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Background: Despite the popularity of functional connectivity analyses and the
well-known topology of several intrinsic cortical networks, relatively little is known about
the white matter regions (i.e., structural connectivity) underlying these networks. In the
current study, we have therefore performed fMRI-guided diffusion tensor imaging (DTI)
tractography to create probabilistic white matter atlases for eight previously identified
functional brain networks, including the Auditory, Basal Ganglia, Language, Precuneus,
Sensorimotor, Primary Visual, Higher Visual and Visuospatial Networks.

Methods: Whole-brain diffusion imaging data were acquired from a cohort of
32 healthy volunteers, and were warped to the ICBM template using a two-stage, high-
dimensional, non-linear spatial normalization procedure. Deterministic tractography,
with fractional anisotropy (FA) ≥0.15 and deviation angle <50◦, was then performed
using the Fiber Association by Continuous Tracking (FACT) algorithm, and a multi-ROI
approach to identify tracts of interest. Regions-of-interest (ROIs) for each of the eight
networks were taken from a pre-existing atlas of functionally defined regions to explore
all ROI-to-ROI connections within each network, and all resulting streamlines were
saved as binary masks to create probabilistic atlases (across participants) for tracts
between each ROI-to-ROI pair.

Results: The resulting functionally-defined white matter atlases (i.e., for each tract and
each network as a whole) were saved as NIFTI images in stereotaxic ICBM coordinates,
and have been added to the UManitoba-JHU Functionally-Defined Human White Matter
Atlas (http://www.nitrc.org/projects/uofm_jhu_atlas/).

Conclusion: To the best of our knowledge, this work represents the first attempt
to comprehensively identify and map white matter connectomes for the Auditory,
Basal Ganglia, Language, Precuneus, Sensorimotor, Primary Visual, Higher Visual and
Visuospatial Networks. Therefore, the resulting probabilistic atlases represent a unique
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tool for future neuroimaging studies wishing to ascribe voxel-wise or ROI-based changes
(i.e., in DTI or other quantitative white matter imaging signals) to these functional
brain networks.

Keywords: atlas, brain, connectivity, connectome, diffusion, MRI, white matter

INTRODUCTION

Cerebral white matter is comprised of myelinated axons that
transmit signals between different brain regions, and the
importance of these connections is underscored by the severe
and wide-spread deficits that arise when they are compromised
(e.g., due to traumatic injury, stroke or disorders such as
Multiple Sclerosis; Filley, 1998; Schmahmann et al., 2008).
However, unlike the gray matter, which has been well mapped,
relatively little is known about white matter topology or how
particular white matter regions (or sets of regions) correspond
to specific brain functions. One approach to tackling this
problem is to parcellate and map the white matter using various
methods.

Historically, white matter region-of-interest (ROI) analyses
have relied on anatomical brain segmentations that are either
drawn manually (on an ad hoc basis), or imported from
an existing brain atlas. As a result, considerable effort has
been placed on developing detailed anatomical white matter
atlases, such as the well-known JHU ‘‘Adam’’ and ‘‘Eve’’
atlases (Oishi et al., 2008, 2009). Nevertheless, there are
several inherent limitations to defining white matter ROIs
anatomically. Even in highly-parcellated white matter atlases
(such as the aforementioned JHU Eve Atlas), many of the ROIs
are relatively large. Therefore, although subsequent analyses
may be sensitive to diffuse or global characteristics of the
underlying white matter within a given tract, they will not
likely be sensitive to small, localized changes (e.g., focal lesions
due to encephalitis, radiation necrosis, or Multiple Sclerosis;
Djamanakova et al., 2014). Moreover, investigators seeking to
examine the structural correlates of individual differences (e.g.,
within the cognitive, affective, or psychomotor domains) or
functional deficits (e.g., within or between populations with
particular symptoms) are faced with the dilemma of having
to choose a priori which white matter region (or set of
regions) might be related to the function/symptom/domain
of interest. Finally, and as a corollary of the aforementioned
limitations, there is a high likelihood that some of the
larger anatomically-defined ROIs will span white matter
regions underlying multiple neural functions—meaning that
even if white matter differences are observed, they may not
correspond to differences in specific behaviors, symptoms, or
deficits.

One way to address these limitations is to leverage our
knowledge about how the brain is organized into functionally-
connected networks that are known to be associated with
specific neural functions (e.g., sensory, motor, cognitive, etc.;
Bressler and Menon, 2010; van den Heuvel and Hulshoff

Pol, 2010; Rosazza and Minati, 2011; Smith et al., 2013).
Using this approach, our group has recently released a set of
functionally-defined white matter atlases for the dorsal and
ventral Default Mode, left and right Executive Control, and
anterior and posterior Salience Networks (Figley et al., 2015)1.
These atlases were created using similar methods to those
implemented in the creation of the JHU Eve atlas (Oishi
et al., 2009), but rather than performing tractography between
anatomically-defined gray matter structures, tractography was
instead performed between functionally-defined nodes within
well-known brain networks (Shirer et al., 2012)2. Since these
nodes have been defined and grouped using resting state
functional connectivity—as opposed to anatomically-defined
features or landmarks such as sulci or gyri—an important
difference compared to most previous atlases is that the resulting
white matter tracts represent structural connections within
functional brain networks, rather than traditional white matter
connections such as the ‘‘superior longitudinal fasciculus’’, etc.
that have been anatomically constrained. While there is not
necessarily a one-to-one correspondence between functional
connectivity and anatomical connections, delineating white
matter ‘‘tracts’’ based on functional connectivity may enable a
better understanding of structure-function relationships.

Using this approach, the goal of the work reported
in the current manuscript was to expand our existing
set of functionally-defined white matter atlases to include
several additional resting state brain networks, including the:
(1) Auditory Network (AN); (2) Basal Ganglia Network (BGN);
(3) Language Network (LN); (4) Precuneus Network (PN);
(5) Sensorimotor Network (SMN); (6) Primary Visual Network
(PVN); (7) Higher Visual Network (HVN); and (8) Visuospatial
Network (VSN) (Shirer et al., 2012). As a result, future research
will be able to examine the structural and functional integrity
of the cortical regions within each of these networks, as well
as the structural integrity of the white matter pathways that
connect them. In particular, it will allow direct comparisons
between structural and functional connectivity within these
networks, and facilitate both group-wise (e.g., patients vs. healthy
controls) and/or regression-based analyses (e.g., with behavioral
performance or any other independent variable) in a much
more hypothesis-driven manner, based on the known functions
of each identified network. Therefore, we hope that these
atlases will provide further insights into normal brain-behavior
relationships, as well as the functional consequences of brain
aging, injury and disease.

1http://www.nitrc.org/projects/uofm_jhu_atlas
2http://findlab.stanford.edu/functional_ROIs.html
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MATERIALS AND METHODS

Study Participants
The current analyses were conducted using the same dataset
reported in our previous article (Figley et al., 2015). Briefly,
the sample included 32 neurologically healthy volunteers
(16 males and 16 females; age = 29.9 ± 10.7 years),
with no self-reported history of neurological injury/disease,
psychiatric illness, or substance abuse. The Johns Hopkins
University Institutional Review Board approved the study;
and all participants, who were financially compensated for
their participation, provided written informed consent prior to
enrollment.

Data Acquisition and Analysis
All data acquisition and analysis methods have been thoroughly
described in our previous article (Figley et al., 2015), and thus
are only briefly outlined here. All MRI data were acquired on a
3T Philips Achieva system equipped with a 32-channel SENSE
head coil (Philips Healthcare, Best, Netherlands). T1-weighted
anatomical images were obtained using a 3D MP-RAGE pulse
sequence (TR = 7.93 ms; TE = 3.66 ms; Flip Angle = 8◦;
SENSE Factor = 2.4; FOV = 212 mm × 150 mm × 172 mm;
Spatial Resolution = 1.00 mm × 1.00 mm × 1.00 mm). Both
T2-weighted (TR = 4162 ms; TE = 80 ms; Flip Angle = 90◦;
SENSE Factor = 2; FOV = 212 mm × 154 mm × 212 mm;
Spatial Resolution = 1.10 mm × 1.10 mm × 2.20 mm) and T2-
weighted Fluid Attenuated Inversion Recovery (TR = 11,000 ms;
TI = 2800 ms; TE = 120 ms; Refocusing Angle = 120◦; SENSE
Factor = 1.75; FOV = 230 mm × 149 mm × 184 mm; Spatial
Resolution = 1.00 mm × 1.20 mm × 5.00 mm) images were also
acquired and assessed by a board-certified radiologist to confirm
that none of the participants had structural brain abnormalities
or pathologies. Finally, a spin-echo echo-planar imaging
sequence was used to acquire diffusion-weighted data (number
of diffusion-encoding gradients = 30; b-value = 700 s/mm2;
number of reference images without diffusion-weighting = 5
(b-value = 0 s/mm2); TR = 6904 ms; TE = 69 ms; Flip
Angle = 90◦; SENSE Factor = 2.5; FOV = 212 mm × 212 mm;
Acquired Matrix Dimensions = 96 × 96; Reconstructed Matrix
Dimensions = 256 × 256; Number of Transverse Slices = 70 (no
gap); Slice Thickness = 2.2 mm).

Images for each participant were processed using a multi-
stage analysis pipeline (see Figure 1 from Figley et al., 2015) to:
(1) coregister the diffusion-weighted and mean b = 0 s/mm2

images; (2) correct for motion and eddy current distortions;
(3) reorient the gradient direction for each diffusion-weighted
image; (4) generate the six tensor images (Landman et al.,
2007); (5) skull-strip the coregistered mean b = 0 s/mm2

image (and apply the mask to the six tensor images);
(6) resample all of the skull-stripped images to 1.0 mm3

resolution; (7) normalize the data to the ‘‘JHU_MNI_SS_b0_ss’’
template (Mori et al., 2008) in Montreal Neurological Institute
(MNI) space (Mazziotta et al., 1995) using high-dimensional,
nonlinear warping (Beg et al., 2005) with cascading degrees
of nonlinearity (Ceritoglu et al., 2009); and (8) perform
whole-brain deterministic tractography in DTIStudio

(Jiang et al., 2006) using the Fiber Association by Continuous
Tracking (FACT) algorithm (FA > 0.15 and Angle < 50◦) and
an exhaustive search approach (Mori et al., 1999; Xue et al.,
1999). Using a previously reported functional connectivity
atlas (Shirer et al., 2012)3, a multi-ROI approach was used to
constrain the whole-brain tractography data by isolating the
streamlines between each pair of functionally-defined nodes
(i.e., all possible connections) within the AN, BGN, LN, PN,
SMN, PVN, HVN and VSN (Figure 1 and Supplementary
Videos 1–8).

Since the AN consists of three nodes (3 ROI-to-
ROI combinations), the BGN consists of five nodes (10 ROI-
to-ROI combinations), the LN consists of seven nodes
(21 ROI-to-ROI combinations), the PN consists of four nodes
(6 ROI-to-ROI combinations), the SMN consists of
six nodes (15 ROI-to-ROI combinations), the PVN consists
of two nodes (1 ROI-to-ROI combination), the HVN consists
of two nodes (1 ROI-to-ROI combination) and the VSN
consists of 11 nodes (55 ROI-to-ROI combinations), a total of
112 ROI-to-ROI combinations were assessed for each of the
32 participants—yielding a total of 3584 tractography analyses.
For each of these, data were visually inspected to identify
participants for whom streamlines were present, and all resulting
streamlines were saved as binary maps in MNI space. Group
probability maps (aka, ‘‘probabilistic connectomes’’) were then
generated for each of the 112 functionally-defined tracts for
which streamlines were identified in at least 8/32 participants.
This was achieved by adding together the binary maps for
each participant (i.e., for a given ROI-to-ROI connection) and
dividing by the number of participants. Image intensities for
each of the probabilistic connectomes therefore range between
0 and 1 (i.e., where no participants or all 32 participants had
streamlines, respectively).

The volume of white matter associated with each resting
state network was then calculated by adding all of the
group probability maps together for each tract and then
multiplying the number of voxels with intensity >0 by the
voxel size (i.e., 1 mm3). After creating binary masks of each
overall connectome (i.e., a combination of all the functionally-
defined tracts within each network), we then calculated the
amount of spatial overlap between the white matter regions
assigned to each network and report these in terms of
both actual volumes and normalized ratios (relative to the
size of each network), as previously reported (Figley et al.,
2015). These results therefore indicate the amount of spatial
overlap between a given network and each of the other
networks.

Finally, 3D renderings of both the nodes within each network
and the resulting white matter group probability maps were
overlaid on the JHU_MNI_SS template (Mori et al., 2008)
using the Volume and Volume Rendering tools within 3D
Slicer (Brigham and Women’s Hospital, Boston, MA, USA;
Fedorov et al., 2012)4, as previously reported (Figley et al.,
2015).

3http://findlab.stanford.edu/functional_ROIs.html
4http://www.slicer.org
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FIGURE 1 | Locations of the functionally-defined nodes within each previously-reported brain network (Shirer et al., 2012).

RESULTS

Of all the 112 functionally-defined white matter connections
assessed in the current study (via deterministic tractography),
some repeatedly yielded DTI streamlines across participants,
while others did not. In order to quantify this, the connection
counts—i.e., the number of participants exhibiting at least one
streamline—for each connection (within each network) are
depicted in Figure 2. Interestingly, of the networks containing
corresponding bilateral regions, some showed a high degree of
symmetry in terms of the tracts with the highest connection
counts (i.e., BGN and SMN), while others exhibited a distinct left
hemisphere laterality (i.e., LN and VSN).Moreover, as previously
noted (Figley et al., 2015)—and as demonstrated by the number
of long-range tracts with high connection counts—Euclidean
distance between nodes was not the primary determinant of
connection count.

In an effort to minimize the number of spurious fiber tracts
(i.e., connections with low reproducibility) included in the final
probabilistic atlases, group probability maps were only generated

for tracts with connection counts of at least 8/32 (i.e., tracts
for which at least one streamline was identified in ≥ 1

4 of the
participants). Therefore, since no connections were found to
meet this threshold in the AN or PVN, no probabilistic atlases
were generated for these networks.

The resulting overall group probability maps—i.e., a
superposition of all the individual ROI-to-ROI connections—for
the remaining six networks are shown in Figure 2 (to the left of
the connection counts) and in Supplementary Videos 9–14, while
the individual tracts within each network (AN = 0, BGN = 3,
LN = 5, PN = 1, SMN = 14, PVN = 0, HVN = 1 and VSN = 6;
total = 30) are displayed in Supplementary Videos 15–44.
Each of these probabilistic maps reflects the tract trajectories
(i.e., locations) as a weighted average across participants, so
they can be thresholded according to the desired amount of
between-participant overlap (e.g., thresholding an image at
0.5 will show only those regions where at least 16/32 of the
participants’ streamlines spatially overlap, etc.). As a corollary,
the group probability maps are more conservative than the raw
connection counts, which represent the number of participants
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FIGURE 2 | A representative view of the white matter tracts (left) and the connection counts (right) for each functionally-defined white matter tract in (A) the Auditory
Network (AN), (B) the Basal Ganglia Network (BGN), (C) the Higher Visual Network (HVN), (D) the Language Network (LN), (E) the Precuneus Network (PN), (F) the
Sensorimotor Network (SMN), (G) the Visuospatial Network (VSN) and (H) the Primary Visual Network (PVN). The nodes within each (Shirer et al., 2012) are shown on
axial brain slices (at their center-of-mass), and the connection counts for each tract (i.e., the numbers of participants with tractography streamlines identified between
each ROI-to-ROI pair) are represented by the weight of lines between the respective nodes. Note that all axial slices are displayed in neurological convention.
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who had at least one continuous streamline between two regions
(in any location), while the group probability maps represent
the proportion of participants who have overlapping streamlines
at a particular spatial location. For this reason, values as low as
0 are possible (and indeed common) in the group probability
maps, despite the requirement for each of them to have had a
connection count greater than or equal to 8/32. Also, it should
be noted that intensity-thresholding the probabilistic atlases
will cause discontinuities to appear along tracts if, for example,
voxels in the middle of a tract fall below the threshold.

As with our previous atlases (Figley et al., 2015), the
current group probability maps have been coregistered to both
MRIStudio and SPM coordinate systems (in order to account for
spatial offsets between the JHU_MNI_SS and SPM8 templates)
and saved as NIFTI images with 1 mm isotropic resolution
for each individual tract and each network as a whole. These
images, as well as the supplementary videos showing their 3D
trajectories, can be freely downloaded from Version 2.0 of The
UManitoba-JHU Functionally-Defined Human White Matter
Atlas5.

The total white matter volumes of the overall group
probability maps (unthresholded and in normalized MNI space),
along with the total and average node (functional ROI) volumes
of each network, are shown in Figure 3. Although the overall
node volumes of the six new networks trended toward being
smaller (p = 0.06; two-tailed t-test), both the average node
volumes (p = 0.87) and the resulting functionally-defined white
matter connectomes (p = 0.50) of the BGN, LN, PN, SMN, HVN
and VSN were similar in size to those of the dDMN, vDMN,
lECN, rECN, aSN and pSN (Figley et al., 2015). Interestingly,
neither overall node volume (r = 0.29; p = 0.36) nor average node
volume (r =−0.25; p = 0.43) were correlated with the volumes of
the resulting white matter connectomes across networks.

We then calculated the amount of spatial overlap between
each of the six new white matter networks, as well as the
six networks already reported in the first version of the
UManitoba-JHU Functionally-Defined Human White Matter
Atlas, with respect to each of the other eleven networks. The
amount of overlap between each connectome was quantified
both in terms of the absolute overlap volumes (Figure 4A)
in mm3, and in terms of the relative overlap volume (Figure 4B)
proportional to each network’s total white matter volume. Based
on this, we observed that the largest overlaps in terms of
absolute volumes (≥20,000 mm3) were observed for BGN vs.
pSN (34,500mm3), BGN vs. SMN (30,000mm3), BGN vs. dDMN
(23,500 mm3), SMN vs. aSN (22,000 mm3) and PN vs. vDMN
(20,000 mm3). Based on the relative volumes (i.e., the proportion
of the first network that overlaps with the second network), the
largest overlaps (≥25% of the first network) were observed for
pSN vs. BGN (44%), PN vs. vDMN (43%), BGN vs. pSN (42%),
vDMN vs. PN (38%), BGN vs. SMN (37%), PN vs. dDMN (33%),
SMN vs. BGN (31%), rECN vs. BGN (31%), aSN vs. SMN (31%),
BGN vs. dDMN (28%), vDMN vs. dDMN (27%), aSN vs. BGN
(27%), LN vs. lECN (26%), lECN vs. VSN (26%), VSN vs. lECN
(25%) and pSN vs. dDMN (25%).

5http://www.nitrc.org/projects/uofm_jhu_atlas

DISCUSSION

General Discussion
Although several anatomically-defined white matter atlases,
such as the JHU ‘‘Adam’’ and ‘‘Eve’’ atlases (Oishi et al.,
2008, 2009), are already freely available, our group has taken
a different approach by creating functionally-defined white
matter atlases for various resting-state brain networks. Our
previous article (Figley et al., 2015) systematically mapped
white matter regions underlying the dorsal and ventral Default
Mode Networks (dDMN and vDMN), left and right Executive
Control Networks (lECN and rECN) and anterior and posterior
Salience Networks (aSN and pSN). The current study now
expands on that effort by including comprehensive white
matter maps of the Basal Ganglia Network (BGN), Language
Network (LN), Precuneus Network (PN), Sensorimotor Network
(SMN), Higher Visual Network (HVN) and Visuospatial
Network (VSN).

Based on our current understanding of the brain and
how it is organized into distributed functional networks,
we anticipate that these atlases will prove to be useful
tools—in concert with quantitative white matter imaging
methods like diffusion, magnetization transfer, and/or myelin
water imaging—for future studies examining how structural
connectivity differences between individuals or groups relate to
task performance, clinical outcomes, etc. Our previous article
(Figley et al., 2015) demonstrated how these functionally-
defined white matter atlases can be used for voxel-wise and/or
ROI-based analyses to examine relationships between structural
measures throughout functionally-defined tracts or networks,
and the initial white matter atlases have already proven useful
for examining network-specific structural differences related to
body composition (Figley et al., 2016) and Multiple Sclerosis
(Ma et al., 2017). However, it is our hope that the addition
of these new networks—related to different domains (e.g.,
language, vision, etc.)—will enhance the overall utility of the
UManitoba-JHU Functionally-Defined Human White Matter
Atlas.

Differences between Anatomically-Defined
and Functionally-Defined White Matter
Tracts
Although the functionally-defined tracts identified in the current
study will correspond to varying degrees with anatomically-
defined white matter structures, an exhaustive comparison
between anatomically- and functionally-defined tracts goes
beyond the scope of the current manuscript. However, in
order to illustrate how these functionally-defined atlases differ,
we compared the language network LN1_LN4 connection
(4068 mm3) from the current study to the left arcuate
fasciculus (13,997 mm3), which was previously identified using
the same data and analysis methods, but with anatomically-
defined cortical ROIs (Figley et al., 2015). In addition to
occupying only 29% of the total white matter volume of
the anatomically-defined tract, we found that only 52% of
voxels in the LN1_LN4 atlas overlapped with the arcuate
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FIGURE 3 | Total white matter volumes, total node volumes and average node volumes for each network. Total white matter volumes were determined by combining
the functionally-defined group probability maps for all tracts with a connection count greater than or equal to 8/32 (but without any additional thresholding of the
probability maps themselves). Note: total white matter volume did not appear to be correlated with total node volume (r = 0.29; p = 0.36) or average node volume
(r = −0.25; p = 0.43) across networks.

fasciculus. Therefore, while approximately half of the voxels
in the LN1_LN4 connection appear to be a subset of the
nominal arcuate fasciculus, the other half are anatomically
distinct.

Why Were Primary Visual and Auditory
Connectomes Not Identified?
Given that the PVN and AN represent two of the primary
physical senses, and might therefore be assumed to have robust
white matter connections, it seems surprising at first glance
that no reproducible connections were identified. However,
in the case of the PVN at least, the answer is actually quite
simple. It turned out that although the resting state functional
connectivity atlas for the PVN (Shirer et al., 2012)6 supposedly
contained two nodes, one of the masks was actually an empty
set (i.e., contained no voxels with a value >0), rendering it
impossible for any diffusion streamlines to run between the two
ROIs.

Unfortunately, there is not such a straightforward explanation
for the lack of reproducible connections identified within
the AN. Indeed, another recent study was able to identify
white matter connections between bilateral Heschl’s gyri
(Andoh et al., 2015) using slightly more sophisticated diffusion
imaging parameters and probabilistic tractography. Therefore,
the most likely explanation has to do with methodological
differences, and each method has certain advantages and
disadvantages regarding sensitivity vs. specificity tradeoffs
(please see Study Limitations below for a more detailed
discussion).

6http://findlab.stanford.edu/functional_ROIs.html

Laterality vs. Bilateral Symmetry in
Different Network Connectomes
Finding that the BGN and SMN show high degrees of
bilateral symmetry (Figure 2) is perhaps not surprising
given that the cortical nodes for both networks were
bilaterally distributed and both networks have prominent
roles in motor function and coordination—which include
balanced control of both hemispheres/sides of the body. Our
finding of a strongly left-lateralized language white matter
connectome is also not surprising given that language is
traditionally thought of as a left-lateralized function (Knecht
et al., 2000), along with the notion that left-hemisphere
regions tend to interact predominantly within the same
hemisphere (Gotts et al., 2013). On the other hand, the
predominantly left-lateralized VSN connectome is somewhat
surprising, given that visuospatial processing has previously
been thought to be mostly right-lateralized (Thiebaut de
Schotten et al., 2011), although this can perhaps be partially
explained by the theory that right-hemisphere regions and
functions tend to be less connected within hemisphere due
to strong interactions between hemispheres (Gotts et al.,
2013).

Overlap between White Matter Networks
One of the main observations from the network overlap analysis
(Figure 4) was that there was substantial overlap between
certain pairs of connectomes. Nonetheless, although certain
white matter regions have been ascribed to multiple networks,
many of these are consistent with their expected topologies.
For example, since the Precuneus is one of the central nodes
within the DMN, it is perhaps not surprising that the PN
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FIGURE 4 | The amount of overlap between each functionally-defined white matter network (with the same masks used to calculate white matter volume in
Figure 3). The amount of overlap between each pair of white matter networks is expressed (A) as a raw volume (in mm3), or (B) relative to the size of each network
on the x-axis.
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overlapped substantially (33% and 43%) with the dDMN and
vDMN, respectively. Given that both the LN and lECN were
highly left lateralized, it is also not surprising that a large
proportion (26%) of the LN overlapped with the lECN. Finally,
the BGN connectome—which overlapped with 44% of the pSN,
31% of the rECN, 31% of the SMN, 27% of the aSN, 22%
of the PN and 20% of the dDMN—turned out to be the
third largest by volume (Figure 3), and occupied substantial
portions of central white matter structures. Therefore, it is not
surprising that the BGN consistently overlapped with other
networks, since any long-range projections through the same
central white matter regions in those networks would quite
likely lead to overlap (especially when examined at relatively
poor spatial resolutions, such as those that are achievable
with diffusion-based MRI approaches). Moreover, the BGN
may have overlapping functional roles with many of the other
networks, as the basal ganglia are known to be involved in
motor function (SMN), executive function (lECN and rECN)
and emotional regulation (aSN and pSN; Lanciego et al.,
2012).

Need for High-Dimensional Non-Linear
Normalization and Accurate Coregistration
A point that was highlighted in our previous article (Figley
et al., 2015), and one that bears repeating here, is that any
future applications of these atlases for ROI or along-tract
analyses will require either: (1) participant data (i.e., individual
quantitative images such as FA maps, etc.) to be accurately
warped and coregistered to the same template as our atlases
(i.e., the SPM or MRIStudio MNI templates, which are
distributed with our atlases for convenience); or (2) our
functionally-defined white matter atlases to be accurately
warped and coregistered to each individual participant’s native
space. Importantly, previous analyses have shown that linear
normalization is not sufficient to accurately align subcortical
regions, including central white matter structures (Figley et al.,
2015); therefore, in order for images to be ‘‘accurately warped’’,
high-dimensional, non-linear spatial normalization—e.g.,
using Advanced Normalization Tools (ANTs)7, Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL)8, fMRIB’s Nonlinear Image Registration Tool
(FNIRT)9, Large Deformation Diffeomorphic Metric Mapping
(LDDMM)10, etc. (see Klein et al., 2009)—is absolutely
necessary.

Study Limitations
A very detailed discussion of the pros, cons and limitations
of the general methodology employed here was published
in our original article (Figley et al., 2015), which is freely
available (and in fact part of the same Frontiers Research
Topic). Therefore, because the current manuscript used the
same dataset and methods, we will not replicate that here in

7http://picsl.upenn.edu/software/ants/
8http://www.fil.ion.ucl.ac.uk/spm/
9https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT
10http://www.cis.jhu.edu/software/lddmm-volume/

full. Instead, we will briefly highlight some of the main study
limitations, and extrapolate on a few points based on new
literature.

Limitations in Scope
One of the major limitations of our previous study and
the existing functionally-defined white matter atlas is that
we initially only included six functionally-connected brain
networks (out of many such networks). These networks were
chosen as a starting point because the dDMN, vDMN, lECN,
rECN, aSN and pSN are among the most well-established
and most-studied resting state brain networks. However, by
creating similar atlases for the remaining networks in the
Stanford resting state fMRI atlas (Shirer et al., 2012)11, we
feel that the current study goes a long way to addressing this
limitation.

Nonetheless, although fMRI studies have started to examine
between-network connectivities (and it might very well be
of interest to supplement these analyses with corresponding
structural analyses), we have not yet generated any between-
network white matter connectivity maps. It might be particularly
interesting, for example, to create atlases for all of the
connections between the dDMN and vDMN, lECN and rECN,
aSN and pSN, and then between the combined DMN, ECN and
SNs. However, because this is a combinatorial problem, where
the total number of ROI-to-ROI connections (and therefore
analysis time) increases drastically with the number of nodes-
of-interest (either within or between networks), challenges like
this become prohibitively time-consuming and labor-intensive
using our current methods. Nonetheless, it should be noted
that there are automated tractography tools, such as Freesurfer’s
TRACULA (Yendiki et al., 2011) or AFNI’s FATCAT (Taylor
and Saad, 2013), that could make such challenges more feasible.
Alternatively, between-network investigations could be made
more feasible by mapping connections between sub-sets of
nodes that are likely to be involved in between-network
interactions.

Limitations of a Modest Sample Size
Although the sample size of our dataset was consistent with
previous DTI-based white matter atlases (Hua et al., 2008;
Oishi et al., 2009), there are much larger diffusion MRI
datasets, such as the Human Connectome Project (HCP)12,
that are now freely available. Of course, any white matter
connectome will depend on the individual(s) it was obtained
from; and although we presume that 32 participants (16 male;
16 female) will yield relatively stable and generalizable white
matter atlases, a larger sample size would allow a finer degree
of thresholding of the final probabilistic atlases, and could
enhance the apparent signal-to-noise in terms of true vs. spurious
regions that are included in each network. Moreover, our atlases
were created from a sample of healthy, middle-aged adults,
and using a larger sample, such as the HCP data, would allow
age-specific atlases to be generated (e.g., for pediatric and
geriatric populations).

11http://findlab.stanford.edu/functional_ROIs.html
12http://humanconnectome.org
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Limitations of Diffusion MRI
Diffusion-based MRI is non-invasive, provides 3D whole-
brain coverage, and is therefore the only currently-available
in vivo approach to estimate fiber trajectories between
distributed human brain regions. Nonetheless, this approach
has several limitations compared to histological staining
and tract-tracing methods. In particular, diffusion imaging:
(1) has orders of magnitude worse spatial resolution
(Scherrer et al., 2012); (2) relies on an indirect measure of
tissue microstructure (Mori and Zhang, 2006); (3) cannot
reliably differentiate between myelinated, unmyelinated, or
demyelinated fibers (Beaulieu, 2002); (4) cannot differentiate
the directionality of fiber projections (i.e., afferent vs.
efferent; Thomas et al., 2014); and (5) cannot, in many
cases, even discriminate between monosynaptic and
polysynaptic connections (Johansen-Berg and Rushworth,
2009).

Although the aforementioned limitations apply to all current
diffusion MRI approaches—including high angular resolution
diffusion imaging (HARDI; Tuch et al., 2002), Q-ball imaging
(Tuch, 2004), and diffusion spectrum imaging (DSI; Wedeen
et al., 2005)—we also note some additional limitations of DTI
in particular, since this is the approach that was used to
generate our atlases. For example, conventional tensor-based
methods are not able to resolve complex fiber geometries
(e.g., crossing, kissing, or turning fibers) nearly as well as
more advanced fiber tracking techniques (Daducci et al., 2014).
We therefore acknowledge that our deterministic, DTI-based
connectomes are inherently biased toward Type-II (false-
negative) errors, and that certain fibers and regions within
the networks are more likely to have been excluded—as
opposed to HARDI- and DSI-based methods, which tend to
be biased toward higher Type-I (false-positive) errors, where
aberrant fibers are sometimes included (Rodrigues et al.,
2013).

Direct comparisons between deterministic diffusion
tractography and gold-standard tract-tracing methods in
rhesus macaques have revealed that diffusion-based connectome
reconstructions generally produce reasonable estimates of
large white matter projections (Dauguet et al., 2007; van
den Heuvel et al., 2015). However, because tensor-based
deterministic tractography approaches yield sparse connectomes
(high specificity with comparatively low sensitivity) and
higher-order probabilistic tractography approaches yield
dense connectomes (high sensitivity with comparatively
low specificity), other groups have begun to study tradeoffs
between connectome sensitivity and specificity (Zalesky
et al., 2016). Initial studies in this regard suggest (both
empirically and theoretically) that ‘‘specificity is at least
twice as important as sensitivity when estimating key properties
of brain networks, including topological measures of network
clustering, network efficiency and network modularity’’ (Zalesky
et al., 2016). Therefore, although not perfect, the deterministic,
tensor-based tractography approach used to generate our
functionally-defined white matter atlases likely errs in the proper
direction when it comes to connectome sensitivity vs. specificity
tradeoffs.

Nonetheless, the fact remains that several real white matter
connections were probably not identified by our tensor-based
tractography analyses, so the current atlases cannot be used to
draw conclusions about which regions are not part of a given
tract or network. Rather, their intended use is to predict (with
at least some measure of confidence) which white matter regions
are part of a given tract or network, so that quantitative values
can be extracted and compared between individuals or patient
populations.

CONCLUSION

Functional connectivity analyses within large-scale brain
networks have become immensely popular, and are now
ubiquitous throughout the cognitive neuroscience and
neuroimaging literature. Yet, despite the fact that cerebral
white matter forms a critical element that is necessary for these
networks to ‘‘function’’ properly, comparable methods for
assessing structural connectivity within these same networks
have lagged far behind—in large part because the underlying
white matter scaffolds have not been previously identified.
To address this gap, we have used DTI and tractography to
create functionally-defined white matter atlases (in stereotaxic
coordinates) of the Basal Ganglia Network (BGN), Language
Network (LN), Precuneus Network (PN), Sensorimotor Network
(SMN), Higher Visual Network (HVN) and Visuospatial
Network (VSN). It is our hope that this work will enhance the
overall utility of our previously existing functionally-defined
white matter atlases of the Default Mode, Executive Control
and Salience Networks, and that it will provide a framework for
future studies to evaluate white matter connectivity within these
networks and attribute localized microstructural changes (either
between individuals or groups) to particular functional brain
networks, thereby providing deeper insights into the structural
correlates of neural processes and/or diseases.
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