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Abstract
Introduction: For the diagnosis of Parkinson's disease (PD) and atypical parkinson-
ism (AP) using neuroimaging, structural measures have been largely employed since 
structural abnormalities are most noticeable in the diseases. Functional abnormali-
ties have been known as well, though less clearly seen, and thus, the addition of func-
tional measures to structural measures is expected to be more informative for the 
diagnosis. Here, we aimed to assess whether multimodal neuroimaging measures of 
structural and functional alterations could have potential for enhancing performance 
in diverse diagnostic classification problems.
Methods: For 77 patients with PD, 86 patients with AP comprising multiple system 
atrophy and progressive supranuclear palsy, and 53 healthy controls (HC), structural 
and functional MRI data were collected. Gray matter (GM) volume was acquired as 
a structural measure, and GM regional homogeneity and degree centrality were ac-
quired as functional measures. The measures were used as predictors individually or 
in combination in support vector machine classifiers for different problems of dis-
tinguishing between HC and each diagnostic type and between different diagnostic 
types.
Results: In statistical comparisons of the measures, structural alterations were ex-
tensively seen in all diagnostic types, whereas functional alterations were limited to 
specific diagnostic types. The addition of functional measures to the structural meas-
ure generally yielded statistically significant improvements to classification accuracy, 
compared to the use of the structural measure alone.
Conclusion: We suggest the fusion of multimodal neuroimaging measures as an ef-
fective strategy that could generally cope with diverse prediction problems of clinical 
concerns.
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1  | INTRODUC TION

In the era of precision medicine, machine learning-based predictive 
modeling has great potential for clinical prediction problems includ-
ing the diagnosis of specific diseases, as it can find patterns that a 
single clinician may not detect when it is applied to various clinical 
data sources. However, there are also challenges regarding a lack of 
its meaningful contributions to clinical practice primarily due to the 
need of additional measures characterizing the disease process as 
well as the demand for a large sample size (Deo, 2015).

For the diagnosis of Parkinson's disease (PD) and atypical par-
kinsonism (AP), though still usually reliant on a medical history and 
neurological examination in clinical practice, neuroimaging measures 
have been increasingly employed. Furthermore, the application of 
machine learning to neuroimaging measures has shown improved 
performance in classification problems related to the diagnosis (Rana 
et al., 2015; Salvatore et al., 2014). In particular, given challenges of 
the differential diagnosis between PD and AP as often manifested 
as the underdiagnosis of AP and the overdiagnosis of PD (Irene 
Litvan, 1999), machine learning-based predictive modeling with neu-
roimaging measures has emerged as an approach to discover new in-
sights into the diagnosis (Garraux et al., 2013; Scherfler et al., 2016).

Among other MRI measures, gray matter (GM) volume acquired 
from structural MRI (sMRI) has been successfully employed for 
machine learning by taking account of structural abnormalities, 
specifically GM atrophy, in PD (Brenneis et al., 2003; Summerfield 
et al., 2005) and AP (Brenneis et al., 2003; Messina et al., 2011). In 
contrast, despite possible functional abnormalities related to PD and 
AP (Choe, Yeo, Chung, Kim, & Lim, 2013; Fang et al., 2017; Li, Liang, 
Jia, & Li, 2016; Wu et al., 2009), the potential of functional measures 
acquired from functional MRI (fMRI) for the diagnosis of the diseases 
at a single individual level has been rarely examined. Moreover, it re-
mains unclear whether the fusion of structural and functional mea-
sures could be more informative than the use of structural measures 
alone especially when diverse diagnostic classification problems are 
considered.

In this study, we proposed three kinds of diagnostic classification 
problems: (a) discriminating PD and AP from healthy controls (HC); 
(b) distinguishing between PD and AP; and (c) classifying subtypes 
of AP. We wanted to search for an effective strategy that would 
generally cope with such diverse diagnostic classification problems. 
Specifically, we sought to test whether multimodal neuroimaging 
measures of structural and functional abnormalities could help to 
enhance classification performance compared to the use of mono-
modal neuroimaging measures alone.

2  | METHODS

2.1 | Participants

From the movement disorders and dementia database collected pro-
spectively from 2011 to 2016 at a single tertiary hospital, patients 

who underwent neurological examination, including the unified 
Parkinson's disease rating scale (UPDRS) (Fahn, Elton, & Members of 
the UPDRS Development Committee, 1987) and mini-mental state 
examination (MMSE), and conventional MRI scans at the first visit 
to the clinic, were selected. At least 3 years after the first visit, the 
most up-to-date diagnosis was retrieved from the case files of each 
patient. To ensure a differential diagnosis, apart from consensus cri-
teria (Bensimon et al., 2008; Gelb, Oliver, & Gilman, 1999; Hughes, 
Daniel, Kilford, & Lees, 1992; Litvan et al., 1996), additional imaging 
modalities, such as 18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-
iodophenyl) nortropane PET, 18F-fluorodeoxyglucose PET, and cardiac 
metaiodobenzylguanidine imaging, were adopted if needed and clini-
cal features and drug responses during a follow-up were considered.

As diagnostic results, 77 patients (67.62 ±  7.72  years, 33 fe-
males and 44 males) were diagnosed with PD and 86 patients 
(66.28 ± 9.24 years, 37 females and 49 males) were diagnosed with 
probable AP. The patients who were diagnosed with AP were fur-
ther divided into 44 patients (61.73 ±  9.19  years, 18 females and 
26 males) with multiple system atrophy (MSA) and 42 patients 
(71.04 ± 6.56 years, 19 females and 23 males) with progressive su-
pranuclear palsy (PSP). The patients with MSA included both pheno-
types: the parkinsonian variant (MSA-P, 21 patients) and cerebellar 
variant (MSA-C, 21 patients) (Gilman et al., 1999). Fifty-three age- 
and sex-matched healthy participants (66.87 ±  8.36  years, 28 fe-
males and 25 males) were also recruited, and they served as HC. This 
retrospective study was approved by the Yonsei University Health 
System institutional review board, and a waiver of informed consent 
was obtained.

2.2 | Acquisition and processing of 
neuroimaging data

MRI scans were collected using an Achieva 3 T MRI system (Philips 
Healthcare). Structural MRI (sMRI) data of one volume were acquired 
in coronal planes with a 3D T1-weighted SENSE parallel imaging se-
quence: number of slices = 210, slice thickness = 1.00 mm, matrix 
size = 256 × 256, and in-plane resolution = 0.875 mm × 0.875 mm. 
Resting state fMRI (rsfMRI) data of 165 volumes were obtained in 
axial planes with a T2*-weighted gradient-echo echo-planar imag-
ing sequence: repetition time = 2,000 ms, echo time = 30 ms, num-
ber of slices = 31, slice thickness = 4.00 mm, matrix size = 80 × 80, 
and in-plane resolution  =  2.75 mm ×  2.75 mm. Using the tools in 
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/, RRID:SCR_007037) and 
DPARSF (http://rfmri.org/DPARS​F/, RRID:SCR_002372), sMRI and 
rsfMRI data were preprocessed. GM volume, as a main measure in-
dicating structural abnormalities in PD and AP, was acquired from 
sMRI. In addition, as measures representing functional abnormalities 
at local and global levels, regional homogeneity (ReHo) (Zang, Jiang, 
Lu, He, & Tian, 2004) and degree centrality (DegCen), respectively, 
were obtained from rsfMRI. Details on how the neuroimaging data 
were processed to acquire the structural and functional measures 
are described in Appendix S1.

http://www.fil.ion.ucl.ac.uk/spm/
http://rfmri.org/DPARSF/
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2.3 | Statistical inferences on 
neuroimaging measures

At a group level, differences in the voxel-wise measures, including GM 
volume, ReHo, and DegCen, were inferred using two-sample t tests 
between HC and each diagnostic type and between different diagnos-
tic types. In the voxel-wise statistical inferences, influences of age, sex, 
and years of education were adjusted commonly for the three meas-
ures, and an effect of total intracranial volume (TIV) was additionally 
adjusted for GM volume. Statistical significance was determined at an 
extent threshold of a p value of .05 family-wise error corrected for mul-
tiple comparisons with a height threshold of a p value of .001.

2.4 | Generation of predictor sets and application of 
machine learning

The parcellation of 120 GM regions was determined according to 
the modified automated anatomical labeling (AAL) atlas (Rolls, Joliot, 
& Tzourio-Mazoyer, 2015). They contain 94 cerebral regions and 26 
cerebellar regions (Table S1). For each GM region, GM volume di-
vided by TIV, ReHo, and DegCen averaged over voxels within the 
region were assigned. Since the collection of values according to the 
choice of a specific atlas seems to be arbitrary in acquiring predictor 
values, we also applied the same predictive modeling procedure de-
scribed below to the choice of different atlases. Details on the par-
cellation of GM regions according to different atlases are described 
in Appendix S1.

For tasks of classification between HC and each diagnostic type 
and between different diagnostic types, we employed the support 
vector machine (SVM) as a machine learning method. Having trained 
an SVM classifier for each classification problem, we evaluated 
classification accuracy via leave-one-out cross-validation, by which 

classification accuracy was computed for each left-out instance 
other than instances used for training. To assess improvements to 
classification accuracy according to the combined use of multimodal 
neuroimaging measures in developing SVM classifiers, we consid-
ered combinations of more than two measures as well as individual 
measures as predictor sets. Specifically, the fusion of the structural 
and functional measures was manifested by combining GM volume 
and ReHo, by combining GM volume and DegCen, and by combining 
all the three measures. Each of the predictor sets was corrected for 
effects of age, sex, and years of education by obtaining residuals 
after regressing out the confounding covariates. To reduce the risk 
of overfitting, irrelevant predictors were removed when they failed 
to pass a criterion of showing a difference between two groups with 
a p value of.05 uncorrected for multiple comparisons in a two-sam-
ple t test.

2.5 | Comparison of classification accuracy

To compare classification accuracy between different SVM classi-
fiers, specifically between the one constructed with the structural 
measure alone and the ones constructed by the combination of the 
structural and functional measures, we used a resampling approach 
(Hothorn, Leisch, Zeileis, & Hornik,  2005) to derive a distribution 
of classification accuracy. Resampling was performed by applying 
10-fold cross-validations iteratively 1,000 times, such that 10,000 
estimates of classification accuracy were collected. The distribution 
of the estimates was represented as a curve the shape of which has 
been defined by a kernel smoothing function. With matched resa-
mpling for two SVM classifiers, one-sided one-sample t tests were 
conducted to assess the null hypothesis of zero or negative differ-
ences in the estimates. Statistical significance was determined at a 
p value of .05 family-wise error corrected for multiple comparisons.

TA B L E  1   Demographic and clinical characteristics of participants

HC

Patients p value

PD

AP
HC versus. 
Patients

PD versus. 
AP

MSA 
versus. PSPMSA PSP

Sample size 53 77 44 42

Age, years 
(mean ± SD)

66.87 ± 8.36 67.62 ± 7.72 61.73 ± 9.19 71.04 ± 6.56 NS NS <.001

Sex (female:male) 28:25 33:44 18:26 19:23 NS NS NS

Education, years 
(mean ± SD)

12.53 ± 4.44 10.10 ± 4.75 11.43 ± 4.38 10.27 ± 4.89 .006 NS NS

Disease duration, 
months (mean ± SD)

n/a 22.49 ± 20.96 25.31 ± 18.94 33.33 ± 16.19 n/a .028 .040

UPDRS (mean ± SD) 2.50 ± 2.12 24.90 ± 10.32 29.67 ± 13.36 28.00 ± 11.52 .003 NS NS

MMSE (mean ± SD) 28.33 ± 1.24 27.04 ± 2.51 26.36 ± 3.26 24.31 ± 2.78 .003 .006 NS

Abbreviations: AP, atypical parkinsonism; HC, healthy controls; MMSE, mini-mental state examination; MSA, multiple system atrophy; NS, 
nonsignificant; PD, Parkinson's disease; PSP, progressive supranuclear palsy; UPDRS, unified Parkinson's disease rating scale.
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2.6 | Identification of GM regions contributing to 
classification

For the SVM classifier that has been composed by the combination 
of all the three measures, we identified GM regions that contributed 
to classification and assessed how repeatedly each GM region was 
involved in different measures. In addition, as crucial roles of the 
cerebellum in PD and AP have been noted (Wu & Hallett, 2013), we 
computed relative weight ratios of cerebral and cerebellar regions 
by segregating GM regions involved in each measure into the two 
regions.

3  | RESULTS

3.1 | Demographic and clinical characteristics

Table 1 summarizes demographic and clinical characteristics of all 
participants. The patients were matched in age and sex with HC de-
spite PSP's being relatively older among the patients. Motor func-
tion, as assessed with the motor section of the UPDRS, was not 
different between different diagnostic types. Cognitive function, as 
assessed with the MMSE, was higher than 24 out of 30 points in 
all diagnostic types, indicating the patients' cognition not being se-
verely abnormal, although a statistical difference was seen between 
PD and AP.

3.2 | Group differences in neuroimaging measures

Figures S1–S6 depict differences in the three measures between HC 
and each diagnostic type and between different diagnostic types. In 
addition, Tables S2–S4 list clusters of the group differences, accom-
panied by labels of the modified AAL atlas and coordinates of peak 
voxels. Differences in GM volume were most noticeable in all group 
comparisons. As compared to HC, GM volume decreased over the 
basal ganglia, thalamus, cingulate cortex, insula, superior temporal 
cortex, and cerebellum in all diagnostic types of patients. In addi-
tion, reductions in GM volume reached the frontal cortex, sensori-
motor cortices, parietal cortex, and occipital cortex in PD and PSP. 
Between different diagnostic types, reductions in GM volume were 
more severe primarily over the cerebellum in both MSA and PSP 
compared to PD, and greater decreases in GM volume were seen 
over the thalamus, cingulate cortex, and frontal cortex in PSP than 
in MSA.

Differences in functional measures were also observed but not 
in all diagnostic types, and group differences were much less dis-
tributed than those seen for GM volume. In comparison with HC, 
decreases in ReHo were observed over the cerebellum in MSA, 
whereas reductions in DegCen were seen over the cingulate cortex 
commonly in PD and PSP and over the sensorimotor cortices as well 
in PD.

3.3 | Classification accuracy of SVM classifiers

A heat map in Figure 1 exhibits variations in the classification ac-
curacy of SVM classifiers according to different combinations of 
measures. Also, for the SVM classifier constructed with the struc-
tural measure alone and those composed by the combination of 
the structural and functional measures, Figure 2 shows probability 
density curves of classification accuracy estimates and Table 2 lists 
statistically significant differences in classification accuracy. In gen-
eral, predictor sets composed by the combination of the structural 
and functional measures provided comparable or higher classifica-
tion accuracy compared to those constructed with a single measure 
across the different classification problems. The combination of all 
the three measures yielded the highest classification accuracy in 
discriminating either diagnostic type from HC and in classifying the 
two subtypes of AP, with significantly higher classification accuracy 
than the structural measure alone. In distinguishing PD from MSA 
or PSP, the combination of GM volume and one functional measure 
provided the highest classification accuracy, which was significantly 
higher than that yielded by the structural measure alone. When we 
assessed classification accuracy by applying the same predictive 
modeling procedure to the choice of different atlases, the fusion of 
more than two measures still tended to yield improvements to clas-
sification accuracy across the different classification problems, as 
displayed in Figures S7 and S8.

3.4 | Contributions of GM regions to classification

Figure 3 shows predictors in the SVM classifier that has been com-
posed by the combination of all the three measures. GM regions in-
volved in both the structural and functional measures were up to 
32% of cerebral regions in distinguishing between MSA and PSP and 
up to 71% of cerebellar regions in distinguishing between PD and 
MSA (Table S5). In terms of relative weight ratios of cerebral and 
cerebellar regions (Figure 3), the relative weight ratios of cerebral 
regions were generally higher in the classification between HC and 
PD, between HC and PSP, between PD and PSP, and between MSA 
and PSP, whereas those of cerebellar regions were largely higher in 
the classification between HC and MSA and between PD and MSA.

4  | DISCUSSION

With respect to the diagnosis of PD and AP, there are a range of clas-
sification problems, which include distinguishing between PD and 
AP and between subtypes of AP as well as discriminating PD and AP 
from HC. In the current investigation, as an effective strategy that 
can be used to tackle such diverse diagnostic classification prob-
lems, we proposed employing multimodal neuroimaging measures in 
machine learning-based predictive modeling. We demonstrated that 
the combined use of the structural and functional measures could 
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improve the performance of SVM classifiers, compared to the use of 
the structural measure alone, for most of the classification problems 
even when statistical group differences of the functional measures 
were not extensively seen.

As machine learning-based predictive modeling has drawn at-
tention in the era of precision medicine, the potential of multimodal 
neuroimaging to provide more informative predictors for machine 
learning has been underlined (Libero, DeRamus, Lahti, Deshpande, & 
Kana, 2015; Liem et al., 2017; Meng et al., 2017). Structure and func-
tion are two main aspects for explaining brain abnormalities, with 
each conveying a large amount of information. Here, we employed 
sMRI to acquire a local measure of GM structure and rsfMRI to ob-
tain local and global measures of GM function, and we employed the 
individual ones or combinations of those as predictor sets for various 
classification problems.

In agreement with previous studies on structural abnormalities in 
PD and AP (Brenneis et al., 2003; Messina et al., 2011; Summerfield 
et al., 2005), we showed that GM volume was reduced in all diag-
nostic types in relation to HC. Also, as already reported in literature 
(Messina et al., 2011), more severe GM volume loss in both subtypes 
of AP than in PD was observed. The general aspects of those struc-
tural alterations may be described in terms of differential involve-
ments of cerebral and cerebellar regions: Cerebral regions were 
mainly affected in PD; cerebellar regions in MSA; and both cerebral 
and cerebellar regions in PSP.

Similarly, though much more spatially limited, functional alter-
ations affected cerebellar regions in MSA and cerebral regions in PD 
and PSP, with differential detections of those according to local and 
global functional measures. Of note, the involvement of the same re-
gions, the sensorimotor cortices and cingulate cortex for PD, the cin-
gulate cortex for PSP, and the cerebellum for MSA, in both structural 

and functional alterations, reflects a link between structural and 
functional abnormalities.

When the structural and functional measures were employed 
as predictor sets for discriminating each diagnostic type from HC 
and distinguishing between different diagnostic types, statistical 
group differences were not always directly connected with the 
performance of SVM classifiers. For instance, although GM volume 
was the measure of the most prominent differences between HC 
and PD at a group level, it yielded lower classification performance 
than the functional measures. Nevertheless, when we combined the 
structural and functional measures in constructing predictor sets, 
classification performance became generally enhanced, and particu-
larly, the combination of all the three measures yielded significantly 
higher classification accuracy than the structural measure alone in 
all classification problems but distinguishing between PD and MSA. 
As it is already recognized in clinical practice that multiple diagnos-
tic criteria help to increase the level of diagnostic accuracy (Irene 
Litvan, 1999), the addition of the functional measures seems to yield 
enhanced classification performance by providing additional diag-
nostic criteria possibly based on the relevance of functional abnor-
malities to the pathophysiology of PD and AP.

Since, from a pathogenic perspective, neuronal degeneration 
constitutes pathologic lesions, structural abnormalities seem to be 
predominant in PD and AP (Eriksen, Wszolek, & Petrucelli, 2005), 
and in the current investigation, this was evident in statistical com-
parisons of the structural and functional measures. Nonetheless, 
it would be obvious as well that not all aspects of the distinction 
between groups can be explained by structural alterations alone 
even when functional alterations are not clearly revealed in sta-
tistical comparisons at a group level. As shown in Figure  3, the 
involvement of a substantial portion of GM regions, including the 

F I G U R E  1  A heat map of the 
classification accuracy of support 
vector machine (SVM) classifiers for 
different classification problems. In the 
SVM classifiers, individual measures or 
combinations of those were employed 
as predictor sets. The considered 
measures included gray matter volume 
(Vol), regional homogeneity (ReHo), and 
degree centrality (DegCen). HC, healthy 
controls; MSA, multiple system atrophy; 
PD, Parkinson's disease; PSP, progressive 
supranuclear palsy
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sensorimotor cortices, cingulate cortex, and cerebellum men-
tioned above, in predictors of both structural and functional 
measures indicates again a link between structural and functional 
abnormalities. Moreover, local and global functional measures had 
different contributions to classification, so that the inclusion of 
both functional measures would be largely helpful in enhancing 
classification performance.

With respect to the notion that multimodal neuroimaging mea-
sures can be fused to generally improve performance for various 
prediction problems, it might be tempted to add as wide a variety 
of measures as available. However, it is also important to under-
stand that improvements to prediction performance can be not al-
ways guaranteed by the combined use of multimodal neuroimaging 
measures (Schmaal et al., 2015). In this regard, requirements for en-
hanced prediction performance may be mentioned in two aspects. 
First, informative measures that can characterize the pathogen-
esis or pathophysiology of a disease need to constitute predictors 

for machine learning (Deo,  2015). As additional informative MRI 
measures, for instance, white matter structural measures that can 
be acquired from diffusion weighted MRI would be promising, as 
they can reveal pathological correlates of parkinsonism (Quattrone 
et al., 2006; Scherfler, 2005; Schocke et al., 2002). Second, having 
collected a large number of measures, a crucial process for compos-
ing a predictor set is feature reduction, which involves selecting im-
portant measures or combining existing measures. Here, we used 
the filter method as a simple way of feature reduction, but a more 
advanced approach to feature reduction could be considered (Meng 
et al., 2017). Alternatively, deep learning may be employed since it 
provides the capability of data-driven automatic feature generation 
(Arbabshirani, Plis, Sui, & Calhoun, 2017).

This study has limitations to consider. For each diagnostic type, 
although clinical diagnoses were finally made after more than 
three years of a clinical follow-up, the possibility of misdiagnosis 
cannot be ruled out due to a lack of pathological confirmation. 

F I G U R E  2  Probability density curves of classification accuracy estimates acquired via 10,000 times of resampling. The probability 
density curve for the support vector machine (SVM) classifier constructed with gray matter volume (Vol) alone is indicated by a blue solid 
line. In relation to this SVM classifier, the other probability density curve is indicated in a different color by a solid line when the respective 
SVM classifier constructed by adding one or more functional measures, among regional homogeneity (ReHo) and degree centrality (DegCen), 
to Vol has higher classification accuracy of statistical significance or by a dotted line otherwise
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Vol + ReHo Vol + DegCen Vol + ReHo + DegCen

HC versus PD 0.083 (p value < .001) 0.079 (p value < .001) 0.119 (p value < .001)

HC versus MSA NS 0.005 (p value < .001) 0.047 (p value < .001)

HC versus PSP 0.036 (p value < .001) 0.075 (p value < .001) 0.076 (p value < .001)

PD versus MSA NS 0.004 (p value < .001) NS

PD versus PSP 0.063 (p value < .001) 0.023 (p value < .001) 0.055 (p value < .001)

MSA versus PSP 0.035 (p value < .001) NS 0.029 (p value < .001)

Note: All comparisons were made between the SVM classifier constructed with gray matter volume 
(Vol) alone and that constructed by adding one or more functional measures, among regional 
homogeneity (ReHo) and degree centrality (DegCen), to Vol. In case of statistical significance, a 
mean difference in classification accuracy and its respective p value are listed.
Abbreviations: HC, healthy controls; MSA, multiple system atrophy; NS, nonsignificant; PD, 
Parkinson's disease; PSP, progressive supranuclear palsy.

TA B L E  2   Statistically significant 
differences in classification accuracy 
between support vector machine (SVM) 
classifiers

F I G U R E  3  Contributions of gray matter (GM) regions to different classification problems in the support vector machine classifier that has 
been composed by the combination of three measures. Predictor values were collected from individual GM regions for the three measures, 
including GM volume (Vol), regional homogeneity (ReHo), and degree centrality (DegCen). The size of a sphere corresponding to each GM 
region expresses the relative magnitude of its absolute weight, and the color of the sphere indicates the degree of overlaps between the 
different measures. Inset plots represent relative weight ratios of cerebral (Cbrm) and cerebellar (Cbll) regions according to the different 
measures
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In addition, as regards our machine learning approach, the sam-
ple size in this study was small, and moreover, the generalization 
ability of the predictive models was not fully evaluated in that we 
performed internal cross-validation only. Further investigation 
including an external validation procedure is warranted in the fu-
ture. Besides the diagnostic classification problems we considered, 
the differential diagnosis of two phenotypes of MSA, MSA-P, and 
MSA-C, would be of clinical interest as well (Garraux et al., 2013). 
Although structural and functional abnormalities may be specific 
to individual MSA variants (Planetta et al., 2015), we merged the 
two phenotypes of MSA as a single group here primarily due to a 
possible overlap of clinical and pathological findings between the 
two (Krismer et al., 2019; Wenning et al., 2013) in relation to our 
limited sample size of each.

In conclusion, we demonstrated that the fusion of different 
measures from multimodal neuroimaging would have potential for 
improving the performance of machine learning-based predictive 
models. For PD and AP, although functional alterations are much 
more limited than structural alterations, a possible link between 
structural and functional abnormalities appears to support the 
informativeness of functional measures, and the combined use 
of structural and functional measures is likely to yield improve-
ments to performance in various diagnostic classification prob-
lems. In machine learning approaches to predictive modeling for 
clinical concerns, the limited sample size has been a major obstacle 
(Sakai & Yamada,  2019). Although it may be often unsure which 
neuroimaging measures would be suitable for a specific prediction 
problem, we propose that, in addition to increasing the number of 
patients, gathering diverse informative measures from multimodal 
neuroimaging for each patient would be helpful to develop a better 
performing predictive model. In addition, for the clinical use of mul-
timodal neuroimaging measures, although the computational time 
to process multimodal neuroimaging data, rather than their acquisi-
tion time, may be a potential limitation, it could be efficiently man-
aged by taking advantage of recent technical advances toward the 
automated and intelligent processing of multimodal neuroimaging 
data.
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