNA sequencing 

results were derived from two independent animal experiments performed in 2017 and 

2018. Whole metagenomic sequencing results were derived from two independent animal 

experiments performed in 2018 and 2019. Metatranscriptomic results were paired from 

respective metagenomic samples. Metabolomics data were acquired from a separate animal 

experiment performed in 2020. Finally, infection data were acquired from two independent 

animal experiments performed in 2020 and 2021.

Multi-omic analysis: Pipelines/purpose/scope—Our multi-omic approach to 

microbiome analysis features the combinatory usage of the Kraken2 and Bracken annotation 

pipelines for whole metagenomic sequencing (Lu et al., 2017; Wood et al., 2019), and 

the HMP Unified Metabolic Analysis Network (HUMAnN2) (Franzosa et al., 2018) and 

Simple Annotation of Metatranscriptomes by Sequencing Analysis (SAMSA2) pipelines 
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for metatranscriptomics (Westreich et al., 2018). Combined utilization of these pipelines 

facilitates examination of species-level taxonomic shifts (Kraken2/Bracken), community-

level changes in transcript abundances (SAMSA2) and community-level gene expression 

that is normalized to the abundance of each taxon (HUMAnN2). We also used the pipeline 

developed by Deng et al. (Deng et al., 2018) to examine species-level transcriptional 

responses to STZ and amoxicillin challenge for high-abundance and transcriptionally active 

members of the microbiota.

Sequencing pipelines were used in conjunction with both quadrupole flow injection 
electrospray time-of-flight mass spectrometry (Q-TOF-MS) (Fuhrer et al., 2011) and liquid 
chromatography tandem mass spectrometry (LC-MS/MS) paired with spectral annotation 

and networking analysis via the Global Natural Products Social Metabolic Network (GNPS; 

http://gnps.ucsd.edu) (Wang et al., 2016). While recent advances in mass spectrometry 

methods have vastly increased the range and accuracy of metabolite detection, no single 

analytical method is currently capable of capturing the entirety of small molecules in a 

complex biological sample (Luan et al., 2019). Thus, we opted to increase our metabolite 

coverage through the combinatory use of a tandem (LC-MS/MS) and a high-resolution 

(Q-TOF-MS) method (Chen et al., 2019). The Q-TOF-MS data is presented at the metabolite 

level where unknown features are ignored. For pathway-level comparisons, available Kyoto 

Encyclopedia of Genes and Genomes compound identifiers were used to perform Pathway 

Activity Profiling (Aggio et al., 2010) of known features (Table S3). A deeper metabolome 

analysis including unknown molecules or related metabolites to known compounds is 

presented with the and data originating from our LC-MS/MS dataset using GNPS cluster 

identification.

Finally, integration of transcriptomic (HUMAnN2) and metabolomic (Q-TOF-MS) data 

was performed using the R implementation of Model-based Integration of Metabolite 
Observations and Species Abundances (Noecker et al., 2016). This software calculates the 

potential metabolic capacity of a microbiome by examining which enzymatic reactions are 

present in a community (i.e., the sum of all synthetic and degradation machinery present). 

This output is then compared against observed metabolite variations from KEGG-annotated 

metabolomics data.

Nucleic acid extraction and purification—For nucleic acid extraction, cecal contents 

were transferred to ZymoBIOMICS DNA/RNA Miniprep Kit (Zymo Research, Irvine, CA, 

USA) Collection Tubes containing DNA/RNA Shield. These tubes were then processed 

via vortex at maximum speed for 5 minutes to homogenize cecal contents, which were 

subsequently placed on ice until permanent storage at −80°C. Using the parallel extraction 

protocol as per the manufacturer’s instructions, the ZymoBIOMICS DNA/RNA Miniprep 

Kit was used to isolate total nucleic acids (DNA and RNA) from cecal slurry. Total 

DNA/RNA were eluted in nuclease-free water and quantified using the dsDNA-HS and 

RNA-HS kits on the Qubit 3.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).

16S rRNA amplicon generation and sequencing—The V4 hypervariable region of 

the 16S ribosomal RNA was amplified from extracted total DNA using the 806R and 515F 

barcoded primers published under the Earth Microbiome Project (Caporaso et al., 2012; 
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Thompson et al., 2017). Amplicons were generated using Phusion high-fidelity polymerase 

and the following cycling protocol: 98°C for 30 s initial denaturation, then 25 cycles of 98°C 

for 10 s (denaturation), 57°C for 30 s (annealing), and 72°C for 30 s (extension). This was 

followed by a final extension of 72°C for 5 minutes. Amplicon libraries were submitted 

to the Rhode Island Genomics and Sequencing Center at the University of Rhode Island 

(Kingston, RI, USA) for pair-end sequencing (2×250 bp) on the Illumina MiSeq platform 

using the 500-cycle kit with standard protocols. We obtained an average of 11,511 ± 10,632 

reads per sample for sequences related to Figures 1 and S1, and an average of 6,167 ± 3,498 

reads per sample for sequences related to Figures 7 and S5.

16S rRNA read processing and analysis—Raw reads underwent quality filtering, 

trimming, de-noising and merging using the R (version 3.5.0) package implementation of 

DADA2 (version 1.8.0) (Cabral et al., 2020; 2019; Callahan et al., 2016). The resulting 

ribosomal sequence variants underwent taxonomic assignment by using the assignTaxonomy 
function in DADA2 with the RDP Classifier algorithm with RDP training set 18 (Wang et 

al., 2007). Both α (Shannon) and β (Bray-Curtis Dissimilarity) diversity were calculated 

using the R package phyloseq (version 1.24.2) (McMurdie and Holmes, 2013).

Metagenomic/transcriptomic library preparation—Libraries for metagenomics and 

metatranscriptomics were prepared as described in our recent work (Cabral et al., 2020). 

We prepared metagenomic libraries from DNA (100 ng) using the NEBNext® Ultra II FS 

DNA Library Prep Kit (New England BioLabs, Ipswich, MA, USA) and the > 100 ng input 

protocol as per the manufacturer’s instructions, which generated a pool of fragments whose 

average size was between 250 and 500 bp. Meanwhile, we prepared metatranscriptomic 

libraries from total RNA (≤1 ug) using a combination of the MICROBExpress kit 

(Invitrogen, Carlsbad, CA, USA), NEBNext® rRNA Depletion Kit for Human/Mouse/Rat 

(New England BioLabs, Ipswich, MA, USA), and the NEBNext® Ultra II Direction 

RNA Sequencing Prep Kit as per the manufacturers’ instructions. This generated a pool 

of fragments with an average size between 200 and 450 bp. Both metagenomic and 

metatranscriptomic libraries were pair-end sequenced (2×150 bp) on the Illumina HiSeq 

X Ten platform, yielding an average of 1,464,061 ± 728,330 reads per metagenomic sample 

and 35,884,874 ± 27,059,402 reads per metatranscriptomic sample.

Metagenomic/transcriptomic read processing—Raw metagenomic and 

metatranscriptomic reads underwent trimming and decontamination using KneadData 

(version 0.6.1) as previously described (Cabral et al., 2020; 2019; McIver et al., 2018). 

Illumina adaptor sequences were removed using Trimmomatic (version 0.36), then depleted 

of reads that mapped to C57BL/6J, murine mammary tumor virus (MMTV, accession 

NC_001503) and murine osteosarcoma virus (MOV, accession NC_001506.1) using 

Bowtie2 (version 2.2) (Bolger et al., 2014; Cabral et al., 2020; Langmead and Salzberg, 

2012). Metatranscriptomic reads were additionally depleted of sequences that aligned to the 

SILVA 128 LSU and SSU Parc ribosomal RNA databases as previously described (Cabral et 

al., 2020; 2019; Pruesse et al., 2007).
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Taxonomic classification of reads—We taxonomically classified trimmed and 

decontaminated metagenomic reads against a database of all completed bacterial, archaeal, 

and viral genomes contained within NCBI RefSeq using Kraken2 (version 2.0.7-beta, 

“Kraken2 Standard Database”) with a k-mer length of 35 (Wood et al., 2019). Bracken 

(version 2.0.0) was then used to calculate phylum- and species-level abundances from 

Kraken2 reports, and the R package phyloseq (version 1.28.0) was used to calculate α- and 

β-diversity metrics (Lu et al., 2017; McMurdie and Holmes, 2013).

We then performed differential abundance testing on species-level taxonomic assignments 

(Cabral et al., 2020; 2019). First, low-abundance taxa (< 1,000 reads in ≥ 20% of samples) 

were removed, then differential abundance testing of filtered counts was performed with 

the DESeq2 package (version 1.24.0) using default parameters (Love et al., 2014). All p 

values were corrected for multiple hypothesis testing using the Benjamini-Hochberg method 

(Benjamini and Hochberg, 1995). Features with an adjusted p value of less than 0.05 were 

considered statistically significant.

Metatranscriptomic analysis: SAMSA2—We used a modified version of the Simple 

Annotation of Metatranscriptomes by Sequences Analysis 2 (SAMSA2) pipeline to annotate 

trimmed and decontaminated metatranscriptomics reads as previously described (Cabral et 

al., 2020; 2019; Westreich et al., 2018). This modified pipeline involves implementation 

of the Paired-End Read Merger (PEAR) utility to generate merged reads and DIAMOND 

(version 0.9.12) aligner algorithm (Buchfink et al., 2014; Zhang et al., 2014) to generate 

alignments against RefSeq, SEED Subsystem, and CAZyme databases (Cantarel et al., 2009; 

Overbeek et al., 2013). The resulting alignments were subjected to differential abundance 

testing using DESeq2 (version 1.24.0) with standard parameters and Benjamini-Hochberg 

multiple hypothesis testing correction (Benjamini and Hochberg, 1995; Love et al., 2014). 

Features with an adjusted p value of less than 0.05 were considered statistically significant.

Metatranscriptomic analysis: HUMAnN2—We used the HMP Unified Metabolic 

Analysis Network 2 (HUMAnN2, version 0.11.1) pipeline to assess the impact of STZ-

based HG and amoxicillin treatment on gene expression within the gut microbiome 

(Franzosa et al., 2018). We supplied the taxonomic profiles generated for each sample 

into the HUMAnN2 algorithm in order to assure consistent taxonomic assignment between 

paired samples (Segata et al., 2012; Cabral et al., 2020; 2019). Then, using HUMAnN2, 

we generated MetaCyc pathway abundances and used these to estimate community-level 

gene expression and normalized this to metagenomic abundance using the Witten-Bell 

method (Witten and Bell, 1991). Unstratified smoothed RPKM values were converted to 

relative abundances then analyzed using linear discriminant analysis as described (Cabral 

et al., 2020; 2019). This was performed with the LEfSe (version 1) toolkit hosted on the 

Huttenhower Galaxy server (Segata et al., 2011).

Single-species transcriptomics—We performed transcriptional analysis at the 

individual species level using a modified version of the pipeline developed by Deng et 

al. (Deng et al., 2018). First, species whose metagenomic abundance was subjected to an 

interaction between host glycemia and ATB usage were selected. We then calculated to total 

RNA read abundance for each of these species and performed transcriptional analysis only 
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on those with 500,000 or greater reads per sample (Table S5). First, reads that mapped to 

candidate taxa were extracted from our metatranscriptomes using the BBSplit utility within 

BBMap (version 37.96) (Bushnell, 2014). Reads from B. theta, O. valericigenes, and O. spp. 

PEA192 were aligned to their corresponding reference genomes using BWA-MEM (version 

0.7.15) (Cabral et al., 2020; Li and Durbin, 2010). Then, we used subread program (version 

1.6.2) command featureCounts was used to generate a count table from alignments, and 

this count table was assessed for differential abundance using DESeq2 (Liao et al., 2014; 

Love et al., 2014). All p values were corrected for multiple hypothesis testing using the 

Benjamini-Hochberg method (Benjamini and Hochberg, 1995). Features with an adjusted p 

value of less than 0.05 were considered statistically significant.

Metabolite extraction and annotation: Q-TOF-MS—For untargeted Q-TOF-MS 

metabolomics, cecal samples were flash frozen upon collection and stored at −80°C until 

extraction. To extract metabolites, flash-frozen samples were removed from −80°C and 

placed on ice. A 10–20 mg sample was taken and submerged in 300 μl of fresh-made 

LC/MS-grade acetone:isopropanol (2:1) extraction solvent, then homogenized via vortex 

two times for 15 s each at 4°C. Supernatant extraction solvent was transferred to a new tube 

and was placed at −80°C temporarily. The 300 μl wash and homogenization was repeated, 

and this supernatant was then added to the original aliquot. Combined samples underwent 

centrifugation at 4°C for 10 minutes at 13,500 × G. After centrifugation, supernatant was 

moved to a fresh microcentrifuge tube, sealed with parafilm, and placed on dry ice before 

immediate delivery to General Metabolics Inc. (Boston, MA, USA) where samples were 

stored at −80°C.

Extracted metabolites were quantified as described in Fuhrer et al. (Fuhrer et al., 2011) 

using flow injection Time-of-Flight mass spectrometry on the Agilent G6550A iFunnel 

Quadrupole Time-of-Flight mass spectrometer (Agilent, Santa Clara, CA, USA) equipped 

with a dual AJS electrospray ionization source operated in negative ion mode. Samples 

were injected at a flowrate of 0.15 mL/minute in a mobile phase containing isopropanol and 

water (60%:40% ratio) buffered in 1mM Ammonium Fluoride, 15nM HP-0921, and 5μM 

homotaurine. Mass spectra data was recorded in 4 GHz high-resolution Ms mode at a rate 

of 1.4 spectra/second. We detected 714.3 ms/spectra and 9652 transients/spectra between 50 

and 1000 m/z. Source operating parameters included a temperature of 225°C, drying gas rate 

of 11 L/min, nebulizer pressure of 20 psi, sheath gas temperature of 350°C and flow of 10 

L/min. The source Vcap and Nozzle voltage were 3500V and 2000V. The ms TOF operating 

parameters include fragmentor, collision, RF peak-to-peak voltages of 350V, 0V, and 750V, 

respectively and the Skimmer was disabled.

Data processing and analysis was performed as described by Fuhrer et al. in MATLAB (The 

Mathworks, Natick, MA, USA) using functions from the following toolkits: Bioinformatics, 

Statistics, Database, and Parallel Computing (Fuhrer et al., 2011). Ions were additionally 

referenced against the Human Metabolome Database in addition to KEGG. Data analyses 

were run on an automated embedded platform by General Metabolics Inc. then delivered 

upon run completion. Finally, Principal Coordinate Analysis was performed on ion 

intensities by using Bray-Curtis dissimilarity paired with PERMANOVA analysis using 
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the phyloseq (version 1.26.1) R package and subsequently visualized in Prism GraphPad 

(version 9.0.2) (McMurdie and Holmes, 2013).

Metabolite extraction and annotation: LC-MS/MS—For untargeted LC-MS/MS 

metabolomics, cecal samples were placed into 300 μl of LMCS-grade methanol then 

supplemented with 600 μl of 70% cold LC-MS-grade methanol. Samples were homogenized 

via vortex for 5 minutes, then placed at 4°C for an overnight incubation. Following 

incubation, samples were subjected to centrifugation at 1000 × G for 3 minutes. 500 μl 

of the supernatant was moved to a sterile microcentrifuge tube and stored at −80°C for 

long-term preservation.

Samples were thawed and diluted 1:1 (v/v) in 50% methanol prior to LC-MS/MS. 

Liquid chromatography was performed using a Vanquish Autosampler (Thermo Scientific, 

Waltham, MA, USA) and an Acquity UPLC column (Waters, Milford, MA, USA). Mass 

spectrometry was performed using a Q Exactive® Hybrid Quadrupole-Orbitrap Mass 

Spectrometer (Thermo Scientific, Waltham, MA, USA) in positive ion mode. All analysis 

used a 5 μL injection volume. Samples were eluted via water-acetonitrile gradient (98:2 to 

2:98) containing 0.1% formic acid at a 0.4 mL min−1 flow rate. RAW files were converted 

via GNPS Vendor Conversion and mined with MZmine (ver. 2.52) prior to submission for 

feature based molecular networking (Pluskal et al., 2010; Nothias et al., 2020). Briefly, 

MS1 and MS2 feature extraction was performed for a centroid mass detector with a 

signal threshold of 5.0 × 105 and 5.0 × 104 respectively. Chromatogram builder was run 

with an m/z tolerance of 0.02 Da or 7 ppm and a minimum height of 1.0 × 105. Then, 

chromatograms were deconvoluted utilizing a baseline cut-off algorithm of 1.0 × 105 and a 

peak duration range of 0 to 1.00 minutes. Following this, isotopic peaks were then grouped 

with an m/z tolerance of 0.02 Da or 7 ppm and a retention time percentage of 0.1. The 

Join Aligner Module was then utilized with a 0.02 Da or 7 ppm m/z tolerance and a 

retention time tolerance of 0.1 minutes. Feature-based molecular networking on GNPS was 

performed with the following parameters: precursor and fragment ion mass tolerance 0.02 

Da; minimum cosine of 0.7 and minimum matched peaks of 4, all others were defaults. 

Library searching was performed with the same parameters as described above.

Analysis of Q-TOF-MS metabolite data—Differentially abundant metabolites were 

identified using the DESeq2 package (version 1.22.2) with standard parameters (Love et 

al., 2014). All p values were corrected for multiple hypothesis testing using the Benjamini-

Hochberg method (Benjamini and Hochberg, 1995). Features with an adjusted p value of 

less than 0.05 were considered statistically significant. KEGG compound identifiers that 

were feature-matched by the Bioinformatics MATLAB toolkit were used to create a list of 

all KEGG IDs associated with differentially abundant metabolites. This list (and associated 

ion intensities) were used to perform KEGG pathway enrichment analysis using the PAPi R 

package (version 1.22.1) with standard parameters (Aggio et al., 2010). Pathways with an 

adjusted p value of less than 0.05 were considered statistically significant.

To link our transcriptional data and metabolomics data, we used the R package 

implementation of Mimosa (version 2.0.0) and the publicly availably KEGG reaction 

database (circa 2010) (Noecker et al., 2016). The configuration table settings were 
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as follows: File1) taxon-stratified output from HUMAnN2 based of KEGG Orthology 

annotation. File2) per-sample ion counts of differentially abundant Q-TOF-MS metabolites. 

File1_type) “taxon stratified KO abundance (HUMAnN2 or PICRUSt/PICRUSt2.” 

Ref_choices) PICRUSt KO genomes and KEGG metabolic model. metType) KEGG 

compound ID. data_prefix) complete file path to the KEGG reaction database. 

Vsearch_path) complete file path to the vsearch executable (https://github.com/torognes/

vsearch). The run_mimosa2 function was used with standard parameters to calculate the 

community metabolic potential within each sample, score this against the input metabolite 

table, and calculate the level of metabolic variation attributable to individual taxa using a 

linear rank regression as described (Noecker et al., 2016). All data tables produced by the 

run_mimosa2 function were then exported and data visualization was performed in Prism 

GraphPad (version 9.0.2). “Positive” metabolites have observed abundances that match the 

predictive model. “Negative” metabolites are those whose observed abundance diverges 

from the predictive model.

Analysis of LC-MS/MS metabolite data—First, principal coordinate analysis was 

performed on ion intensities by using Bray-Curtis dissimilarity paired with PERMANOVA 

analysis. These analyses were performed using the phyloseq (version 1.26.1) R package 

and subsequently visualized in Prism GraphPad (version 9.0.2) (McMurdie and Holmes, 

2013). Random forest classification models on treatment mouse treatment group were then 

generated using the randomForest (version 4.6–16) R package (Breiman, 2001). Variable 

importance plots from the models were used to identify metabolites that best contributed 

to group classification. Each metabolite feature of interest was then checked for annotation 

in GNPS, if not directly annotated from MS/MS library searching, the node of interest was 

identified in the molecular network and assessed for spectral similarity to other annotated 

nodes. This provided a molecular family annotation of each unknown cluster. Models 

classifying HG mice treated with amoxicillin and not treated with amoxicillin resulted in 

out-of-bag prediction error of 2.7%. Classification of nonHG treated with amoxicillin and 

not treated with amoxicillin resulted in out-of-bag prediction error of 6.25%. Classification 

of HG mice and nonHG mice, both treated with ATBs, resulted in out-of-bag prediction 

error of 7.96%. Classification of HG mice and nonHG mice, neither treated with ATBs, 

resulted in out-of-bag prediction error of 16.67%.

Cecal glucose assessment—Cecal glucose levels were assessed using the Abcam 

Glucose Detection Kit (Abcam, Cambridge, United Kingdom). First, cecal material was 

weighed out and resuspended in glucose assay buffer at a concentration of 100 mg/mL, 

then homogenized via vortex until no visible clumps were present. Samples were spun 

at maximum speed for 1 minute to pellet any residual debris, and 500 μl of supernatant 

was transferred to a Corning Costar Spin-X 0.22 μM centrifuge tube filter (Corning 

Brand, Corning, New York, USA). The costar tubes containing supernatant were spun via 

centrifugation at 15,000 x G for 10 minutes, after which up to 500 μl of flow-through 

was transferred to an abcam 10kD spin column to deproteinize the samples. Samples were 

again spun at 15,000 x G for 10 minutes and flow-through was quantified using the Abcam 

Glucose Assay kit as per the manufacturer’s instructions.
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Plasma cytokine profiling—Upon animal sacrifice, whole blood was collected via 

cardiac puncture and placed in a microcentrifuge tube containing up to 15μl of 1X heparin. 

Collection tubes were then spun via centrifugation at 13,000 x G for 10 minutes to isolate 

plasma. The plasma-containing supernatant was transferred to a new microcentrifuge tube 

and frozen at −80°C until ready to process. Once ready, samples were thawed on ice, split 

into a working aliquot and a re-frozen stock aliquot. The working aliquot was assessed for 

signatures of inflammation in mice using the LEGENDplex Mouse Inflammation Panel (13-

plex) (BioLegend, San Diego, CA) flow cytometry kit as per the manufacturer’s instructions. 

Samples were processed on the Attune NxT Flow Cytometer (ThermoFisher, Waltham, 

MA) and subsequently analyzed using the LegendPlex cloud software cool (BioLegened, 

San Diego, CA). This panel allows for simultaneous profiling of IL-1α, IL-1β, IL-6, 

IL-10, IL-12p70, IL-17A, IL-23, MCP-1, IFN-β, IFN-γ, TNF-α, and GM-CSF. Cytokine 

concentrations were compared across samples using Welch’s ANOVA with Dunnet T3 test 

for multiple hypothesis testing. Only cytokines with a p value < 0.05 were included in the 

manuscript discussion.

Lipocalin-2 quantification—Cecal lipocalin-2 levels were assessed using the Mouse 

Lipocalin-2/NGAL DuoSet ELISA kit (R&D Systems, Minneapolis, MN). First, flash-

frozen cecal contents were weighed and reconstituted into a freshly made working solution 

of 1X phosphate buffered saline (PBS) and 0.1% Tween 20 at a concentration of 100 

mg/mL. This working solution was vigorously pipetted to aid in resuspension. Samples 

were mixed by vortex at max speed for at 5 minutes until fully homogenized, then spun 

via centrifugation at 12,000 rpm for 10 minutes. The supernatant was transferred to sterile 

microcentrifuge tubes and used as input for the DuoSet kit. Lipocalin-2 was quantified from 

these samples as per the manufacturer’s instructions. Concentrations were compared across 

samples using Welch’s ANOVA with Dunnet T3 test for multiple hypothesis testing.

GI histopathology assessment—During animal necropsy an approximate 1-inch 

section of the distal colon was collected and fixed in methacarn. Fixed tissues were 

incubated at room temperature for 24 hours, then washed twice with a 70% ethanol solution. 

Samples were placed in 70% ethanol and stored in a light-safe box at 4°C until ready 

to process. To process, tissues were transferred to histology cassettes, submerged in 70% 

ethanol, and submitted to the Molecular Pathology Core at Brown University. Core staff 

embedded the sample cassettes in paraffin, then sectioned the blocks at 4–5 μM thickness. 

Tissues sections were mounted on microscopy slides and stained with hematoxylin and 

eosin. Stained slides were dried for 24 hours before being shipped to the University of Texas 

MD Anderson Cancer Center for pathology scoring.

Enteric pathogen challenge—Salmonella enterica serovar Typhimurium SL1344 was 

grown overnight in 5 mL Luria-Bertani (LB) broth supplemented with fresh-made ampicillin 

(100 μg/mL) and grown at 37°C. This culture was diluted 1:1000 into fresh LB+ampicillin 

(100 μg/mL) the morning of infections and grown until cells were approximately at mid-log 

phase (OD600 = 0.3–0.4).

Rather than sacrificing animals after the 24-hours of amoxicillin treatment as outlined 

above (See Animal Procedures), animals were given an additional 48 hours of ad libitum 
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amoxicillin within their drinking water followed by ATB-free filter-sterilized water for 24 

hours. Subsequently, animals were moved to clean cages and placed under a 4-hour fast, 

at which point they were infected with an inoculum between 102 and 106 cells/dose via 

oral gavage (volume ≤ 200 μl). Animals were transferred to clean cages and weighed 

daily throughout the course of pathogen challenge. Fecal samples were collected daily then 

resuspended in 1 mL of 1X PBS and homogenized via vortex at maximum speed for at least 

5 minutes. Fecal slurry was then serially diluted and plated onto ampicillin-supplemented 

(100 μg/mL) LB agar plates and grown at 37C for 24 hours. After growth, colonies were 

counted and the total colony forming units (CFU) were quantified per gram of feces 

to assess pathogen burden. To quantify non-intestinal S. enterica burden, fresh liver and 

spleen were collected during post-sacrifice necropsy, weighed, then placed into 1mL of 

1X PBS, mixed via vortex for 5 minutes, serially diluted, and plated onto LB agar plates 

supplemented with ampicillin (100 mg/mL). CFUs were quantified 24 hours later.

During the course of infection, any animal that experienced a loss of ≥ 20 percent of total 

body weight was sacrificed as per our IACUC protocol. These qualified as “lethality events” 

and were logged accordingly.

QUANTIFICATION AND STATISTICAL ANALYSIS

Specific details of the statistical analyses for all experiments are outlined in the figure 

legends and Results section. Sample numbers represent biological replicates, and instances 

of technical replicates are specifically stated in corresponding figure legends. LEfSe (version 

1.0) was used to analyze MetaCyc pathway abundance data generated by HUMAnN2 on 

the Galaxy web server using default settings (http://huttenhower.sph.harvard.edu/galaxy). 

Metatranscriptomic outputs generated by SAMSA2 and single-species sequencing, along 

with Q-TOF-MS abundances were subjected to differential abundance testing using the 

DESeq2 package (1.24.0) in R (version 3.5.2) under default parameters and included 

contrast:interaction comparisons (Love et al., 2014). All DESeq2 results were corrected 

using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) to account for 

multiple hypothesis testing and significance was considered when the adjusted p value 

was below 0.05. LC-MS/MS Random Forest testing was conducted using the R package 

implementation (Breiman, 2001). Permutational ANOVA calculations were made using the 

vegan R package (version 2.5.2). ANOVA, unpaired t tests, and Mann-Whitney U tests were 

performed in Prism Graphpad (version 9.0) without sample size estimation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The cecal metatranscriptome and metabolome are altered in hyperglycemic 

mice

• The hyperglycemic microbiota has more simple sugars and shows higher 

respiratory activity

• Hyperglycemia-related changes are associated with worsened antibiotic 

dysbiosis

• Amoxicillin promotes Salmonella susceptibility in hyperglycemic mice
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Figure 1. STZ modifies glucose levels and impacts microbiome composition after AMX
(A) Experimental design of this study. Figure was created with BioRender.com (BioRender, 

Toronto, Canada).

(B) Murine fasting blood glucose pre-STZ injection (Day 0), 2, and 5 days postinjection. 

Data represent mean ± SEM.

(C) Bray-Curtis Dissimilarity between 16S rRNA amplicons.

(D) α-diversity of WMGS experimental groups. Data represent mean ± SEM.

(E) Relative abundance of the five most-prominent bacterial phyla. Data represent mean ± 

SEM.

(F) Quantification of cecal glucose concentrations from experimental groups. Data represent 

mean ± SEM.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. For (B): n = 44 control and 44 

STZ-treated samples per time point; for (C): n = 8 to 11 per group; permutational ANOVA; 

for (D–F): N = 5 to 8 per group; Welch’s ANOVA with Dunnet T3 test for multiple 

hypothesis testing.
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Figure 2. STZ modifies the cecal metabolome and metatranscriptome
(A) Bray-Curtis Dissimilarity of Q-TOF-MS extracts from experimental groups.

(B) Differentially abundant bacterial species following STZ treatment. Data represent log2 

fold change ± SEM versus NG controls.

(C) Differentially abundant Q-TOF-MS metabolites following STZ treatment. Data represent 

log2 fold change ± SEM. See Table S1 for full results.

(D) Linear discriminant analysis of MetaCyc pathways following STZ treatment. See Table 

S6 for full results.
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(E) Volcano plot of the cecal metatranscriptome following STZ treatment. Purple points 

represent differentially abundant transcripts. See Table S8 for full results.

(F) Taxon Stratified Community Metabolic Potential as calculated by MIMOSA. See Table 

S9 for full results.

*p < 0.05; **p < 0.01; ***p < 0.001. For (A and C): n = 6 per group, 2 replicates per 

sample; for (B): n = 5 to 8 per group; for (D–F): n = 4 per group.
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Figure 3. STZ and AMX treatment modify the composition of the cecal microbiome
(A) Relative abundance of the 25 most-abundant species in our dataset. Data are represented 

as mean ± SEM for each species.

(B) Relative abundance of Bacteroidetes.

(C) Relative abundance of Actinobacteria.

(D) Relative abundance of Firmicutes.

(E) Relative abundance of Proteobacteria.

(F) Relative abundance of Verrucomicrobia.

(G) Relative abundance of B. theta.

(H) Differentially abundant bacterial species following AMX treatment in control and STZ 

mice, with interaction value. Data represent log2 fold change ± SEM versus vehicle-treated 

controls.

For all panels: n = 5 to 8 per group; for (B–G): *p < 0.05; **p < 0.01; ***p < 0.001; ****p 

< 0.0001; Welch’s ANOVA with Dunnet T3 test for multiple hypothesis testing.

Data represent mean ± SEM.
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Figure 4. AMX differentially alters the cecal metatranscriptome
(A) Differentially abundant CAZyme transcripts in control and STZ mice after AMX, with 

interaction values. See Table S4 for full results.

(B) Differentially abundant level 3 SEED Subsystem transcripts in control and STZ mice 

after AMX, with interaction values. See Table S7 for full results.

(C) Linear discriminant analysis of MetaCyc pathways following AMX treatment in STZ 

mice. See Table S6 for full results.

(D) Linear discriminant analysis of MetaCyc pathways following AMX treatment in control 

mice. See Table S6 for full results.

For all panels: n = 4 per group; for (A and B): Data represent log2 fold change ± SEM versus 

vehicle-treated controls. Blank panels are non-significant.
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Figure 5. AMX differentially alters the cecal metabolome
(A) Differentially abundant Q-TOF-MS metabolite features in control and STZ mice after 

AMX treatment with interaction value. Data represent log2 fold change ± SEM versus 

vehicle controls. See Table S1 for full results.

(B) KEGG pathway enrichment of differentially abundant Q-TOF-MS metabolites in STZ 

mice after AMX treatment versus the enrichment score in control andAMX-treated mice. 

Blank panels represent a lack of statistical significance. See Table S3 for full results.
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(C) Taxon Stratified Community Metabolic Potential of control mice after AMX treatment 

as calculated by MIMOSA. See Table S9 for full results.

(D) Taxon Stratified Community Metabolic Potential of STZ-treated mice after AMX 

treatment as calculated by MIMOSA. See Table S9 for full results.

For (A and B): n = 6 per group, 2 replicates per sample; for (C and D): n = 4 per group; for 

(B): Significant = p < 0.05.
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Figure 6. STZ treatment modifies transcriptomic and metabolomic responses of the microbiome 
to AMX
(A) KEGG pathway enrichment of differentially abundant Q-TOF-MS features in STZ 

AMX (+) mice compared to control AMX (+) mice. See Table S3 for full results.

(B) Linear discriminant analysis score of MetaCyc pathways in STZ AMX (+) mice 

compared to control AMX (+) mice. See Table S6 for full results.

(C) Taxon Stratified Community Metabolic Potential of STZ AMX (+) mice compared to 

control AMX (+) mice as calculated by MIMOSA. See Table S9 for full results.

(D) Differentially abundant B. theta transcripts after AMX treatment in STZ mice. Data 

represent log2 fold change ± SEM of STZ AMX (+) mice versus vehicle controls. See Table 

S5 for full results.

For (A): n = 6 per group with 2 technical replicates per sample; Significant = p < 0.05; for 

(B–D): n = 4 per group.
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Figure 7. STZ and AMX increase susceptibility to Salmonella enterica infection
(A) Experimental design of pathogen challenge study. Figure was created with 

BioRender.com (BioRender, Toronto, Canada).

(B) S. enterica colony forming units (CFU) per gram of feces in control AMX(+/−), and 

STZ AMX(+/−) mice after infection with 1×103 cells. Data represent mean CFU ± SEM.

(C) Kaplan Meier survival curve of NG mice.

(D) Kaplan Meier survival curve of STZ mice.

(E) Bray-Curtis Dissimilarity between 16S rRNA amplicons from experimental groups.

(F) Taxonomic composition of the fecal microbiome based of genus-level 16S rRNA identity 

between 1 and 4 days post-infection with 1×103 cells. Data represented mean ± SEM.

(G) Contribution of Salmonella assigned reads in STZ AMX(+) and control AMX(+) mice 4 

days post-infection. Data represent mean ± SEM.

*p < 0.05; **p < 0.01; ***p < 0.001; for (B): n = 8 to 10 per group, Mann-Whitney U test of 

STZ AMX(+) versus Control AMX(+); for (C and D): n = 4 to 5 per group; for (E–G): n = 8 

to 10 per group; for (E): permutational ANOVA.
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KEY RESOURCES TABLE

Reagent or resouce Source Identifier

Bacterial and virus strains

Salmonella enterica Typhimurium SL1344 Vanessa Sperandio, PhD 
(Univerisity of Texas, 
Southwestern)

N/A

Chemicals, peptides, and recombinant proteins

Acetone, LCMS-grade Fisher Scientific K50738120840

Acetonitrile, LCMS-grade Fisher Scientific PI86188

Agar Fisher Scientific BP1423-2

Agarose Fisher Scientific 14-223-040

Agencourt AMPure XP Beads Beckman Coulter A63880

Ammonium Fluoride Sigma Aldrich 338869

Amoxicillin Sigma Aldrich A8523-5G

Deoxynucleotide (dNTP) Solution Mix New England BioLabs N0447S

Ethanol, 200 proof, molecular biology grade Fisher Scientific 07-678-003

Formic acid Fisher Scientific RMB11202101

Hematoxylin & Eosin Stain Solution AbCam Ab245880

Heparin Sigma Aldrich H3393-25KU

Hydrochloric Acid Fisher Scientific A144-500

Industrial Grade Nitrogen, Liquid AirGas NI240LT22

Isopropanol, LCMS-grade Fisher Scientific A461-1

Luria Bertani (LB) Broth Fisher Scientific BP1426-2

Methacarn Fisher Scientific NC0547175

Methanol, LCMS-grade Fisher Scientific A456-500

Paraffin Wax Fisher Scientific 22-90-700

Phosphate Buffered Saline, 10X Fisher Scientific BP399

Sodium Citrate Dihydrate Fisher Scientific 5279-500

Streptozotocin Alfa Aesar J61601-03

Sucrose Fisher Scientific BP220-212

TE Buffer, 1X Solution, pH 8.0, low EDTA Fisher Scientific AAJ75793AE

Tween20 Fisher Scientific BP337-100

Water, LCMS-grade Fisher Scientific PI51140

Water, Molecular Biology Grade Fisher Scientific BP2891-1

Critical commercial assays

10KD Spin Column AbCam Ab93349

API-TOF Reference Mass Solution Kit Agilent AGG1969-85001

DNA/RNA Shield Collection and Lysis Tube Zymo Research R1102

DuoSet ELISA Ancillary Reagent Kit 2 R&D Systems DY008

Glucose Assay Kit - Reducing Agent 
Compatible

AbCam Ab102517
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Reagent or resouce Source Identifier

HiSeq X Ten Reagent Kit v2.5 Illumina FC-501-2501

Legendplex Mouse Inflammation Panel 13-
plex with Filter Plate

BioLegend 740150

MICROBExpress Bacterial mRNA 
Enrichment Kit

Thermo Fisher Scientific AM1905

MiSeq Reagent Kit v2 (500 cycles) Illumina MS-102-2003

Mouse Lipocalin-2/NGAL DuoSet ELISA 
Kit

R&D Systems DY1857-05

NEBNEXT® rRNA Depletion Kit (Human/
Mouse/Rat) (Includes Purification Beads)

New England BioLabs E6350

NEBNEXT® Ultra II Directional RNA Seq 
Library Prep Kit for Illumina (Includes 
Purification Beads)

New England BioLabs E7765

NEBNEXT® Ultra II FS DNA Library Prep 
Kit for Illumina (Includes Purification Beads)

New England BioLabs E6177

NucleoSpin® Gel and PCR Clean-up Kit Machery-Nagel GmbH & Co 740609

Phusion High-Fidelity PCR Kit Thermo Fisher Scientific F553L

Qubit dsDNA Broad Range Assay Kit Thermo Fisher Scientific Q32850

Qubit dsDNA High Sensitivity Assay Kit Thermo Fisher Scientific Q32851

Qubit RNA High Sensitivity Assay Kit Thermo Fisher Scientific Q32852

Sin-X UF 500 10k MWCO PES Spin Filter Corning 431478

Spin-X Centrifuge Tube Flter, 0.22 μM Costar 8160

ZymoBiomics Collection Tubes Zymo Research S6012-50

ZymoBiomics DNA Miniprep Kit Zymo Research D4300

ZymoBiomics DNA/RNA Miniprep Kit Zymo Research R2002

Deposited data

16S rRNA Reads NCBI BioProject ID PRJNA720755

Metagenomic / Metatranscriptomic Reads NCBI BioProject ID PRJNA72012

Q-TOF-MS Raw Data This Study Table S1

GNPS Molecular Networking Data GNPS.UCSD.edu https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=e4efce0c33fb4ada96e373d53460f2d5

LC-MS/MS Files Massive.UCSD.edu MSV000087093

LC-MS/MS Data and Analysis Scripts This Study https://github.com/guziordo/Belenky-Brown-Diabetes-
Antibiotics

Experimental models: Mouse Strains

C57BL/6 Jackson Laboratories Cat.# 000664

Oligonucleotides

Earth Microbiome Project: 806R Caporaso et al., 2012 https://earthmicrobiome.ucsd.edu/protocols-and-
standards/primer-ordering-and-resuspension

Earth Microbiome Project: 515F with 
Barcode

Caporaso et al., 2012 https://earthmicrobiome.ucsd.edu/protocols-and-
standards/primer-ordering-and-resuspension

Software and algorithms
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Reagent or resouce Source Identifier

BBMap (version 37.96) Bushnell, 2014 https://sourceforge.net/projects/bbmap

Bowtie2 (version 2.2.0) Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Bracken (version 2.0.0) Lu et al., 2017 http://ccb.jhu.edu/software/bracken/index.shtml?
t=manual

BWA-Mem (version 0.7.15) Li and Durbin, 2010 http://bio-bwa.sourceforge.net/bwa.shtml

DIAMOND (version 0.9.11) Buchfink et al., 2014 https://github.com/bbuchfink/diamond

Global Natural Products Social Molecular 
Networking (GNPS)

Wang et al., 2016 https://gnps.ucsd.edu

HUMAnN2 (version 0.11.1) Franzosa et al., 2018 https://bitbucket.org/biobakery/humann2/wiki/home

Kneaddata (version 0.6.1) McIver et al., 2018 https://bitbucket.org/biobakery/kneaddata/wiki/home

Kraken (version 2.0.7-beta) Wood et al., 2019 https://ccb.jhu.edu/software/kraken2

LDA Effect Size (LEfSe, version) Segata et al., 2011 https://huttenhower.sph.harvard.edu/galaxy

MetaPhlan2 (version) Segata et al., 2012 https://bitbucket.org/biobakery/metaphlan2

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

MATLAB Toolbox: Bioinformatics MathWorks https://www.mathworks.com/products/bioinfo.html

MZmine (version 2.52) Pluskal et al., 2010 http://mzmine.github.io/

Paired-End Read Merger (PEAR; version 
0.9.12)

Zhang et al., 2014 https://cme.h-its.org/exelixis/web/software/pear

Prism (version 9.0.2) GraphPad https://www.graphpad.com/scientific-software/prism

R (version 4.0.3) The R Project for Statistical 
Computing

https://www.r-project.org

R package: DADA2 (version 1.8.0) Callahan et al., 2016 https://bioconductor.org/packages/release/bioc/html/
dada2.html

R package: DESeq2 (version 1.26.1) Love et al., 2014 https://bioconductor.org/packages/release/bioc/html/
DESeq2.html

R package: phyloseq (version 1.28.0) McMurdie and Holmes, 2013 https://bioconductor.org/packages/release/bioc/html/
phyloseq.html

R package: randomForest (version 4.6-16) Breiman, 2001 https://cran.r-project.org/web/packages/randomForest/
index.html

R package: vegan (version 2.5-7) https://cran.r-project.org/web/packages/vegan/
index.html

R package: PAPi Aggio et al., 2010 https://www.bioconductor.org/packages//2.12/bioc/html/
PAPi.html

R package: Mimosa (version 2.0) Noecker et al., 2016 https://borenstein-lab.github.io/MIMOSA2shiny

Rstudio (version) Rstudio https://www.rstudio.com/

SAMSA2 (version 1.0) Westreich et al., 2018 https://github.com/transcript/samsa2

Subread (featureCounts) (version 1.6.2) Liao et al., 2014 https://bioinf.wehi.edu/au/featureCounts

Trimmomatic (version 0.36) Bolger et al., 2014 https://www.usadellab.org/cms?page=trimmomatic

Other

6550 iFunnel Q-TOF LC/MS Agilent G6550BA

Accuspin Micro17 Microcentrifuge Fisher Scientific 13-100-675

Acquity UPLC columns, BEH C18, 1.7 μM 
(2.1×100mm)

Waters 186002352

Attune NxT Flow Cytometer Invitrogen N/A

ChemiDoc MP Imaging System BioRad 12003154
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Reagent or resouce Source Identifier

Class II Type A2 Biological Safety Cabinet Labguard NU-540

CleanPrep PCR Workstation MyStaire MY-DB24

ContourNext® EZ Glucose Meter Contour N/A

ContourNext® EZ Glucose Meter Strips Contour N/A

Electrospray Ionization Source Agilent G1948B

GyroMax 737 Incubator Amerex N/A

Insulin Syringe, 0.5mL, 28G BD 329461

Insulin Syringe, 1mL, 26G BD 329652

Laboratory Rodent Diet 5001 LabDiet 0001319

Lo-Bind 96-well plate, skirted Eppendorf 30129512

Lo-Bind Microcentrifuge Tubes, nuclease-
free

Eppendorf 22431021

Polypropylene Feeding Tubes, 20 ga × 30mm Instech FTP-20-38

QE Basic, Exactive Hybrid Quadrupole-
Orbitrap MS

Thermo Fisher Scientific IQLAAEGAAPFALGMBDK

Qubit 3.0 Fluorometer Thermo Fisher Scientific Q33216

SpectraMax M3 Multi-Mode Microplate 
Reader

Molecular Devices 89429-536

T100 Thermal Cycler BioRad 1861096

Vanquish Autosampler Thermo Fisher Scientific 8308123
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