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MMP intervention strategies have met with limited clinical success due to severe toxicities. In particular, treatment with broad-
spectrum MMP-inhibitors (MMPIs) caused musculoskeletal pain and inflammation. Selectivity may be essential for realizing
the clinical potential of MMPIs. Here we review discoveries pinpointing membrane-bound MMPs as mediators of mechanisms
underlying cancer and inflammation and as possible therapeutic targets for prevention/treatment of these diseases. We discuss
strategies to target these therapeutic proteases using highly selective inhibitory agents (i.e., human blocking antibodies) against
individual membrane-bound MMPs.

1. Introduction

Matrix metalloproteinases (MMPs) are zinc-dependent
endopeptidases belonging to a larger family of proteases
known as the metzincin superfamily. MMPs play an impor-
tant role in tumor progression and invasion of inflammatory
cells by degrading the extracellular matrix (ECM). Among
all MMPs, six (MMP-14, -15, -16, -17, -24, and -25) are
referred to as membrane anchored-MMPs (MT-MMPs)
[1]. MMP-23 known as CA-MMP (Cysteine array matrix
metalloproteinase) is also a membrane-bound MMP but
is anchored to the membrane via an N-terminal signal
peptide and is structurally distinct from all other MMPs
[2, 3]. This paper will outline the new strategies to select
highly selective drugs using monoclonal antibodies. A special
emphasis will be put on the properties of membrane-bound
MMPs and the scientific basis which makes pursuing them
attractive as therapeutic targets in cancer and inflamma-
tion.

2. MMP-Inhibitors in the Clinic

Except AZD1236 which is currently being developed by
AstraZeneca for potential treatment of chronic obstructive
pulmonary disease (COPD) and CTS-1027 from Conatus
Pharmaceuticals currently being evaluated in a phase II clin-
ical trial in combination with pegylated interferon (Pegasys)
and ribavirin (Copegus) in refractory hepatitis C patients,
there are currently no synthetic or biologic MMPIs in clinical
trials for cancer or arthritis. This is mostly due to the
failure of early studies with compounds containing zinc-
chelating groups, such as hydroxamates [4–6]. A tetracycline
derivative, doxycycline, in subantimicrobial doses (Periostat;
CollaGenex Pharmaceuticals Inc., Newtown, PA, USA) is
currently the only MMPI approved by the US FDA and is
used as an adjunct therapy in adult periodontitis [7]. The
use of tetracyclines for the treatment of arthritic diseases is
limited, although doxycycline has been shown to improve
some disease parameters as well as reducing the levels
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of collagenase activity in some patients with rheumatoid
arthritis (RA) [8, 9]. Topical doxycycline is also used to
enhance healing of chronic wounds [10].

3. Drawbacks of Broad-Spectrum
MMP-Inhibitors

Numerous studies in different preclinical cancer models
demonstrate the ability of hydroxamate-based MMPIs to
delay primary tumor growth and block metastasis [11–13].
Unfortunately, these MMP intervention strategies have met
with limited clinical success and severe toxicities [1, 14, 15].
Most of the MMPIs eventually demonstrated side effects
after short-term dosing (e.g., marimastat) or prolonged
treatment (e.g., BMS-275291) related to musculoskeletal
pain and inflammation [16, 17]. The mechanism of these
toxicities is widely assumed to be due to the poor selectivity
of these compounds [18] but this has not been confirmed.
In addition, it is now recognized that among MMPs, some
possess cancer-promoting activities while others tumor-
inhibiting functions [19] underlining the risk of using
broad-spectrum MMPIs. Along these lines, in vivo studies
have demonstrated that broad-spectrum MMPIs promote
metastasis of breast carcinomas as well as lymphomas to the
liver in mice [20, 21]. The upregulation of proangiogenic
factors observed in the livers of mice treated with such
inhibitors supported a direct effect on the angiogenic process
[22]. Alternatively, the broad spectrum MMPIs might also
inhibit proteases whose activity generates angiostatic factors.
A pyrimidine-2,4,6-trione derivative, belonging to the class
of orally-available selective MMPI for MMP-2, -9, and -14
was not associated with the occurrence of adverse side effects
that might reduce the therapeutic potential of these drugs
[23] demonstrating the importance of drug selectivity.

4. Antibody-Based Therapeutic Agents

Successful therapeutic intervention may critically depend
on potently inhibiting one or more MMPs that contribute
to disease progression while not inhibiting related MMPs
that may be beneficial to the host or if inhibited lead
to clinical toxicities. For example, increased expression
of MMP-12 by colon carcinoma cells is associated with
increased survival [24], and MMP-8 deficient male mice
display increased skin cancer susceptibility [25] due to
an increased inflammation which delays wound healing
[26]. Antibody-based biotherapeutic agents (e.g., human
antibodies from phage display libraries) may fulfill this need
as they may offer the desired selectivity and potency required
for disease-modifying activity [27]. The high affinity binding
of a monoclonal antibody to its target confers the potential
for high potency and selectivity coupled to a drug scaffold
with excellent pharmacological properties. Combining our
human antibody phage display library with automated
selection and screening strategies (Figure 1) [28], we have
identified highly selective antibody-based MMP inhibitor
of MMP-14 (DX-2400). DX-2400 displays antih-invasive,
antitumor, and antiangiogenic properties and blocks

proMMP-2 processing [29]. HT-1080 cells, which express
MMP-14 and MMP-2, were used to assess the effect on
MMP-2 activity by the selective inhibition of endogenous
MMP-14 by DX-2400. DX-2400 blocked proMMP-2
processing, whereas a polyclonal rabbit anti–MMP-14
antibody, which does not inhibit MMP-14 activity, failed
to inhibit proMMP-2 activation. DX-2400 inhibited
HUVEC tube formation (IC50 ∼ 6 nmol/L) and inhibited
migration of HUVECs in a fibrin gel bead assay whereas
proliferation was unaffected. DX-2400 also inhibited
VEGF165-induced invasion of HUVECs. Our in vivo studies
demonstrated that DX-2400 markedly affected tumor
growth of human breast cancer (MDA-MB-231) xenograft
tumors when used as a single agent or in combination with
bevacizumab. Combination therapy with antiangiogenic
and novel antiproteolytic agents such as DX-2400 represents
a promising approach that may produce a synergistic
antitumor effect and a survival benefit for patients. In the
MDA-MB-231 model, the antitumor effect of DX-2400 was
associated with a strong decrease in tumor vascularization.
DX-2400 treatment also induced a significant reduction
of MMP activity, supporting an antiproteolytic effect
of this antibody. DX-2400 showed in vivo activity at all
dosing schedules tested, with every other day treatment
regimen yielding the highest efficacy. DX-2400 showed
activity against the HER2–positive BT-474 xenografts when
used as a single agent or in combination with paclitaxel.
These results make DX-2400 an attractive candidate for
breast cancer patients, especially in cases where hormonal
therapy and/or therapy with Herceptin (trastuzumab) is not
effective. DX-2400 combined with bevacizumab resulted
in increased tumor growth delay in vivo. DX-2400 did not
alter the growth of MCF-7 (MMP-14 negative) derived
tumors, showing MMP-14 dependency for DX-2400 action.
In addition to its effects on primary tumor growth, DX-2400
also significantly reduced the number of metastatic foci in
the MDA-MB-231 orthotopic model and in the i.v. mouse
B16F1 melanoma model. Our findings pharmacologically
validate the role of MMP-14 in oncology and emphasize
the therapeutic potential of specific antibody-based MMP
inhibitors such as DX-2400 for the treatment of solid
tumors.

Extending our approach to human blocking antibodies
targeted against other MMPs will allow for a clear delin-
eation of their role in various pathophysiological diseases
and potentially serve as therapeutic agents in cancer and
inflammatory diseases.

5. Properties of Membrane-Anchored MMP:
Structure, Regulation, and
Tissue Localization

The primary structure of membrane-anchored MMPs con-
sists of all the domains characteristic of other MMPs
(Figure 2), except for MMP-23 which does not contain the
hemopexin domains [2]. In addition, MMP-14, -15, -16,
and -24 are type I transmembrane proteins [30] with a
short cytoplasmic tail at the C-terminus [31]. MMP-17 and
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Figure 1: MMP inhibitor selection strategy.

-25 are glycosylphosphatidylinositol- (GPI-) anchored to the
cell surface and have a very short cytoplasmic tail which is
removed in the endoplasmic reticulum during incorporation
of the GPI anchor [32]. Common to all membrane-bound
MMPs is the 11 amino acid insertion with a conserved
RRKRRRRR sequence, representing a furin cleavage site,
located at the end of the propeptide domain. With the
exception of MMP-17 and -25, the membrane-associated
MMPs also have an insertion of 8 amino acid residues
within the catalytic domain or membrane-type- (MT-) loop
[33]. MMP-23 has a unique cysteine-rich, proline-rich and
interleukin (IL-1) receptor type II-like domains.

L(20)GAALSGLCLLSALALL(36) is required for this
unique membrane localization as a signal anchor [2]. The
C-terminal domain of MMP-23 is considerably shorter than
other MMPs and shows no sequence similarity to hemopexin
[3].

Each member of the membrane-bound MMP subfamily
maps to a distinct chromosome which indicates that chro-
mosomal transposition events have played a major role in the
evolutionary diversification of this gene family [61]. MMP-
14 and MMP-15 share 82.5% amino acid sequence homology
[62], MMP-14 and MMP-16, 66% [63], MMP-14, and MMP-
17, 29% and MMP-17 and -25, 77% [3]. MMP-17 and MMP-
25 display 39% and 45% amino acid identity to MMP-14
[64], suggesting that GPI- anchored MMPs are structurally
and functionally distant from MT-MMPs. Expression of
membrane-bound MMPs is differentially controlled at the
transcriptional level [63, 65, 66]. The mechanism respon-
sible for membrane-bound MMP activation is mediated
intracellularly by furin-like proteases [66]. TIMPs (-1 to -4)
inhibit enzyme catalytic activity but also regulate MT-MMP
processing and internalization, determining the amount of
mature enzyme on the cell surface [40, 67, 68]. GPI-anchored

MMPs can be released from the cells in exosomes and
transferred to other cell types in a paracrine manner where
they can elicit biological effects [57]. Like secreted MMPs,
membrane-bound MMPs can cleave extracellular matrix
(ECM) molecules, as well as chemokines, cytokines, and
growth factors [40] (Table 1). The limited ECM degrading
activity of the GPI-anchored MMPs is in accordance with
their reported inability to facilitate invasion of basement
membranes [69] and invasion of a fibrin gel in vitro [70].
MMP-17 and MMP-25 possess the ability to cleave non-
ECM proteins [57]. The hemopexin-like domain of MMP-
14 and -16 are essential for the cleavage of fibrillar collagens.
In addition, membrane-bound MMPs are known to cleave
and activate secreted MMPs, first described for the activation
of MMP-2 by MMP-14 through interaction with TIMP-2
[30, 71]. MMP-14 also has been shown to activate proMMP-
13 [72]. MMP-14 and -15 mRNA transcripts are expressed
in a number of tissues but are distributed quite differently.
MMP-16, -17, -23, -24, and -25 have a more restricted
pattern of expression (Table 2).

6. Membrane-Anchored MMPs in Cancer

The process of cancer progression involves the action of
multiple proteolytic systems, in which membrane-anchored
MMPs play a pivotal role. Their localization at the focal cell
surface results in conditions especially suitable for cancer
cells to progress and invade the ECM [57]. Membrane-
bound MMPs are expressed not only by cancer cells but also
by the surrounding tumor stromal cells. They also play a
critical role in the development of the desmoplastic reaction
characteristic of cancer tissues such as breast, pancreatic,
and lung. Changes in the tumor microenvironment due
to the desmoplastic reaction may benefit the tumor by
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Table 1: Substrates for membrane-bound MMPs.

Gene/Name Mr latent Mr active Substrates

MMP-14 (MT1-MMP) 66,000 56,000

Collagen I, II, III [34, 35], and IV [36–38], Gelatin,
cartilage aggrecan, perlecan, fibronectin, vitronectin,
nidogen, laminin, pro-TNFα [34, 35]; proMMP-2
[39]; proMMP-13 [40]; Galectin-3; MCP-3 [41];
SDF [42]; cell surface CD44 [43]; tTG [44].

Type I transmembrane MMPs

MMP-15 (MT2-MMP) 72,000 60,000
Gelatin; fibronectin; tenascin; nidogen; aggrecan;
perlecan and laminin [35]; tTG [44]; proTNFα [35];
LRP (CD91) [45]; CXCL12 [46]; proMMP-2 [47].

MMP-16 (MT3-MMP) 64,000 52,000

Native Collagen III, α2(I) collagen chain; cartilage
proteoglycan; gelatin; casein; fibronectin;
vitronectin; laminin-1; transferring; α1-proteinase
inhibitor and α2-macroglobulin [48, 49]; tTG [44];
proMMP-2 [50].

MMP-24 (MT5-MMP) 63,000 45,000
Fibronectin; Proteoglycans and cadherins [51, 52];
Gelatin; proMMP-2 and -9 [53, 54]; KISS-1 [55].

GPI-anchored MMPs

MMP-17 (MT4-MMP) 57,000 53,000

Gelatin [56]; alpha2-macroglobulin; ADAMTS-4;
low density lipoprotein receptor related protein [57];
Fibrin/Fibrinogen; pro-TNF-alpha cleaved by mouse
MMP-17 [58].

MMP-25 (MT6-MMP) 56,000

Collagen IV; Gelatin; Fibrin/Fibrinogen [59, 60];
Fibronectin; laminin-1, alpha2-macroglobulin;
ADAMTS-4; Chondroitin and dermatan sulfate
proteoglycan; alpha1 proteinase inhibitor; urokinase
plasminogen activator receptor, Galectin-3 [57].

Type II transmembrane MMPs MMP-23 43,900 ? Unknown.

Mr : relative molecular mass.

Table 2: Expression of membrane-bound MMPs in normal tissues.

Gene/name cDNA Expression in normal tissues

MMP-14 (MT1-MMP)
Isolated from a human
placenta cDNA library
[73]

Highly expressed in ossifying tissues and during
mouse embryogenesis, where it is coexpressed with
MMP-2 [74]. Low expression in normal conditions.

Type I transmembrane MMPs

MMP-15 (MT2-MMP)
Isolated from a mouse
lung cDNA library [75]

Highly expressed in T cells [76], rat smooth muscle
cells [77], and endothelial cells [78]. Expressed in
hepatocytes and biliary epithelial cells [79], in
cytotrophoblasts [80], in activated NK-cells [81],
and in microglial cells [82].

MMP-16 (MT3-MMP)
Isolated from placenta
cDNA library [63]

Expressed in human brain tissues (microglial cells)
[62]; T cells [76]; endothelial cells [78, 83];
Langerhans cells following cell activation [84].

MMP-24 (MT5-MMP)
Isolated from mouse
brain cDNA library [54]

Predominantly expressed in the central nervous
system [85] and in T lymphocytes [76].

GPI-anchored MMPs

MMP-17 (MT4-MMP)
Isolated from a human
breast carcinoma cDNA
library [66]

Expressed in monocytic cells [86], leukocytes, brain,
ovary, testis, and colon [66].MMP-17 mRNA is
significantly represented in B cells [76].

MMP-25 (MT6-MMP)
Isolated from peripheral
blood leukocytes [64]

Predominantly expressed in leukocytes [64]. In rats,
mRNA peak expression levels in testis, kidney, and
skeletal muscle [85].

Type II transmembrane MMPs MMP-23
Isolated from an ovarian
cDNA library [3]

Abundantly expressed in normal tissues in adults
under quiescent conditions and predominantly
expressed in reproductive tissues and others such as
heart [3].
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Figure 2: Primary structure of membrane-anchored MMPs.

enhancing proliferation, inducing a more invasive malignant
phenotype, and increasing chemoresistance.

6.1. Type I Transmembrane MMPs. Extensive work from the
Weiss laboratory demonstrated that select type I membrane-
anchored MMPs (MMP-14 and MMP-15) function as direct-
acting, proinvasive factors for expansive growth of primary
tumors within a tridimensional collagen type I matrix. The
proinvasive, angiogenic, and metastatic activities of MMP-
14 and MMP-15 are unique relative to all other MMP
family members and cannot be mimicked in vivo by secreted
MMPs, MMP-1, -2, -3, -7, -9, or -13 [87]. MMP-14 drives
invasion by functioning as a pericellular collagenase [88], an
activator of proMMP-2 [30, 89], and is directly linked to
tumorigenesis and metastasis [90–92]. MMP-14 expression
is elevated in various human carcinomas including uterine
cervix [93], stomach [94], lung [95–97], breast [98], colon

[99], head and neck [100], malignant brain tumors [101],
and melanoma [102]. MMP-14 immunostaining in primary
tumor specimens is a prognostic predictor in patients
with medullary thyroid carcinomas [103] or carcinoma of
the larynx [104]. High MMP-14 expression is associated
with early death of patients with supraglottic carcinoma
[105], colorectal carcinoma [106], or breast cancer [107]
and is correlated with lymph node metastases, progression,
invasion, poor clinical stage, larger tumor size, and with
increasing tumor stage [108, 109]. The expression of MMP-
14 and MMP-2 correlates with the depth of tumor and
vascular invasion in human colon cancer [110].

MMP-15 also plays a key role in cancer progression,
tumor invasion, and metastasis [111]. MMP-15 mRNA
is expressed in breast carcinoma [112] and pancreatic
cancer tissues [113]. Higher levels of MMP-15 are observed
in nonsmall cell lung carcinomas (NSCLCs) relative to
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squamous cell carcinoma (SCCs) and normal lung tissues
which indicate that MMP-15 may be a viable molecular
diagnostic marker for NSCLCs [96]. Chemokine CXCL12
upregulates MMP-15 expression in glioma cells and serves
as an effector of CXCR4 signaling in these cells by promoting
cell invasion [46]. MMP-15 has antiapoptotic activity [114]
and may connect metastasis and resistance to cell death by
apoptosis through an unknown regulatory mechanism.

MMP-16 is expressed in human hepatocellular carci-
noma and correlates significantly with capsular invasion
[110]. MMP-16 is expressed by and promotes invasion of
melanoma cells [115].

MMP-24 mRNA is highly expressed in brain tumors,
including astrocytomas and glioblastomas [53]. MMP-24
gene silencing by RNAi can suppress the invasiveness of
SKOV-3 ovarian cancer cells in vitro, which may provide a
new therapeutic approach for this type of cancer [116].

6.2. GPI-Anchored MMPs. GPI-anchored MMPs are asso-
ciated with progression of human cancer by mechanisms
different from the type I transmembrane MMPs. There is
an excellent review on the properties and expression of
MMP-17 and MMP-25 in cancer published by Sohail and
coworkers [57]. Data suggest that GPI-anchored MMPs do
not act as progelatinase activators, are mostly non-ECM
degrading enzymes, and do not promote cell migration and
invasion. MMP-17 promotes primary tumor growth and
lung metastasis in preclinical models. MMP-17 is strongly
expressed in human breast cancer cells and in metastatic
cells in human lymph nodes [117]. Chabottaux et al. applied
experimental and spontaneous models of lung metastasis
using human breast adenocarcinoma MDA-MB-231 cells
overexpressing or not MMP-17 and found that MMP-17
promotes lung metastasis by disturbing the tumor vessel
integrity and thereby facilitating tumor cell intravasation
[118]. Human MMP-25 is expressed by leukocytes and
neutrophils, and in colon, urothelial, brain, and prostate
cancers [59, 119–122]. MMP-25 was suggested to contribute
to disease progression in gliomas [123]. Expression of
MMP-25 in HCT-116 human colon cancer cells promotes
tumorigenesis in nude mice. Histologically, the MMP-25-
expressing tumors demonstrate an infiltrative leading edge.
Strong MMP-25 staining was detected in inflammatory-like
cells consistent with the known expression of MMP-25 in
leukocytes [64].

6.3. Type II Transmembrane MMP. The body of work on
MMP-23 in cancer is still very limited when compared to
other MMPs. It is interesting to note that the presence of
MMP-23 in MDA-MB-231 cells and its involvement in cell
invasiveness after gene silencing by RNAi have been reported
[124].

7. Membrane-Anchored MMPs in
Inflammatory Diseases

Inflammatory disease encompasses a huge array of disorders
that can be very localized, regional, or systemic. MMPs

act on proinflammatory cytokines, chemokines, and other
proteins to regulate varied aspects of inflammation and
immunity. Numerous targets of MMP activity that directly
affect components of the immune system inflammatory
pathways have been described in a review by Cauwe et al.
[125].

7.1. Type 1-Transmembrane MT-MMPs. Uncontrolled cell
migration and tissue invasion are one of the important
factors that promote progression of diseases such as RA. In
RA, inflamed synovial pannus tissue invades into cartilage
and bone, resulting in dysfunctioning joint. Recent results
from Itoh’s group based on Western blot analysis of primary
synovial cells and immunohistochemical analysis of RA joint
specimens have highlighted the key role played by MMP-14
in the progression of RA by promoting cartilage invasion
by synovial pannus tissue [126]. Jain et al. also showed
that invasive potential of human rheumatoid tenosynovial
cells is partly MMP-14 dependent [127]. MMP-15, which
activates proMMP-2 and proMMP-13 and is involved in
TNFα processing (Table 1), also may facilitate inflammatory
tissue destruction in RA [128].

Johnson et al. have highlighted MMP-14 as a potential
target for the stabilization of atherosclerotic lesions [129].
Furthermore, they also published a study on the effect
of a broad spectrum nonselective MMPI in this mouse
model in which it was demonstrated that the nonselective
MMPI has no beneficial effects on atherosclerosis [130].
Subsequently using double-deficient mice, they observed
that with regards to atherosclerotic plaque disruption, some
MMPs are beneficial and some are detrimental [131]. MMP-
24 plays a role in the pathogenesis of renal tubular atrophy
and end-stage renal disease [132]. MMP-24-null mice do
not develop neuropathic pain induced by peripheral nerve
lesions [133].

7.2. GPI-Anchored MMPs. MMP-17 is involved in cartilage
destruction by activating ADAMTS-4 [134, 135]. Contrary
to the reported role of MMP-17 as a TNFα sheddase [58],
the lipopolysaccharide- (LPS-) induced release of TNFα from
mmp-17(−/−) macrophages was similar to that in wild-
type cells [136]. Using quantitative RT-PCR, Bar-Or and
colleagues have systematically analyzed the expression of
MMP members in subsets of leukocytes isolated from the
blood of normal individuals [76]. MMP-17 is significantly
expressed in B cells. A recent study from Shiryaev and
colleagues highlights the key role played by MMP-25 in
the proteolytic pathway in multiple sclerosis (MS) [137].
MMP-25 is superior to MMP-2, -8, -9, -10, -12, -14, -15,
-16, -17, and -24 in cleaving myelin basic protein (MBP)
isoforms. Proteolysis of the Golli-MBP isoforms by MMP-
25 followed by the stimulation of the specific autoimmune
T cells causes increased inflammation. This leads to the
further upregulation of the activity of multiple MMPs
and the massive cleavage of MBP in the brain resulting
in demyelination and MS [137]. MMP-25 is a novel and
promising drug target in MS especially when compared with
other individual MMPs.
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7.3. Type II Transmembrane MMP. MMP-23 mRNA is ex-
pressed in chondrocytes and osteoblasts, suggesting a role in
some aspect of cartilage or bone formation [138]. ADAM-12
and MMP-23 are coexpressed in painful tendinopathy [139]
suggesting a role for these in this inflammatory disorder.
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