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Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%.
The constantly increasing incidence and stagnant patient outcomes despite changes in
treatment regimens emphasize the requirement of a better understanding of the disease
mechanisms. Challenges in treating pancreatic cancer include diagnosis at already
progressed disease states due to the lack of early detection methods, rapid
acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal
adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows
dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved
in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic
mutations, deregulated transcription factor activities strongly contribute to disease
progression. Specifically, transcriptional regulatory networks essential for proper
lineage specification and differentiation during pancreas development are reactivated or
become deregulated in the context of cancer and exacerbate progression towards an
aggressive phenotype. This review summarizes the recent literature on transcription factor
networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
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1 INTRODUCTION

Patients suffering from pancreatic cancer (PaCa) have the lowest overall survival rate compared to
other cancer types in Europe, with roughly 7% surviving over 5-years (European Comission, 2020).
Although rated as the ninth most common cancer in Europe, it is currently the fourth most common
cause of cancer-related deaths and expected to rank even higher by 2025 (Ferlay et al., 2016). Despite
the emergence of new treatment regimens, average survival rates only marginally increased in the
past decades. The most prevalent form of PaCa is pancreatic ductal adenocarcinoma (PDAC),
accounting for 90% of all diagnosed cases. Different PDAC precursor lesions have been identified
with pancreatic intraepithelial neoplasia (PanINs) accounting for the major lesions which
continuously progress through distinct stages (Hruban et al., 2007; Macgregor-Das and
Iacobuzio-Donahue, 2013). Lineage tracing in mice revealed that acinar cells undergoing acinar-
to-ductal metaplasia (ADM) have the greatest propensity to form PanINs, whereas an ADM-PanIN-
PDAC route in human PaCa is still controversial (Kopp et al., 2012; Storz, 2017). Mutational events
driving PDAC formation have been identified, such as genetic alterations in the proto-oncogenic
KRAS in early PanIN lesions, inactivation of the tumor suppressor gene CDKN2A in intermediate/
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late lesions, and mutations in TP53 and SMAD4 during the
transition to carcinoma (Goggins et al., 2000; Wilentz et al.,
2000; Lüttges et al., 2001). Unfortunately, none of these genetic
mutations have yet been proven targetable.

The main problem of PDAC is its early propensity towards
metastasis together with the lack of early-stage diagnosis and
limited treatment options due to rapid acquisition of therapy
resistance. Besides the described genetic alterations, early
malignancy and resistance are dependent on dysregulated
epigenetic and transcriptional networks. These deregulations
promote cellular plasticity, which helps tumor cells to adapt to
novel environmental challenges during the metastatic cascade, to
evade intrinsic control mechanisms, and dampen therapeutic
efficacy (Orth et al., 2019). For a better prediction of disease
progression and stratification of patient treatments,
transcriptional profiling of resected PDAC tumors led to the
identification of different molecular PDAC subtypes. Of those,
two major subtypes with high tumor cellularity were described:
pancreatic progenitor/classical and squamous/quasi-
mesenchymal/basal-like (Collisson et al., 2011; Moffitt et al.,
2015; Bailey et al., 2016; Puleo et al., 2018). Among these
subtypes, the squamous type confers the most dismal
prognosis and is associated with loss of endodermal cell fate
(Bailey et al., 2016). In addition, this subtype is poorly-
differentiated and highly chemoresistant (Chan-Seng-Yue
et al., 2020). In contrast, the pancreatic progenitor subtype
shows enrichment for the corresponding endodermal markers
with a slightly better prognosis and is well-to-moderately
differentiated (Bailey et al., 2016). Different samples from the
same patient indicated that the pancreatic progenitor and
squamous subtype can co-exist within the same tumor
(Hayashi et al., 2021). Moreover, these subtypes are highly
plastic and can interconvert, making it even more challenging
to identify specific markers and subtype-specific treatment
regimens (Lomberk et al., 2018; Brunton et al., 2020)

Transcription factors (TFs) are important actors in the
spatio-temporal regulation of gene expression by directly
binding cis-regulatory genomic elements (promoters and
enhancers), recruiting cofactors (activators or repressors),
and the core transcriptional machinery (Lee and Young,
2013). Together with other gene regulatory mechanisms, they
drive cellular gene expression to orchestrate vital biological
processes such as development, differentiation, cell cycle
progression, tissue homeostasis, and cellular identity in a
complex and tightly controlled manner. Deregulation of the
delicate TF networks is a major cause of cancer and many other
human diseases (Furney et al., 2006; Lee and Young, 2013).
Specifically, TFs play a central role in all six hallmarks of cancer,
i.e. sustained angiogenesis, endless replication, resisting cell
death, insensitivity to anti-growth signals, self-sufficiency in
growth signals, and activating invasion and metastasis
(Hanahan and Weinberg, 2000, 2011). Of note, a staggering
20% of oncogenes encode TFs and TFs are terminal effectors in
oncogenic signaling, thus representing important mediators in
cancer (Lambert et al., 2018).

Several TFs orchestrating pancreatic organogenesis and driving
pancreatic cell identity are deregulated in PDAC, strongly

contributing to disease onset and progression. In the current
review, we present an overview of our current understanding of
transcriptional regulatory networks crucial in pancreas development,
tissue homeostasis, and focus on recent findings illustrating how
dysregulation of transcriptional networks promotes PDAC
pathogenesis. In addition, we discuss the status of therapeutic
strategies to target deregulated transcriptional networks and
promising perspectives for the future.

2 TRANSCRIPTION FACTORS THAT
ORCHESTRATE PANCREAS
ORGANOGENESIS

The pancreas in the adult is comprised of an exocrine and endocrine
compartment. Acinimake up 90%of the cells in themature organ and
secrete nutrient-digestive zymogens, that are collected by a branched
network of intralobular ducts for the release into the duodenum
(Larsen and Grapin-Botton, 2017; Atkinson et al., 2020; Lorberbaum
et al., 2020). The endocrine cells comprise 1–2% of the organ, are
organized in islets of Langerhans and synthesize peptide hormones.
They are essential for regulating blood glucose levels, produced by α-
and β-cells, the main endocrine cell types that produce Glucagon and
Insulin, respectively (Pan and Wright, 2011; Bastidas-Ponce et al.,
2017; Larsen and Grapin-Botton, 2017). Pancreas organogenesis in
mice starts at embryonic day (E)8.5 when the pancreas anlage is
emerging as two independently forming dorsal and ventral buds that
later fuse. This process is identified by Pdx1 expression, which induces
another key TF for pancreas formation, Ptf1α (p48) (Burlison et al.,
2008; Shih et al., 2013). Two phases of pancreas organogenesis can be
distinguished, starting with a primary transition (E8.5-E12.5) to
specify pancreatic cell types and a secondary transition (E12.5-
E17.5) to establish spatial organization of the tissue and cell
maturation for generating numerous endocrine and exocrine cells
(Bastidas-Ponce et al., 2017; Larsen and Grapin-Botton, 2017;
Dumasia and Pethe, 2020). Initiation and maturation depend on
an orchestrated network of TF activities.

Analyses of gene expression patterns by in situ hybridization
and immunofluorescence labeling revealed that the pancreas is
specified by combined activities of Activin, Fgf2, retinoic acid,
Bmp, Shh, and Notch pathways. The morphogenetic events
involve the underlying mesoderm, endothelium and notochord
(Deutsch et al., 2001; Chung et al., 2008; Pan and Wright, 2011;
Shih et al., 2013; Xuan and Sussel, 2016; Lorberbaum et al., 2020).
Pancreas identity is specified by increasing Pdx1 levels established
by a feedback loop induced by Ptf1α (Ahlgren et al., 1996; Wiebe
et al., 2007). Expression maintenance of these genes is controlled
by a network orchestrated by Sox9, Hnf1β and Foxa2 (Shih et al.,
2013; Bastidas-Ponce et al., 2017). Moreover, Sox9 is important to
reinforce pancreatic identity by blocking Cdx2 expression
combined with activation of the Notch target Hes1, which in
turn supports progenitor cell proliferation and repression of the
endocrine cell inducer Ngn3 (Figure 1A) (Jensen et al., 2000;
Ahnfelt-Rønne et al., 2012; Shih et al., 2015). This network
generates a pool of multipotent progenitor cells (MPCs) that
expand by combined activation of genes encoding Nkx6.1, Mnx1,
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Hnf1β, Hnf6 (Onecut1), Prox1, Foxa2, and Gata4/6 (Figure 1B)
(Gittes, 2009; Pan and Wright, 2011). Many of these TFs have a
pivotal role in early pancreas specification, as their loss results in
organ agenesis or severe hypoplasia, including Ptf1α, Sox9, Mnx1,
Gata4/6, Hnf1β, and Hes1 (Jonsson et al., 1994; Offield et al.,
1996; Harrison et al., 1999; Li et al., 1999; Jensen et al., 2000;
Haumaitre et al., 2005; Seymour et al., 2007, 2012; Watt et al.,
2007; Shaw-Smith et al., 2014; Xuan and Sussel, 2016).

Once pancreas identity is established, branching
morphogenesis in MPCs leads to separation into tip and trunk
cells, precursors of acinar and ductal structures, respectively.
Initially co-expressed between E10.5 and E13.5, Nkx6-1
becomes restricted to trunk and Ptf1a to tip cells. Tip cells
initiate Myc (c-Myc) expression, whereas trunk cells are
defined by Hnf1b, Sox9, Hnf6, and Hes1 gene activities
(Bastidas-Ponce et al., 2017; Larsen and Grapin-Botton, 2017).
Furthermore, expansion and maintenance of the exocrine
compartment is further supported by inhibition of the Hippo
pathway to repress endocrine specific TF genes, including Pax6,
Ngn3, Isl1, andNkx6-1, as well asGcg and Ins1/2 (Gao et al., 2013;
Dumasia and Pethe, 2020). Consequently, active Hippo signals
antagonize Yap activity promoting an endocrine fate (Rosado-

Olivieri et al., 2019). In tip cells, Ptf1α induces Nr5a2, crucial for
acinar identity, as Nr5a2 directly regulates Ptf1a in a feedback
loop as well as Gata4 and Rbpjl (Figures 1C,D) (Hale et al., 2014;
von Figura et al., 2014). In addition to future acinar and duct cell
fates, the endocrine compartment emerges in a few individual
cells within the trunk that activate Ngn3, presumably by lateral
inhibition orchestrated by the Notch pathway, as shown by
lineage tracing in mice (Gu et al., 2002; Murtaugh et al., 2003;
Magenheim et al., 2011). Ngn3+ cells delaminate from the trunk
epithelium, subsequently cluster and form islets of Langerhans in
the proximity of the tubular epithelium (Figure 1D) (Johansson
et al., 2007; Pan and Wright, 2011; Shih et al., 2013). This process
is reminiscent of epithelial-mesenchymal transition (EMT), by
which epithelial cells lose the epithelial identity and apical-basal
polarity to gain cell motility (for more details, see Box 1)
(Johansson et al., 2007; Pan and Wright, 2011; Shih et al.,
2013; Bastidas-Ponce et al., 2017). It involves coordinated
expression of Snai1 (Snail) and Snai2 (Slug), EMT-TFs that
are directly activated by Ngn3 and repress Cdh1 (E-cadherin)
(Figures 1C,D) (Rukstalis and Habener, 2007; Gouzi et al., 2011).
Interestingly, another EMT-TF, Zeb1, is also expressed at low
levels in the epithelial compartment of the developing pancreas.

FIGURE 1 | Transcription factor networks orchestrating pancreas specification and homeostasis. (A) Early events to form the pancreas anlage and MPC
specification. (B) TFs involved in expansion of the MPC pool during primary transition. (C) TF networks to define tip and bipotent trunk domains. In the trunk additional
networks are established for endocrine and duct specification. (D)Sketch of tip-trunk cell distribution in the pancreas progenitors highlighting TFs active in each domain’s
networks. (E) overview on TFs of each cell compartment in the adult pancreas during homeostasis.
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In contrast to the role of Snail and Slug during endocrine cell
delamination, Zeb1 is crucial for proper lineage specification in
correct ratios and for tissue homeostasis in the adult pancreas
(Lasierra Losada et al., 2021). Temporal waves of TF expression
initiate maturation of endocrine cells to ensure unidirectional
unique cell type specification, including Neurod1, Insm1, and
Rfx6, whose loss compromises islet cell identity and function
(Bastidas-Ponce et al., 2017; Larsen and Grapin-Botton, 2017).
Endocrine specification depends on repeated, transient rises in
Ngn3 expression in the bipotent progenitor cells, that is regulated
by Pax6 activation, while maintained Pdx1 and Nkx6.1 levels are
crucial for β-cell identity in the mature pancreas (Gannon et al.,
2008; Schaffer et al., 2013) (Figure 1D).

In the adult pancreas, mature duct cells are maintained by
continuous expression of trunk cell TFs, including Hnf6, Hnf1β,
Sox9, Hes1, Pax6, Gata6, and Glis3, whereas mature acini express
Ptf1α, Gata4, Mist1, and Nr5a2 (Shih et al., 2013; Bastidas-Ponce
et al., 2017; Larsen and Grapin-Botton, 2017). Terminally
differentiated β-cells are positive for Pdx1, Nkx6.1, Neurod1,
Pax4/6, Rfx3, Nkx2.2, and MafA, whereas α-cells are defined by
Arx, Pou3f4, Pax6, Rfx6, Foxa2, andMafB expression (Figure 1E)
(Gittes, 2009; Pan and Wright, 2011; Shih et al., 2013; Cano et al.,
2014; Dassaye et al., 2016; Bastidas-Ponce et al., 2017; Larsen and
Grapin-Botton, 2017; Dumasia and Pethe, 2020; Jennings et al.,
2020). Besides these regulatory circuits of TFs, correct pancreas
progenitor formation, MPC identity, islet specification, and
maintenance of individual cell types require epigenetic
regulation and the activity of PcG proteins (Dumasia and
Pethe, 2020). Deregulation of the established networks is an
inevitable event in tumorigenesis and fosters disease progression.

3 DEREGULATED EXPRESSION OF
TRANSCRIPTION FACTORS IN
TUMORIGENESIS

3.1 Transcription Factors Driving
Pancreatic Ductal Adenocarcinoma
Initiation
PDAC is considered to emerge from a sequential progression of
pre-neoplastic precursor lesions. Different histological types of

putative precursor lesions have been described: PanIN,
intraductal papillary mucinous neoplasia (IPMN), and
pancreatic mucinous cystic neoplasm (MCN) (Hruban et al.,
2000, 2007). PanIN lesions represent the most extensively studied
precursors of PDAC and are categorized from PanIN1 to PanIN3,
that accumulate progressive features reflecting increasing
dysplastic morphology and acquisition of genetic alterations
(Hruban et al., 2000, 2001; Maitra et al., 2003; Hezel et al.,
2006; Guerra et al., 2007). Nevertheless, the cell of origin
responsible for the initiation and early progression of PDAC
remains undetermined. Despite the phenotypic similarity of these
benign precursor lesions to ducts, mutant Kras expression in
adult mouse ductal cells driven by CK19 failed to induce PDAC,
challenging the ductal origin of PDAC (Brembeck et al., 2003; Ray
et al., 2011). Data from genetically engineered mouse models
(GEMMs) suggest that the expression of oncogenic Kras in acinar
cells induces transdifferentiation to duct-like cells during ADM.
Although still debated, several lines of evidence suggest that this
process precedes the formation of PanIN lesions and ultimately
causes PDAC (Carriere et al., 2007; Guerra et al., 2007; Zhu et al.,
2007; De La et al., 2008; Habbe et al., 2008; Morris et al., 2010;
Kopp et al., 2012; Reichert et al., 2016). For example, analyses of
patients with familial pancreatic cancer show that PanIN lesions,
as well as ADM, and atypical flat lesions, can be found in human
specimens (Brune et al., 2006; Zhu et al., 2007; Shi et al., 2009;
Mazur et al., 2010; Aichler et al., 2012; Hidalgo-Sastre et al., 2016).
Moreover, besides the classical PanIN-to-PDAC progression
model, PDAC initiation was demonstrated to evolve separately
from acinar or duct cells in a PanIN-independent mechanism
(Ferreira et al., 2017). Likewise, expression of KrasG12D in
combination with haploinsufficiency of Smad4 leads to a
sequential progression of MCN lesions towards a distinct class
of PDAC (Izeradjene et al., 2007). Based on oncogenic mutations,
TF networks become deregulated and cells start to
transdifferentiate in multiple ways in favor of tumor progression.

Transdifferentiation or loss of cellular identity is a crucial
feature at the onset of cancer formation (Slack, 2007; Stanger and
Hebrok, 2013; Xiong et al., 2019). Upon injury or inflammation
(pancreatitis) in mice, acinar cells can dedifferentiate towards a
duct progenitor-like state, transiently expressing acinar, ductal, or
early precursor markers to replenish the pancreas during tissue
regeneration (Parsa et al., 1985; Song et al., 1999; Miyamoto et al.,

BOX 1 | Epithelial-mesenchymal transition.
EMT is an embryonic program that is essential for establishing the three germ-layers and other key morphogenetic events during development, but also becomes
activated during wound healing. Besides its physiological function, EMT is hijacked during progression towards metastasis in various cancers (Nieto et al., 2016; Lu and
Kang, 2019). The activation of EMT governs changes in cell fate, allowing (partial) transition of stationary epithelial cells towards a motile, invasive mesenchymal
state (Johansson et al., 2007; Pan and Wright, 2011; Shih et al., 2013; Bastidas-Ponce et al., 2017). Recent findings show that the process of EMT is highly dynamic,
representing a spectrum of intermediary states (Jolly et al., 2015; Nieto et al., 2016; Lambert et al., 2017; Aiello et al., 2018). Moreover, the reverse process
mesenchymal-epithelial transition (MET) promotes metastatic colonization and outgrowth, highlighting the need for cellular plasticity during the metastatic cascade
(Brabletz, 2012; Takano et al., 2016; Aiello et al., 2018). Various intrinsic and extrinsic signals canmediate the induction of EMT in cancer, often involving the activation of
major signaling pathways, including TGFβ, HGF, BMP, PDGF, EGF, SHH, Notch, Integrin, WNT/β-catenin, and NF-κB (Taipale and Beachy, 2001; Heldin et al., 2012;
Espinoza and Miele, 2013; McCormack and O’Dea, 2013; Gonzalez and Medici, 2014; Mihalko and Brown, 2018; Tam et al., 2020; Xu et al., 2020). Activation of EMT
by any of these cascades often converges in the activation of a core set of EMT-TFs, including ZEB1/2, Snail (SNAI1), Slug (SNAI2), and Twist (Nieto et al., 2016;
Stemmler et al., 2019). Consequently, EMT-TFs directly or indirectly downregulate genes that promote epithelial identity with apical-basal polarity, including CDH1,
EPCAM, Claudins, and miR-200 family members (Brabletz and Brabletz, 2010; Dongre and Weinberg, 2019). Simultaneously, they activate mesenchymal genes that
promote migration, invasion, and a front-rear polarity, including CDH2, VIM, ACTA2 (α-SMA), FN1, and MMPs (Dongre and Weinberg, 2019).
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2003; Jensen et al., 2005; Means et al., 2005; Kopp et al., 2012;
Stanger and Hebrok, 2013; Storz, 2017). This involves the re-
expression of progenitor and lineage-specific TFs and subsequent
re-differentiation, demonstrating cellular plasticity induced upon
injury. Acinar cell identity in mice is maintained by several
cooperating TFs, such as Ptf1α and Mist1 (Pin et al., 2001;
Rose et al., 2001; Pan and Wright, 2011; Martinelli et al.,
2013; Bastidas-Ponce et al., 2017; Larsen and Grapin-Botton,
2017). Downregulation of these TFs results in the acquisition of
progenitor cell characteristics and increased ADM and PanIN
formation, highlighting the importance of maintained expression
of these identity factors to prevent tumor initiation (Miyamoto
et al., 2003; De La et al., 2008; Shi et al., 2009; Flandez et al., 2014;
von Figura et al., 2014; Krah et al., 2015). In line with that,
oncogenic Kras expression prevents the acinar re-differentiation
and helps to maintain a ductal phenotype after acute
inflammation, e.g. during pancreatitis. This suppressed re-
differentiation promotes PanIN progression (Morris et al.,
2010; Collins et al., 2012). Furthermore, during the ADM
process in PDAC GEMMs, TFs involved in MPC specification
or in ductal identity maintenance are (re-)expressed, including
Pdx1, Hes1, and Sox9 (Song et al., 1999; Miyamoto et al., 2003;
Jensen et al., 2005; Seymour et al., 2007; Kopp et al., 2012).
Examples of the role of specific TFs that become deregulated
during the early event of transdifferentiation and tumorigenesis
are discussed in more detail.

3.1.1 Gata6
Initially, Gata6 was presented as an important regulator of early
pancreas specification and cell type differentiation, showing a
partially overlapping expression with Gata4 (Ketola et al., 2004;
Decker et al., 2006). Recently, Gata6 was demonstrated to be
required for terminal differentiation and homeostasis of acinar
cells and establishment of polarity (Martinelli et al., 2013).
Evidently, Gata6 inactivation induces massive loss of acinar
cells and fosters ADM in the pancreas (Martinelli et al., 2013).
In addition, Gata6 ablation accelerates KrasG12D driven
tumorigenesis, demonstrating that Gata6 maintains acinar
differentiation by driving expression of acinar master TFs and
suppressing ectopic programs in the pancreas. Hence, in this
context, Gata6 functions as a tumor suppressor (Martinelli et al.,
2016). In fact, GATA6, among other genes encoding endodermal
cell-fate determination TFs, is silenced via promoter
hypermethylation in the squamous subtype of PDAC (Bailey
et al., 2016; Seino et al., 2018). In line with that, GATA6
expression was preferentially detected in well-differentiated
low-grade tumors upon transcription profiling (Collisson et al.,
2011; Moffitt et al., 2015; Diaferia et al., 2016). Interestingly,
silencing of Gata6 and the subsequent loss of acinar
differentiation was observed during nicotine administration in
mice, providing a possible link to cigarette smoking, which is a
major risk factor contributing to pancreatitis and PDAC
initiation (Hermann et al., 2014; Weissman et al., 2020). These
findings altogether emphasize the importance of Gata6
maintenance to prevent tumor initiation and progression
towards PDAC.

3.1.2 Mist1
Mist1 is another acinar specification TF that is crucial for acinar
cell maturation, function, stability, and identity and is involved in
establishing granule organization and exocytosis pathways (Pin
et al., 2001; Johnson et al., 2004; Direnzo et al., 2012). In the
absence of Mist1 in pancreata with a KrasG12D mutation,
destabilization of the acinar phenotype leads to acceleration of
PanIN formation (Shi et al., 2009). Furthermore, in cell culture
models Mist1 was shown to reduce acinar cell proliferation rates
by activating p21 (CIP1/WAF1) (Jia et al., 2008). Data from a 3D
ADM culture model revealed that forced expression of Mist1
attenuates KrasG12D-induced ADM and PanIN formation (Shi
et al., 2013). Activation ofMist1 upon orthotopic transplantation
of murine PDAC cells rescues the acinar gene expression
program (Jakubison et al., 2018). Overall, the maintenance of
a differentiated acinar identity by Mist1 protects acinar cells from
early tumorigenesis.

3.1.3 Ptf1α
Ptf1α maintains acinar cell identity and restrains Kras-mediated
tumorigenesis (Rose et al., 2001; Thompson et al., 2012; Krah
et al., 2015; Hoang et al., 2016). Nevertheless, Ptf1a is
downregulated during inflammation-induced ADM and in
acinar cells transformed by KrasG12D and Notch co-activation
(Molero et al., 2007; De La et al., 2008). Specifically,
downregulation of Ptf1a is a necessary and rate-limiting step
in ADM and neoplastic progression to PanINs and PDAC to
overcome the Ptf1α-mediated maintenance of acinar gene
signatures and quiescence in mice (Krah et al., 2015).
Additionally, Ptf1a was shown to be epigenetically silenced in
murine ADM and PDAC cells harboring an oncogenic Kras allele
(Benitz et al., 2016). Moreover, the sustained expression of Ptf1a
prevents and reverts Kras-driven pancreas tumorigenesis, rescues
the acinar gene program in PDAC cells, and can inhibit tumor
growth (Jakubison et al., 2018; Krah et al., 2019). These examples
highlight the role of Ptf1α as a key transcriptional regulator of
acinar cell identity rendering differentiated acinar cells less
sensitive for cancer initiation.

3.1.4 Pdx1
In the adult pancreas, the primary function of Pdx1 is the
specification and maintenance of mature β-cells (Ahlgren
et al., 1998; Gannon et al., 2008; Gao et al., 2014). During
tumor formation, Pdx1 is upregulated in ADM and PanINs
upon overexpression of TGFα or expression of oncogenic Kras
(Song et al., 1999; Hingorani et al., 2003; Park et al., 2011). In
addition, gain- and loss-of-function analyses in human PDAC
cell lines resulted in increased proliferation and invasion potential
in the presence of PDX1. In contrast, its loss decreases cell
survival and tumor growth in vivo, suggesting that PDX1 acts
as an oncogene (Liu et al., 2008). In line with that, persistent Pdx1
expression in the normal pancreas promotes ADM induction via
Stat3 activation. Simultaneous depletion of Stat3 blocks ADM
formation (Miyatsuka et al., 2006). Despite its oncogenic
function, Pdx1 often becomes downregulated by
hypermethylation during progression towards the squamous
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and more aggressive subtype of PDAC. Conversely, PDX1 is part
of a transcriptional network determining pancreatic endoderm
cell fate and its presence results in a better prognosis in the
pancreatic progenitor subtype (Bailey et al., 2016). In line with
this conflicting data, Pdx1 was demonstrated to act as context-
dependent TF during PDAC initiation and progression. Pdx1
switches from a safeguard of acinar cell identity during early
tumorigenesis to an oncogene after the establishment of ADM
(Roy et al., 2016). In summary, Pdx1 has two opposing functions
that are activated in a context- and progression-dependent
manner, emphasizing the necessity for more detailed analyses
to better understand its bipartite function and prognostic value.

3.1.5 Sox9
Expression of Sox9 in the adult pancreas is restricted to
cytokeratin-positive duct cells including centroacinar cells
(Miyamoto et al., 2003; Seymour et al., 2007; Furuyama et al.,
2011; Shroff et al., 2014). During tumor formation, it was shown
that Sox9 is induced in ADM and PanINs and is maintained in the
pancreatic progenitor PDAC subtype (Morris et al., 2010; Kopp
et al., 2012; Prevot et al., 2012; Meng et al., 2014; Grimont et al.,
2015). Importantly, ADM and PanINs originating from the acinar
compartment require ectopic induction of Sox9. Specific depletion
of Sox9 from acinar cells efficiently blocks Kras-mediated PanIN
formation in mouse models (Kopp et al., 2012). Furthermore, co-
expression of oncogenic Kras and wild-type Sox9 promotes
induction of precursor lesions from the acinar compartment
(Kopp et al., 2012). Mechanistically, efficient repression of
acinar genes and activation of ductal/progenitor genes in cells
that undergo ADM is dependent on the combined expression of
Sox9 and Hnf6, as Hnf6 overexpression also triggers ADM in
mouse acinar cell lines and upon adenoviral gene delivery in vivo
(Prevot et al., 2012). During pancreatitis, inflammation-induced
EGFR signaling was shown to induce Nfatc1 and Nfatc4
expression, leading to ADM and PDAC progression due to
upregulation of Sox9 (Chen et al., 2015; Hessmann et al., 2016).
In addition, SOX9 may play a role in the IPMN-PDAC route,
however, conflicting evidence have been observed. Some studies
identified a gradual decrease in SOX9-positive cells in IPMNs
during progression, while others report constant or even elevated
SOX9 expression in both low-grade and high-grade IPMNs
compared to the normal pancreas (Tanaka et al., 2013; Shroff
et al., 2014; Gnerlich et al., 2019). In mice, Arid1a deficiency in the
KrasG12D pancreas results in reduced Sox9 expression and less
PanINs, but increased IPMN and PDAC formation. Simultaneous
SOX9 overexpression does not affect IPMN incidence, but reduces
PDAC formation, demonstrating that Sox9 is a major downstream
target of Arid1a and prevents tumor progression by promoting
ductal differentiation (Kimura et al., 2018). Conclusively, Sox9 is a
crucial mediator of ductal- or progenitor-like identity. Due to its
embedding in multiple signaling pathways and feedback loops in
cell-type specification, its deregulated expression is ultimately
linked to early tumorigenesis.

3.1.6 Hes1
In the adult pancreas, the expression of the Notch target Hes1 is
limited to centroacinar and ductal cells associated with progenitor

cell function (Miyamoto et al., 2003; Kopinke et al., 2011).
Upregulation of Hes1 by active Notch signaling was observed
during ADM and PanIN formation (Hingorani et al., 2003;
Miyamoto et al., 2003; Jensen et al., 2005; De La et al., 2008;
Plentz et al., 2009). Moreover, Notch-induced Hes1 was suggested
to control the expansion of an undifferentiated precursor cell
population, thereby promoting Kras-mediated tumor initiation
and progression (Miyamoto et al., 2003; Jensen et al., 2005; De La
et al., 2008). In fact, acinar-specific expression of mutant Kras
induces Hes1 expression along with ADM and PanIN formation.
In this context, Notch activation was shown to sensitize acinar
cells to mutant Kras-induced ADM/PanIN initiation and
progression (De La et al., 2008; Nishikawa et al., 2019).
Interestingly, Elastase-mediated Hes1 depletion blocks the
progression from ADM to PanINs, combined with a re-
differentiation to acinar cells (Nishikawa et al., 2019).
However, the role of Hes1 is likely more complex as in
another mouse model using Ptf1α-mediated Hes1 ablation and
oncogenic Kras induction, loss of Hes1 displayed increased ADM
formation and accelerated PDAC tumorigenesis. Reduced
numbers of high-grade PanINs were detected in this model,
hinting towards tumor formation from a direct ADM-to-
PDAC route that skips precancerous PanIN lesions (Hidalgo-
Sastre et al., 2016). These findings convey that context-specificity
and maintained activity of Notch and Hes1 during homeostasis
are essential regulators of tumor initiation.

In summary, PDAC formation depends on early pre-
neoplastic events like ADM, which relies on the
downregulation of TFs that control acinar cell identity,
including Gata6, Mist1, and Ptf1α, and a gain of TFs that
promote duct or MPC-like specification, including Pdx1, Sox9,
and Hes1 (Figure 2). However, some controversies and the
incomplete understanding of the cellular origin of PDAC
warrant further analyses to decipher the TF networks that are
active during early tumorigenesis.

3.2 Transcription Factor Alterations Driving
Pancreatic Ductal Adenocarcinoma
Progression and Metastasis
Profiling of human PDAC specimens led to the identification of
several PDAC subtypes (Collisson et al., 2011; Moffitt et al., 2015;
Raphael et al., 2017; Puleo et al., 2018). The classification in the
different studies largely overlap with one another (Collisson et al.,
2019). Unsupervised clustering of PDAC tumors with high tumor
cellularity identified the pancreatic progenitor and squamous
subtype, suggesting that only these subtypes define the tumor
compartment (Moffitt et al., 2015; Bailey et al., 2016; Puleo et al.,
2018). Histopathologic evaluation revealed that tumors belonging
to the pancreatic progenitor subtype are moderate-to-well
differentiated, whereas the squamous subtype is poorly-
differentiated (Puleo et al., 2018). Transcriptional network
analysis of resected human PDAC specimens identified that
the pancreatic progenitor subtype is enriched for TF
transcripts pivotal for specifying pancreas cell-fate (e.g. PDX1,
HNF4A, HNF1B, HNF1A, FOXA2, FOXA3, HES1, and MNX1)
(Bailey et al., 2016). The squamous subtypes shows enriched gene
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networks involved in TGFβ signaling, MYC activation,
inflammation, metabolic programming, and the upregulation
of ΔNp63 and its targets. Multi-omics analyses of 24 patient-
derived xenografts (PDXs) recapitulated the presence of the
pancreatic progenitor and squamous subtype (Lomberk et al.,
2018). Activated genes in the pancreatic progenitor subtype are
mainly involved in pancreas development (e.g. GATA6, BMP2,
PDX1, and SHH) and Ras signaling (e.g. KITLG and RASA3). The
squamous subtype shows enrichment for pathways with strong
oncogenic potential (e.g. PI3K-AKT, Hippo, and WNT), EMT
(e.g. TGFβ signaling) (Box 1) and deregulation of genes involved
in cell proliferation, differentiation and apoptosis (e.g. YAP1,
CD44, MYC, and E2F7). These findings connect PDAC subtypes
and differentiation states to deregulated signaling pathways. The
deregulation of a subset of TFs play a pivotal role in facilitating a
subtype switch to the more aggressive squamous phenotype by
altering transcriptional regulatory networks. We will discuss
these TFs and their effects upon deregulation.

3.2.1 Subtype-specific Transcription Factors
The oncogenic KRAS mutation is found in over 90% of PDAC
patients and results in the persistent stimulation of downstream
signaling leading to sustained cell proliferation, transformation,
migration, and survival (Biankin et al., 2012; Buscail et al., 2020).
Although Ras signaling is enriched in the pancreatic progenitor
subtype, the activation of certain KRAS downstream mediators is
able to foster the transition towards the squamous subtype.
Elevation of Etv1, a downstream target of Kras, promotes
stromal expansion and metastases through Sparc and Has2
activation in tumors generated by orthotopic transplantation
of KPC cells (Kar and Gutierrez-Hartmann, 2013; Heeg et al.,
2016). Etv1 overexpression induces all core EMT-TFs (Box 1) and
molecular markers associated with the mesenchymal phenotype
(e.g. Vim, Mmp3, and Mmp9), whereas knockdown of Etv1
reduces Zeb1 levels. Using human PaCa cell lines in vitro it
was shown that elevation of HAS2 is able to fuel a self-enforcing
feedback loop of CD44 and ZEB1 that involves differential

splicing of CD44 by ESRP1, further promoting EMT (Preca
et al., 2015, 2017). In addition, EMT and enhanced invasion
can be activated by increased MAZ expression in human PaCa
cell lines. MAZ acts downstream of KRAS and facilitates CRAF-
MAPK signaling involving PAK and suppression of AKT/PKB
(Maity et al., 2018). Moreover, the upregulation of MAPK or
inactivation of TP53 leads to the overexpression of KLF7,
promoting tumor growth and metastasis in mice (Gupta et al.,
2020). Expression of KLF7 activates IFN-stimulated genes and
stabilizes Golgi integrity and thus protein glycosylation to
enhance the secretion of cancer-promoting growth factors. In
cooperation with Myc Yap1 maintains the expression of
metabolic genes required for proliferation and survival
(Murakami et al., 2019). Ablation of Yap1 in a PDAC mouse
model leads to the downregulation of Myc, inducing growth
arrest and apoptosis (Murakami et al., 2019). Interestingly, a
subset of tumor cells was able to restore Myc levels allowing cell
survival through the induction of genes encoding EMT-TFs Snail,
Zeb2, Twist2, and the stemness factor Sox2, thus compensating
for Yap1 loss.

Multiple studies show that the pancreatic progenitor subtype
is KRAS-dependent, whereas the squamous subtype is less
dependent on KRAS (Singh et al., 2009; Collisson et al.,
2011; Ischenko et al., 2021). Moreover, CRISPR/Cas9-
mediated Kras knockout in tumor cells derived from the
KPC mouse model showed pathway enrichment for EMT
and TGFβ signaling, hinting that ablation of Kras drives a
subtype switch towards the squamous subtype (Ischenko
et al., 2021). Secondary ablation of KrasG12D in established
tumors of a GEMM with doxycycline-inducible KrasG12D and
conditional Tp53 inactivation leads to complete regression
(Kapoor et al., 2014). Although these initial results are
promising, the majority of mice show relapse and exhibit
poorly-differentiated pancreatic tumors. The survival of
tumor cells in this model in the absence of Kras is mediated
by the upregulation of the transcriptional coactivator Yap1, a
downstream mediator of the Hippo signaling cascade, and
Tead2, forming Yap1/Tead2 complexes coordinating
downstream gene expression. Other compensatory mechanisms
have been identified, including the induction of the transcriptional
repressor Gli2, a downstream mediator of the Shh pathway, upon
in vitro KrasG12D ablation (Adams et al., 2019; Ischenko et al.,
2021).Gli2 induction rescued viability and induced upregulation of
squamous-specific gene signatures (e.g. Vim and Zeb1). Moreover,
GLI2 induction in human PaCa cell lines promotes a gene signature
switch from the pancreatic progenitor towards the squamous
subtype, accompanied by a decrease in epithelial identity
markers (E-cadherin, ESRP1, GATA6, and SHH) and
enrichment in expression of EMT/stemness markers (ZEB1,
VIM, CK14, SOX2, and CD44). Primary tumor growth and
metastatic outgrowth can be suppressed by ablation of SPP1, a
downstream target of GLI2, emphasizing its role in promoting
tumor aggressiveness. These findings demonstrate that aberrant
activation of several TFs exacerbate PDAC progression (Table 1)
with various degrees of KRAS-dependency. Interestingly, these
deregulations frequently mediate the indirect upregulation of
EMT-TFs (ZEB1/2, Snail, Slug, and Twist) and stemness factors

FIGURE 2 | Modulated expression of key TFs of the process of
transdifferentiation during ADM. Differentiated acinar cells are specified and
maintained by Gata4, Ptf1α, Mist1, and others, whereas duct cells depend on
Sox9, Hes1, and others. During ADM several duct-specific TF networks
are induced including Sox9 and Hes1, while acinar-specific networks involving
Ptf1α and Mist1 are collapsing. ADM cells also adopt non-duct like features by
activation of Pdx1, gaining more progenitor-like characteristics. Although
Gata6 is required for acinar specification, but absent in mature acinar cells, its
continuous expression prevents ADM.
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TABLE 1 | Overview of the individual TFs and their effects upon elevation in primary PDAC tumors. Influence on cellular identity, subtype, tumor characteristics and biological processes are highlighted. An upward pointing
arrow (↑) indicates promoting effects, a downward pointing arrow (↓) inhibitory effects, a minus symbol (−) nor promoting nor inhibitory effects. Blank cells reflect that the process was not analyzed or no conclusion could
be drawn from the indicated studies.

Cellular identity Subtype Tumor characteristics Biological processes

TF Context Epithelial Mesenchymal Pancreatic
progenitor

Squamous Growth/
Progression

Metastasis Proliferation Stemness EMT Invasion Migration References:

Yap1 ↑ ↑ ↑ Kapoor et al. (2014), Lomberk et al. (2018)

GLI2 ↓ ↑ ↓ ↑ ↑ ↑ Adams et al. (2019)

ETV1 ↓ ↑ ↑ ↑ - ↑ ↑ Heeg et al. (2016)

MAZ ↓ ↑ ↑ ↑ ↑ ↑ Maity et al. (2018)

KLF7 ↑ ↑ ↑ ↑ Gupta et al. (2020)

SMAD4
SMAD4+/+ ↓ ↑ ↓ ↑

Bardeesy et al. (2006), Ischenko et al.
(2021)SMAD4−/− ↑ ↓ ↑ ↓ ↑ - ↓

RUNX3
SMAD4+/− ↑ ↓ ↑ ↓ ↑

Whittle et al. (2015)

SMAD4−/− ↑ ↑ ↓

TGIF1 ↑ ↓ ↓ ↓ - ↓ ↓ ↓ ↓ Weng et al. (2019)

PDX1 ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↓ Collisson et al. (2011), Roy et al. (2016),
Lomberk et al. (2018)

GATA6 ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ (Martinelli et al., 2016, 2017, Lomberk
et al. (2018)

FOXA1 ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑ -/↓ Song et al. (2010), Diaferia et al. (2016),
Martinelli et al. (2017), Roe et al. (2017)

FOXA2 ↑ ↓ ↑ ↑ ↓ ↓ Song et al. (2010), Bailey et al. (2016),
Martinelli et al. (2017)

HNF4α ↑ ↓ ↑ ↓ ↓ - ↓ Bailey et al. (2016), Camolotto et al. (2021)

HNF1α ↓ Hoskins et al. (2014), Luo et al. (2015)

↓ ↑ ↑ ↑ ↑ ↑ Abel et al. (2018), Subramani et al. (2020)

SIX1 - - ↑ ↑
Camolotto et al. (2021)

SIX4 ↓ ↑ ↑ ↑

BACH1 ↓ ↑ - ↑ - ↑ ↑ ↑ Sato et al. (2020)

ZEB1 ↓ ↑ ↓ ↑ - ↑ ↑ ↑ ↑ ↑ Krebs et al. (2017)

SNAI2 ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Recouvreux et al. (2020)

SOX2 ↓ - ↑ ↑ ↑ Herreros-Villanueva et al. (2013)

PRRX1A ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↓
Takano et al. (2016)

PRRX1B ↑ ↓ ↓ ↓ ↑ ↑ ↑
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(SOX2 and CD44) (Figure 3, Box 1). These findings corroborate that
the induction of the reversible EMT program promotes an aggressive
PDAC phenotype by enabling cellular plasticity, metastasis formation,

chemoresistance, and the acquisition of CSC properties in PDAC
(Satoh et al., 2015; Wang et al., 2015; Zheng et al., 2015; Krebs et al.,
2017; Aiello et al., 2018; Recouvreux et al., 2020).

FIGURE 3 | Overview of TF networks active during PaCa progression, EMT, and metastasis. The deregulation directly or indirectly affects the expression of other
TFs, thereby promoting or inhibiting the differentiation/EMT state. TFs depicted in the blue box are associated with the epithelial cell-state/pancreatic progenitor subtype
(E-PP), whereas the red box shows TFs linked to the mesenchymal-state/squamous subtype (M-S). Links resulting in activation and repression of TFs in the network are
indicated by green and red lines, respectively. Expression of E-PP TFs in the blue box promote the differentiated endoderm/epithelial identity, block
dedifferentiation, and prevent activation of stemness/EMT/dedifferentiation TFs. Activation of M-S TFs is associated with a mesenchymal identity, promotes
dedifferentiation and activation of EMT and stemness. TFs without connections in the network have been associated with specific subtypes, but how they integrate into
the network is poorly understood. H&E images depict well-differentiated and poorly-differentiated tumors, derived from KPC primary pancreatic tumors, reflecting E-PP
and M-S phenotypes (adapted from Krebs et al. (2017)).
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Apart from the activation of signaling cascades downstream of
KRAS driving the subtype transition, the squamous subtype
shows enrichment for TGFβ signaling (Bailey et al., 2016;
Lomberk et al., 2018). In pre-malignant cells TGFβ acts as a
tumor suppressor by inducing cell-cycle arrest, differentiation,
and apoptosis (Massagué, 2008). Disruption of TGFβ signaling in
PDAC prevents the tumor-suppressive effects, while activation of
TGFβ signaling in a progressed state is a potent inducer of EMT
(Dardare et al., 2020). A central player in canonical TGFβ
signaling is SMAD4, whose inactivation or loss occurs as a
late event during PDAC progression (Wilentz et al., 2000).
The role of Smad4 in progression and metastasis remains
controversial, as Smad4-deficiency attenuates EMT, leads to
upregulated E-cadherin protein levels, and promotes a well-
differentiated PDAC phenotype in the KrasG12D;Ink4a/ArfΔ

mouse model (Bardeesy et al., 2006; Ahmed et al., 2017; Shichi
et al., 2019). Moreover, simultaneous knockout of Smad4 and
Kras reduces EMT-related genes and promotes a Ras signaling
signature (Ischenko et al., 2021). In contrast, other studies show
that the loss of SMAD4 is associated with shorter overall survival
and a squamous phenotype (Blackford et al., 2009; Yamada et al.,
2015). Interestingly, the TF Runx3 promotes metastatic
colonization but is dependent on the Smad4 state (Whittle
et al., 2015). Heterozygous Smad4 inactivation in the KPC
mouse model promotes progression and growth of the
primary tumor, while loss of the remaining wild-type allele
leads to a highly metastatic disease. Furthermore, the
expression of TGFβ target genes can be repressed by elevated
TGIF1, potentially decreasing PDAC progression as
demonstrated by HEK-293 cell transfection experiments and
in PDAC mice (Seo et al., 2004; Weng et al., 2019). In
summary, the intricate balance among several TFs involved in
TGFβ signaling and their mutational status determine the impact
on progression.

On the other hand, several endodermal lineage specifiers
promote the pancreatic progenitor molecular subtype in
PDAC, such as GATA6, FOXA1/A2, and HNF4α, identified in
silico (Bailey et al., 2016; Roe et al., 2017; Brunton et al., 2020).
Although PDX1 expression is often increased during ADM and
tumor onset, its downregulation or loss is mainly observed in
poorly-differentiated tumors correlated with EMT and metastasis
(Roy et al., 2016). Hence, high expression of PDX1 is observed in
the pancreatic progenitor subtype and well-differentiated tumors
(Ischenko et al., 2014; Roy et al., 2016; Lomberk et al., 2018).
Dysregulation of these TFs by inactivating mutations or
repression can affect the EMT-equilibrium towards a more
squamous identity. As an example, loss of Gata6 in a mouse
PDAC model decreases the Cdh1 inducers Foxa1/a2 and de-
represses EGFR signaling in favor of dedifferentiation (Martinelli
et al., 2016, 2017). In contrast, FOXA1 elevation was identified in
patients’ primary lesions and well-differentiated low-grade
tumors, in part by activating HNF4A and other endodermal
lineage specifiers (Duncan et al., 1998; Diaferia et al., 2016;
Roe et al., 2017). Together with Gata6, Foxa1/a2 block EMT
and promote epithelial differentiation in GEMM PDAC models
(Song et al., 2010; Martinelli et al., 2017). Hence, direct
transcriptional repression of FOXA1 by BACH1 is required for

metastatic colonization of AsPC-1 PaCa cells in an orthotopic
implantation model (Sato et al., 2020). Interestingly, loss of
FOXA1/A2 is frequently detected in the squamous subtype and
is sufficient to induce EMT in human PaCa cell lines (Song et al.,
2010; Roe et al., 2017). Apart from repressing FOXA1, BACH1
activates SNAI2, which further promotes EMT, assessed by gene
inactivation in human cell lines (Sato et al., 2020). Transcriptomic
analysis on primary tumors and patient-derived cell lines revealed
that during tumorigenesis HNF4α directly activates HNF1A, and
loss of the former enables a transition towards a more squamous
phenotype (Brunton et al., 2020; Camolotto et al., 2021).
Moreover, HNF4α directly represses the mesodermal and
neural differentiation TFs SIX1/4, whose elevated expression
was linked to the squamous subtype (Camolotto et al., 2021).
Downregulation of HNF1A is observed in the tumor vs. normal
pancreas, suggesting that decreased HNF1α levels are important
for PDAC tumor progression (Hoskins et al., 2014; Luo et al.,
2015). Overexpression of HNF1A decreases cell-doubling times,
while its knockdown significantly increases proliferation in vitro.
HNF1α downregulates apoptosis inhibitors and modulates the
expression of cell cycle genes. However, whether HNF1α acts
through the AKT/mTOR pathway requires additional
investigation, since silencing of HNF1A activates AKT/mTOR
signaling, but may also result in reduced expression of PI3K, AKT
and mTOR (Hoskins et al., 2014; Luo et al., 2015; Subramani
et al., 2020). Other studies indicate that HNF1A is an oncogene
necessary for the regulation of cancer stem cell (CSC) populations
in PDAC, promotes anchorage-independent growth,
proliferation, as well as invasive and migratory capacities
(Abel et al., 2018; Subramani et al., 2020). These contradictory
findings could be explained by the hypothesis that cellular
plasticity and thus the ability to induce partial-EMT is indeed
necessary to acquire stemness, whereas reversal to an epithelial
phenotype is crucial for metastatic outgrowth at secondary sites.
Conclusively, the expression of several TFs involved in specifying
pancreatic cell-fate maintain the pancreatic progenitor subtype by
(in)directly promoting epithelial-identity markers and inhibiting
EMT/dedifferentiation (Table 1). Their downregulation
abrogates these effects, allowing a switch towards the more
aggressive squamous subtype (Figure 3).

3.2.2 Induction of Epithelial-Mesenchymal Transition
and Metastasis
Comparisons between primary PDAC tumors and matched
metastasis revealed no specific metastasis-inducing genetic
mutations, hinting towards gene regulatory mechanisms
affecting late PDAC progression and metastasis (Campbell
et al., 2010; Yachida et al., 2010; Makohon-Moore et al., 2017).
The involvement of EMT-TFs in PDAC invasion and metastasis
was initially questioned due to experimental challenges to observe
EMT and the metastatic cascade in vivo. In particular, depletion
of either Twist or Snail in the KPC mouse model of PDAC is not
affecting metastasis formation, indicating that they are
dispensable for this process (Zheng et al., 2015). However,
depletion of Zeb1 in the same mouse model suppresses
metastasis formation as well as experimental lung colonization
capacity, stemness, and cell and metabolic plasticity (Krebs et al.,
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2017). Moreover, glutamine depletion promotes metastasis of
orthotopically and intravenously injected KPC cells through
induction of EMT by upregulation of Snai2 via ERK signaling
and ATF4 activation (Recouvreux et al., 2020). Collectively, these
findings and research on core EMT-TFs in other cancers show
that their individual contribution to invasion and metastasis is
highly dependent on the cellular context (Elloul et al., 2005;
Imamichi et al., 2007; Caramel et al., 2013; Denecker et al., 2014;
Fischer et al., 2015; Zheng et al., 2015; Krebs et al., 2017; Stemmler
et al., 2019; Recouvreux et al., 2020).

Liver metastases in KPC mouse models show elevated
expression of Foxa1 and Prrx1a, whereas the expression of
these factors decreases when the primary tumor acquires more
squamous-associated features during progression (Takano et al.,
2016; Roe et al., 2017). The decrease during progression and
elevated expression in liver metastases suggests that re-expression
of TFs associated with the pancreatic progenitor subtype is
essential for successful liver colonization. Moreover, it was
shown that Prrx1a enhances self-renewal, decreases
invasiveness, and promotes metastatic outgrowth (Takano
et al., 2016). Isoform b, on the other hand, fosters invasion,
EMT, and dedifferentiation by promoting Hgf expression,
suggesting that both isoforms distinctively regulate EMT and
MET to form overt metastases. In addition, these two isoforms
can form homo- and heterodimers, affecting transcriptional
activity in human PaCa cell lines (Marchand et al., 2019).
Simultaneous inactivation of Snai1 and Twist induces a shift
of the EMT-equilibrium to a more epithelial-like state in the
primary tumor of KPC mice while enhancing liver metastases
(Carstens et al., 2021). Sca1 and Pdx1 levels are also regulating
metastatic capacities: Sca1- cell lines derived from the KPCmouse
model express elevated levels of Pdx1 and successfully metastasize
in lungs and lymph nodes upon tail vein injections, whereas Sca1+

cells with lower levels of Pdx1 fail to metastasize (Ischenko et al.,
2014). These findings support the idea that the reinforcement of
epithelial features and thus cellular plasticity are required for
metastatic competence (Figure 3).

3.3 Chromatin Dynamics and Epigenetic
Regulation of Pancreatic Ductal
Adenocarcinoma
In addition to the deregulation of established TF networks in
tumor progression, epigenetic mechanisms of gene regulation are
altered and become hijacked by cancer cells resulting in global

changes in gene expression (Box 2). Genomic analyses in human
PDAC revealed that up to 10% of mutations are identified in
chromatin remodeling genes (Hayashi et al., 2021). Moreover, the
epigenetic landscape of PDXs revealed that the squamous and
pancreatic progenitor subtype can also be classified by patterns in
DNA methylation and gene regulatory elements (Nicolle et al.,
2017; Lomberk et al., 2018). Deregulation of specific histone
modification enzymes in PDAC can lead to the transition towards
the more aggressive squamous subtype by altering the chromatin
states. Specifically, mutations in histone lysine demethylase 6a
(KDM6A) combined with p53 alterations were associated with
the squamous subtype of PDAC (Bailey et al., 2016). Loss of
KDM6A alone is sufficient to induce a squamous-like subtype
through activation of ΔNp63 (TP63), MYC, and RUNX3
enhancer regions (Andricovich et al., 2018). Interestingly,
upregulation of ΔNp63 alone is able to reprogram the
enhancer landscape towards the squamous subtype by
installing H3K27ac near genes promoting this subtype
(Somerville et al., 2018). Upregulation of the histone
methyltransferase Nsd2 increases the global accumulation of
the activation mark H3K36me2, thereby enriching the
squamous gene signature in the KPC model. In contrast, loss
ofNsd2 decreases H3K36me2, resulting in enrichment of markers
of the pancreatic progenitor subtype (Yuan et al., 2020). These
findings suggest that the accumulation of dimethylation at
H3K36 is necessary for cells to undergo EMT. Moreover,
H3K36me2 may induce alterations in the enhancer landscape
as its decrease leads to loss of H3K27ac in the same domains.
Interestingly H3K36me2 transcriptionally affects the enhancer
activity and thus the expression of most EMT-TF genes (Zeb1/2,
Snai1, and Twist2) and of other metastasis-promoting TFs (Yuan
et al., 2020). Histone methyltransferase EZH2 is part of the
polycomb repressor complex 2 (PRC2) to set H3K27
methylation marks (Viré et al., 2006; Völkel et al., 2015).
During pancreas regeneration, EZH2 transcriptionally
represses NFATC1, whereas during tumorigenesis it induces
NFATC1 to drive KRAS-mediated PaCa plasticity (Chen et al.,
2017). Making use of uncoupling Ezh2-NFATc1 regulation by
combining conditional Nfatc1 activation with Ezh2 inactivation
in KrasG12D mice, Patil et al. recently showed that partial loss of
Ezh2 leads to more differentiated PDAC tumors and fewer liver
metastases in line with higher EZH2 protein expression in human
high-grade tumors (Patil et al., 2021). Strikingly the most
abundant negatively regulated target of Ezh2 is Gata6, a key
regulator of endodermal identity. Moreover, re-expression of

BOX 2 | Epigenetic regulation of gene expression.
Epigenetic mechanisms control the accessibility for TFs and the transcription machinery to selective regions of the genome. Consequently, depending on the state of
the epigenetic landscape, TFs can bind to cis-regulatory elements to regulate gene transcription (Shen and Laird, 2013; Klemm et al., 2019). Thesemechanisms can be
broadly divided into: post-translational histone modifications, DNA/RNA modifications (e.g. methylation) and non-coding RNAs (Shen and Laird, 2013; Lu et al.,
2020). Histone modifications at specific regulatory regions include methylation and acetylation predominantly at histone H3 sites K4, K9, and K27 and are associated
with active genes/promoters (H3K4me3), active/poised enhancers (H3K4me1), polycomb-repressed regions (H3K27me3) or heterochromatin (H3K9me3). These
post-translational marks are set by a group of histone modifications enzymes, which are reviewed elsewhere (Bannister and Kouzarides, 2011). Super-enhancers (SEs)
are a special type of enhancer which have been first identified in embryonic stem cells with clusters of TF binding sites for Sox2, Oct4 and Nanog (Hnisz et al., 2013;
Whyte et al., 2013). SEs have also been identified in cancer and represent large regions of chromatin (up to 20 kb) that are densely clustered with enhancers, highly
enriched for TF binding sites (Hnisz et al., 2013; Whyte et al., 2013). Their function is crucial in shaping cellular identity by regulating cell-type specific gene expression in
both normal and diseased states (Hnisz et al., 2013).
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wild-type Ezh2 abrogates Gata6 expression in Ezh2-deficient
cells. Conclusively, alterations in histone modification enzymes
affect the chromatin states and aid in PDAC progression by
inducing or repressing genes involved in PDAC progression.

Very recently, a strong contribution to PDAC progression was
observed by the regulation of so-called super-enhancers (SEs)
(Box 2) (Andricovich et al., 2018; Lomberk et al., 2018; Somerville
et al., 2018). Comparisons between healthy cells and related
cancer cells revealed that these SEs accumulate close to the
loci of oncogenes during cancer progression, thus playing an
important role in tumorigenesis (Hnisz et al., 2013). Profiling of
the SE landscape revealed that several TFs transcriptionally
regulate the expression of genes associated with the pancreatic
progenitor subtype by binding upstream of these SEs (i.e.
GATA6, FOS, FOXP1, FOXP4, KLF4, ELF3, NFIX, CUX1, and
SSBP3) (Lomberk et al., 2018). These SEs mainly regulate genes of
TFs associated with pancreas development (including HNF1A,
HNF4A, and PDX1) and lipid metabolism. Epigenomic mapping
of PDXs and PaCa cell lines showed that ΔNp63 activates
squamous-specific SEs, including those near FAT2, NECTIN1,
and HIF1A loci (Hamdan and Johnsen, 2018). Depletion of
ΔNp63 reduces the H3K27ac at those SEs, indicating the
dependency of ΔNp63 for writing these H3K27 acetylation
marks. Loss of KLF5 leads to a reduction in H3K27ac and
H3K4me1 near these (super-)enhancers, inducing activation of
stem cell- and mesenchymal-associated genes (Diaferia et al.,
2016). KLF5 was shown to be selectively expressed in well-
differentiated human PDAC tumors and is required to
maintain the expression of epithelial identity genes. Moreover,
binding of KLF5 to enhancers increased the binding of ELF3 and
FOXA1, which are both associated with low-grade PDAC tumors,
demonstrating how KLF5 contributes to the regulation of
pancreatic progenitor identity (Diaferia et al., 2016).

Progressive loss of repressive marks in large heterochromatin
domains (H3K9 and H4K20) and increased H3K9, H3K27, and
H4K16ac were found in distant metastases in comparison to the
primary tumor, which helped to follow the acquisition of
malignant traits (McDonald et al., 2017). These traits included
resistance to oxidative stress, promoting a poorly-differentiated
state, upregulation of DNA repair genes, and downregulation of
oncogenic signal transduction in distant lung metastases.
Comparisons of the epigenetic landscape from matched tumor
and metastasis-derived organoids of the KPCmodel revealed that
metastatic transition is accompanied by prominent changes in
H3K27 acetylation, predominantly in enhancer regions. These
changes are controlled by Foxa1, which is upregulated in
metastases and was shown to cooperate with Gata5 for
enhancer activation (Roe et al., 2017). Epigenetic regulation is
also required to overcome the tumor-suppressive effects of TGFβ
signaling, i.e., the induced senescence and apoptosis before it can
act as a trigger of EMT induction. Strikingly, NFATc1 elevation is
crucial to overcome TGFβ-induced growth arrest by antagonizing
H3K27ac and activation of TGFβ target genes including Birc5,
Ccnd1, and Plk1 (Hasselluhn et al., 2019).

Altogether, these findings indicate that epigenetic states define
the molecular subtypes of PDAC in a highly dynamic process.
Alterations in the epigenetic landscape including SEs are key

features in PDAC progression towards malignancy, supporting
the acquisition of cellular plasticity.

4 NOVEL THERAPEUTIC APPROACHES TO
TARGET TRANSCRIPTION FACTORS

Despite the advances in therapies, non-metastatic local PDAC
eligible for surgical resection followed by adjuvant chemotherapy
remains the sole curative option, applicable for only 10–20% of
patients (Gillen et al., 2010; Werner et al., 2013; Benassai et al.,
2015; Orth et al., 2019). First-line treatment options for patients
with locally advanced or distant metastatic PDAC are usually
limited to conventional chemotherapies. Despite changes in
treatment regimens from monotherapies to multi-agent
chemotherapies, the survival rates of PaCa patients remain
largely unchanged and success is severely limited due to de
novo acquisition or pre-existing resistance. Various intrinsic
and extrinsic tumor feature alterations have been proposed
contributing to drug resistance, including the
microenvironment, altered metabolism, EMT, and the
presence of CSCs (Grasso et al., 2017; Swayden et al., 2018;
Tuerhong et al., 2021). The lack of blood vessels and the abundant
desmoplasia create a hypoxic and nutrient-scarce environment,
forcing PDAC cells to alter their metabolism to sustain
proliferation (Sousa and Kimmelman, 2014; Yang et al., 2020).
In addition, these microenvironmental features impede
therapeutic delivery (Neesse et al., 2011; Dufort et al., 2016).
In general, global efforts are made to design precision therapies to
combat PDAC, including therapeutic targets to inhibit tumor-
intrinsic pathways such as KRAS, PI3K, AKT, mTOR, JAK/
STAT, SHH, NOTCH, and WNT signaling cascades
(Chandana et al., 2019). These strategies predominantly target
mediators in oncogenic signaling cascades upstream of TFs,
thereby indirectly affecting the expression of deregulated TFs.
So far, the only precision medicine approved for PDAC treatment
is erlotinib, a potent inhibitor of EGFR-related kinase, used in
combination with gemcitabine (Moore et al., 2007; Sinn et al.,
2017).

As summarized before, PDAC is highly plastic, and inhibition
of certain kinases can be compensated by the dysregulation of
other effectors (as seen for KRAS) and often converge to the same
set of TFs (e.g. ZEB1/2, Snail, Slug, Twist, and SOX2) (Figure 3).
Hence, these TFs are attractive therapeutic targets. For example,
silencing of ZEB1 restores the expression of epithelial markers
and resensitizes PaCa cells to standard chemotherapy
(Arumugam et al., 2009; Wellner et al., 2009; Meidhof et al.,
2015). Similarly, treatment with the HDAC inhibitor
Mocetinistat in vitro and upon xenotransplantation
upregulates ZEB1-repressed target genes, particularly miR-200
and miR-203, reducing ZEB1 protein expression and restoring
drug sensitivity (Meidhof et al., 2015). Moreover, knockout of
Snai1 or Twist increased the sensitivity to erlotinib and
gemcitabine (Zheng et al., 2015). Although initially thought to
be undruggable, recent attempts to design and identify drugs that
target TFs are promising (Henley and Koehler, 2021). Strategies
to inhibit TFs directly and indirectly include targeting the
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expression level, modulating proteasomal degradation, disrupting
protein/protein interactions, and ligand/DNA binding abilities
(Lambert et al., 2018; Bushweller, 2019).

Multiple clinical trials are currently ongoing to evaluate
therapeutics that indirectly target TF expression levels in
PDAC. Studies on triptolide (TPL), a diterpenoid triepoxide,
shows promising results in PDAC cell lines and orthotopic
pancreatic cancer models (Borja-Cacho et al., 2010; Chugh
et al., 2012; Zhao et al., 2020). TPL binds to XPB, a subunit of
TFIIH, thereby inhibiting transcription globally (Vispé et al.,
2009; Titov et al., 2011). Moreover, treatment with TPL
(Minnelide) leads to a rapid downregulation of MYC gene
expression and protein levels (Titov et al., 2011). Phase II
clinical trials are currently ongoing to study the effect of TPL
on non-responsive PDAC tumors. In addition, clinical attempts
to target epigenetic deregulation are currently under evaluation.
These include treatment with Azitidine and/or Romideposin, in
combination with immuno- as well as standard
chemotherapeutic treatments in patients with surgically
resected and advanced PDAC. The inhibition of effectors
upstream of TFs may pose severe problems in non-neoplastic
cells, as these pathways are often indispensable for proper cell
functioning. It is hypothesized that direct TF-targeting
approaches minimize the side effects by precisely modulating
their deregulated transcriptional programs (Henley and Koehler,
2021). The drug COTI-2, a thiosemicarbazone, has been shown to
directly convert mutant p53 to the wild-type 3D structure. TP53 is
approximately mutated in 72% of all PDAC (Raphael et al., 2017).
Gain-of-function mutations in TP53 increase the aggressiveness
in PaCa and promotes metastasis (Morton et al., 2010;
Weissmueller et al., 2014). Additionally, it negatively regulates
the PI3K/AKT/mTOR pathway (Salim et al., 2016; Robertson
et al., 2020). Phase I clinical trials are currently ongoing to study
the effect of COTI-2 as monotherapy or with combinations for

the treatment of malignancies. Moreover, bi-weekly treatment of
pretreated metastatic PDAC patients with the STAT3 inhibitor
BBI608, shows promising activity (Bekaii-Saab et al., 2016).

The advent of targeted therapies to target TF together with the
advances in other therapeutic strategies (e.g. immunotherapy,
targeting receptors, membrane transporters, and enzymes) and
rise of precision medicine bear the promise to improve PDAC
patient outcomes. Although the field is still evolving, these
combinational treatments offer valuable options for PaCa
patients to overcome acquired therapy resistance and
aggressive phenotypes.
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GLOSSARY

ΔNP63 deltaNp63 alternate variant of the tumor protein p63

3D three dimensional

ACTA2 (αSMA) actin alpha 2, smooth muscle

ADM acinar-ductal metaplasia

AKT/PKB AKT serine/threonine kinase 1/protein kinase B

ALDH1 aldehyde dehydrogenase 1

ATF4 activating transcription factor 4

BACH1 BTB domain and CNC homolog 1

BIRC5 baculoviral IAP repeat containing 5

BMP bone morphogenetic protein

BRCA2 breast cancer type 2 susceptibility protein

CCND1 cyclin D1

CDH1 cadherin 1/(epithelial) E-cadherin

CDH2 cadherin 2

CDKN2A cyclin dependent kinase inhibitor 2A

CDX2 caudal type homeobox 2

CK14 cytokeratin 14

CK19 cytokeratin 19

CRAF/Raf1 Raf-1 proto-oncogene, serine/threonine kinase

CSC cancer stem cell

CUX1 cut like homeobox 1

DNA deoxyribonucleic acid

E2F7 E2F transcription factor 7

EGF epidermal growth factor

EGFR epidermal growth factor receptor

ELF3 E74 like ETS transcription factor 3

EMT epithelial-mesenchymal transition

EPCAM epithelial cell adhesion molecule

ERK extracellular signal-regulated kinases

ESRP1 epithelial splicing regulatory protein 1

ETV1 ETS variant transcription factor 1

EZH2 enhancer of zeste 2 polycomb repressive complex 2 subunit

FAT2 FAT atypical cadherin 2

FBP1 fructose-bisphosphatase 1

FGF2 fibroblast growth factor 2

FN fibronectin 1

FOS Fos proto-oncogene, AP-1 transcription factor subunit

FOXA1 forkhead box protein A1

FOXA2 forkhead box protein A2

FOXP1 forkhead box P1

FOXP4 forkhead box P4

GATA4 GATA binding protein 4

GATA6 GATA binding protein 6

GCG glucagon

GEMM genetically engineered mouse model

GLI2 GLI family zinc finger 2

GLIS3 GLIS family zinc finger 3

HAS2 hyaluronic acid synthase 2

HDAC histone deacetylase

HES1 hairy and enhancer of split 1

HGF hepatocyte growth factor

HIF1A hypoxia inducible factor 1 subunit alpha

HKDC1 hexokinase domain containing 1

HNF1α hepatocyte nuclear factor 1 alpha

HNF1β hepatocyte nuclear factor 1 beta

HNF4α hepatocyte nuclear factor 4 alpha

HNF6 (Onecut1) hepatocyte nuclear factor 6 (one cut family member 1)

IFN interferon

INK4A/ARF cyclin-dependent kinase 4 Inhibitor/alternative
reading frame

INS1 insulin I

INS2 insulin II

INSM1 insulinoma-associated 1/INSM transcriptional repressor 1

IPMN intraductal papillary mucinous neoplasia

ISL1 islet 1/ISL LIM homeobox 1

JAK janus kinase

KDM6A lysine demethylase 6A

KITLG KIT ligand

KLF krüppel-like factor

KRAS KRAS proto-oncogene, GTPase

MAFA musculoaponeurotic fibrosarcoma oncogene homolog A/MAF bZIP
transcription factor A

MAFB musculoaponeurotic fibrosarcoma oncogene homolog A/MAF bZIP
transcription factor B

MAPK mitogen-activated protein kinase

MAZ MYC associated zinc finger protein

MCN mucinous cystic neoplasm

MET mesenchymal-epithelial transition

miRNA microRNA

MIST1 muscle, intestine and stomach expression 1/basic helix-loop-helix
family member A15 (BHLHA15)

MMP matrix metalloprotease

MNX1 motor neuron and pancreas homeobox 1

MPC multipotent progenitor cell

mTOR mammalian target of rapamycin

MYC MYC proto-oncogene, bHLH transcription factor

NECTIN1 nectin cell adhesion molecule 1

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 75345621

van Roey et al. TF Networks in PDAC

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


NEUROD1 neuronal differentiation 1

NFATC1 nuclear factor of activated T cells 1

NFATC4 nuclear factor of activated T cells 4

NFIX nuclear factor I X

NF-κB nuclear factor kappa B

NGN3 neurogenin 3

NKX2.2 NK2 homeobox 2

NKX6.1 NK6 homeobox 1

NR5A2 nuclear receptor subfamily 5 group A member 2

NSD2 nuclear receptor binding SET domain protein 2

p21(CIP/WAF1) cyclin-dependent kinase inhibitor 1/wild-type p53-
activated fragment 1

p53/TP53 tumor protein p53

p63/TP63 tumor protein p63

PaCa pancreatic cancer

PAK p21 activated kinase

PanIN pancreatic intraepithelial neoplasia

PAX4 paired box 4

PAX6 paired box 6

PcG polycomb group

PDAC pancreatic ductal adenocarcinoma

PDGF platelet-derived growth factor

PDX patient-derived tumor xenograft

PDX1 pancreatic and duodenal homeobox 1

PI3K phosphoinositide 3-kinases

PLK1 polo like kinase 1

POU3F4 POU class 3 homeobox 4

PRC2 polycomb repressor complex 2

PROX1 prospero homeobox 1

PRRX1 paired-related homeodomain transcription factor 1

PTF1A/p48 pancreas associated transcription factor 1a

RASA3 RAS p21 protein activator 3

RBPJL recombination signal binding protein for immunoglobulin kappa J
region like

RFX3 regulatory factor X3

RFX6 regulatory factor X6

RNA ribonucleic acid

RUNX3 RUNX family transcription factor 3

SCA1 stem cell antigen 1

SE super-enhancer

SHH sonic hedgehog

SIX1 SIX homeobox 1

SIX4 SIX homeobox 4

SLUG/SNAI2 snail family transcriptional repressor 2

SMAD4/DPC4 SMAD family member 4/deleted in pancreatic cancer 4

SNAIL/SNAI1 snail family transcriptional repressor 1

SOX2 SRY-box transcription factor 2

SOX9 SRY-box transcription factor 9

SPARC secreted protein acidic and cysteine rich

SPP1 secreted phosphoprotein 1

SSBP3 single stranded DNA binding protein 3

STAT3 signal transducer and activator of transcription 3

TF transcription factor

TFIIH transcription factor IIH

TGFα transforming growth factor alpha

TGFβ transforming growth factor beta

TGIF1 TG-interacting factor 1

TJP1/ZO-1 tight junctional protein 1/zonula occludens 1

TPL triptolide

TWIST1 twist-related protein 1

VIM vimentin

WNT portmanteau from wingless and int-1 (locus of frequent mouse
mammary tumor virus (MMTV) integration)

XPB/ERCC3 xeroderma pigmentosum type B/ERCC excision repair 3,
TFIIH core complex helicase subunit

YAP Yes1 associated transcriptional regulator

ZEB1 zinc finger E-box binding homeobox 1

ZEB2 zinc finger E-box binding homeobox 2
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