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Abstract: We find the noise sensitivities (i.e., the quadratic terms of the energy with respect to
the perturbation of the noise) of a particle shuttled by an optical lattice that moves according to
a shortcut-to-adiabaticity transport protocol. Noises affecting different optical lattice parameters,
trap depth, position, and lattice periodicity, are considered. We find generic expressions of the
sensitivities for arbitrary noise spectra but focus on the white-noise limit as a basic reference, and on
Ornstein–Uhlenbeck noise to account for the effect of non-zero correlation times.
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1. Introduction

The current technical capabilities used to control the translational motion of optical-lattice
potential traps for atoms make possible a plethora of applications in quantum science and technology.
We shall focus on the use of the lattice as a conveyor belt to transport atoms, although lattices may as
well be moved for other purposes, e.g., to study the stability of superfluidity [1] or, by periodic driving
(shaking), to control different aspects of single atoms or many-body systems [2,3]. Optical lattices
are interesting for transporting atoms because of several useful properties: The possibility to have
hundreds or thousands of minima (even more within hollow fibers [4,5]), trapping forces that are
much larger than in single beam optical tweezers, parameter flexibility including time-dependent
control, or the possibility to implement lattices that depend on the internal state [6]. The atoms may
be transported between a preparation area to a “science chamber” [4,7,8], and the coherent control
of individual atoms has been demonstrated towards on-demand positioning and delivery and the
design of quantum registers [9–14]. Other applications include guided interferometry and precision
measurement [4,5,15,16], quantum computation schemes via messenger atoms among distant register
qubits [17], quantum random walks [18,19], quantum simulators [20], catapulting (launching) atoms
with specified velocities [10,21], the creation of entangled states [22,23], integrating cold atoms with
photonic platforms [24], and implementing two-qubit quantum gates and gate arrays [22,25,26].

In most of the above applications fast transport processes are of interest, e.g., to achieve high
computational speeds, to allow for many repetitions and improve signal-to-noise ratios, or to avoid
decoherence, but only as long as high fidelities with respect to desired final states are achieved.
Shortcuts to adiabaticity (STA) are a set of techniques devised to speed up slow adiabatic processes.
They help to design fast and robust operations, see [27,28] for review. In particular, STA have
been applied to design fast transport operations that leave the final state unexcited [29–34], or atom
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launching and stopping [32,35], see further references for abundant work on STA-mediated transport,
in particular Table IV, and a list of STA-mediated transport experiments in Table V of [28].

Shortcuts provide ideal trajectories for the control parameters, but the results may be affected
by noise and implementation imperfections that limit experimentally the coherence of the transport,
visibilities, and fidelities. Ruschhaupt et al [36] introduced a “noise sensitivity” to quantify these
effects as the second order term in the expansion of the final energy with respect to the perturbative
noise, and demonstrated that the time dependence of the controls may be optimized to achieve robust
protocols in operations on two-level systems, see also [37,38]. Lu and coworkers [39,40] studied the
effect of spring-constant noise on STA-driven transport of trapped ions, distinguishing two types of
contributions to the sensitivity: Static (independent of trap motion) and dynamical, with opposite
behavior with respect to shuttling time. They also demonstrated that the excitation can be reduced by
proper process timing and design of the trap trajectory.

In this work we shall find the sensitivities for STA-mediated transport of atoms in optical lattices
with respect to noises in the three parameters of a moving optical lattice potential A sin2(Kx + Φ),
namely, noises in the “amplitude” A, in the phase Φ, or in the wavenumber K, which affect, respectively,
the trap depth, the trap position, and the lattice periodicity. Interestingly they have different effects
and behaviors, in particular with respect to static and dynamical components. This information
will be instrumental in identifying dominant sources of noise and mitigating their effects. To focus
on the effect of these noises excluding other phenomena and to get analytical results with explicit
dependences, we shall assume throughout the paper conditions such that a single atom is trapped in
a given lattice site minimum, with negligible tunneling, interatomic interactions, and spontaneous
emission. Internal-state dependence of the lattice is disregarded, in fact the internal state plays no role
in the following and it is assumed to remain unchanged along the shuttling. Moreover a deep lattice
is assumed, in a Lamb–Dicke regime where the relevant atomic motion is effectively governed by a
harmonic trap. This last condition could be relaxed as explained in the final discussion.

In Section 2 we review for completeness the invariant-based inverse engineering of STA trap
trajectories for a harmonic trap and the general form of the noise sensitivities for a transport protocol.
In Section 3, we consider the three types of noise for A, K, and Φ. The noise spectrum may be arbitrary,
but we pay special attention to the white noise limit and to Ornstein–Uhlenbeck noise as a simple
generalization to account for the effect of colored noise with a non-zero correlation time.

2. Invariant-Based Inverse Engineering and Noise Sensitivities

2.1. Invariant-Based Inverse Engineering

Let us first review the basic dynamical equations for a particle of mass m trapped in a harmonic
trap with angular frequency Ω(t) whose center moves along an arbitrary trajectory Q(t). Then we shall
use this information to inverse engineer special trajectories q0(t) that shuttle the particle without final
excitation [32]. Effective one-dimensional configurations are assumed throughout. The Hamiltonian in
coordinate (x) representation is

H0(t) =
p2

2m
+

1
2

mΩ2(t)[x−Q(t)]2, (1)

where p is the momentum operator. We may subtract the purely time-dependent term and use instead
H0 = H0(t)−mΩ2(t)Q(t)2/2 to find the dynamics,

H0(t) =
p2

2m
− F(t)x +

m
2

Ω2(t)x2. (2)

F(t) = mΩ2(t)Q(t) is a homogeneous force throughout space.
This Hamiltonian has a quadratic Lewis–Riesenfeld invariant of the form [32,41–43]
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I(t) =
1

2m
{ρ(t)[p−mq̇c(t)]−mρ̇(t)[x− q̇c(t)]}2

+
1
2

mω2
0

[
x− qc(t)

ρ(t)

]2

, (3)

where ω0 is a constant, and “invariance” means that its expectation values remain constant for the
states driven by H0, i.e.,

dI(t)
dt
≡ ∂I(t)

∂t
+

1
ih̄
[I(t), H0(t)] = 0. (4)

Assuming a quadratic-in-momentum ansatz for I(t) in this equation, it is found that ρ(t) and F(t)
must satisfy the “Ermakov” and “Newton” equations

ρ̈(t) + Ω2(t)ρ =
ω2

0
ρ3(t)

,

q̈c(t) + Ω2(t)qc(t) = F(t)/m. (5)

Hereafter we conveniently choose ω0 = Ω(0). ρ(t) is a scaling factor that determines the width of
the eigenstates of the invariant and qc(t) is a classical trajectory for the forced oscillator, see Equation (5).
The eigenstates of I(t), Equation (3), are centered at qc(t). The eigenvalues λn of I(t) are constant,
I(t)ψn(t) = λnψn(t), whereas the (orthogonal) eigenstates of the invariant, ψn(t), are time dependent,

ψn(x, t) =
1
√

ρ
e

im
h̄ [

ρ̇x2
2ρ +

(q̇cρ−ρ̇qc)x
ρ ]

φn

(
x− qc

ρ

)
, (6)

where φn(x) are the eigenstates of a static harmonic oscillator with angular frequency ω0. Arbitrary
solutions of the time-dependent Schrödinger equation ih̄∂tΨ(x, t) = H0(t)Ψ(x, t) may be expanded
using the “transport modes” Ψn(x, t) ≡ eiθn(t)ψn(x, t), where the Lewis–Riesenfeld phases θn(t) are
found so that each transport mode is itself a solution,

θn(t) =
1
h̄

∫ t

0

〈
ψn(t′)

∣∣∣ih̄ ∂

∂t′
− H0(t′)

∣∣∣ψn(t′)
〉

dt′. (7)

Thus, Ψ(x, t) = ∑n c(n)eiθn(t)ψn(x, t), where the c(n) are time independent, and n = 0, 1, ....
In a rigid harmonic trap we may simply set

Ω(t) = ω0, ρ(t) = 1. (8)

To inverse engineer a trap trajectory q0(t) that would transport the particle without final
excitations from q0(0) = 0 to q0(T) = d in a time T, we shall design first qc(t) and deduce q0(t)
from the Newton Equation (5) with F(t) = mω2

0q0(t). We impose the boundary conditions [32]

q0(0) = qc(0) = 0, q̇c(0) = 0,

q0(T) = qc(T) = d, q̇c(T) = 0, (9)

so that I(t) and H0(t) commute at t = 0 and t = T. Therefore the two operators share eigenvectors at
those times and the initial eigenvectors evolve into final eigenvectors without excitation. (This can be
seen in Equation (6) taking into account Equations (8) and (9).) Moreover, the continuity of q0(t) is
guaranteed by the additional conditions
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q̈c(0) = 0, q̈c(T) = 0. (10)

Note that the boundary conditions (9) guarantee the absence of excitation so qc(t) can be interpolated
among them with great freedom to produce many different and valid shortcuts.

2.2. Noise Sensitivity

Here we shall define noise sensitivities following [40] but for a more general scenario, namely,
for a Hamiltonian (1) where both Ω(t) and Q(t) could be affected by classical noise around their
noiseless values ω0 and q0(t). The origin of the noise in the harmonic model is that, as explained in
the next section in detail, different parameters of the optical lattice potential may suffer from some
noisy deviation from the ideal value. This deviation is represented by λξ(t), possibly multiplied by
some appropriate dimensional factor depending on the parameter. λ is the dimensionless perturbative
parameter that should be set to one at the end of the calculation, and ξ(t) is also dimensionless.
ξ(t) is assumed to be unbiased, i.e., the average over noise realizations E [· · · ] gives zero, and the
(dimensionless) correlation function α is stationary,

E [ξ(t)] = 0, E [ξ(t)ξ(s)] = α(t− s). (11)

We also assume that there is no noise at initial time, so the initial conditions for ρ(t) and qc(t) are
fixed as

ρ(0) = 1, ρ̇(0) = ρ̈(0) = 0,

qc(0) = 0, q̇c(0) = q̈c(0) = 0. (12)

Now the auxiliary functions ρ(t) and qc(t) are expanded in powers of λ,

ρ(t) = ρ(0)(t) + λρ(1)(t) + · · ·,

qc(t) = q(0)c (t) + λq(1)c (t) + · · ·. (13)

Assuming as well a series expansion of Ω(t) and Q(t) in λ, we get in zeroth order (noiseless limit)

ρ(0)(t) = 1,

q̈(0)c (t) + ω2
0q(0)c (t) = ω2

0q0(t), (14)

where q(0)c (t) satisfies Eqautions (9) and (10).
We also assume that there is no noise at the final time, H(T) = p2/2m + mω2

0(x − d)2/2.
The expectation value of H(T) for a state Ψn(T) = eiθn(T)ψn(T), see Equation (6), that started as
the nth mode for a realization of the noise ξ(t) can be found exactly,

En,ξ = 〈H(T)〉 = 〈Ψn(T)|H(T)|Ψn(T)〉

=
m
2

ω2
0 [qc(T)− d]2 +

h̄ω0

4
(2n + 1)

1 + ρ4(T)
ρ2(T)

+
m
2

q̇2
c (T) +

h̄
4ω0

(2n + 1)ρ̇2(T). (15)
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En,ξ can be expanded in powers of λ as

En,ξ ≈ E(0)
n,ξ + λE(1)

n,ξ + λ2E(2)
n,ξ + · · ·, (16)

with E(1)
n,ξ =

∂En,ξ
∂λ , E(2)

n,ξ = 1
2

∂2En,ξ
∂λ2 . Combining Equation (15) and the expansions for ρ(t) and qc(t) in

Equation (13), we find the zeroth order E(0)
n,ξ = h̄ω0(n + 1

2 ) and E(1)
n,ξ = 0, as expected, as well as

E(2)
n,ξ =

1
2

mω2
0q(1)c (T)2 + h̄ω0(2n + 1)ρ(1)(T)2

+
1
2

mq̇(1)c (T)2 +
h̄ρ̇(1)(T)2

4ω0
(2n + 1). (17)

Averaging over different realizations of the noise,

En = E [En,ξ ] = E(0)
n + λ2 1

2
E
[

∂2En,ξ

∂λ2

]
, (18)

where E(0)
n = E(0)

n,ξ .
The noise sensitivity for a given transport protocol is defined as the second order coefficient, so it

has dimensions of energy,

G(T; n) =
1
2
E
[

∂2En,ξ

∂λ2

]
= E [E(2)

n,ξ ]

= G1 + G2. (19)

We have separated the contributions related to ρ and to qc,

G1 = h̄(2n + 1)
{

ω0E [ρ(1)(T)2] +
1

4ω0
E [ρ̇(1)(T)2]

}
,

G2 =
1
2

mω2
0E [q

(1)
c (T)2] +

1
2

mE [q̇(1)c (T)2]. (20)

In the following, we will discuss three different kinds of noise in the moving optical lattice and find
the exact expressions of the corresponding sensitivities. To achieve robust protocols, the experimental
goal is to minimize the total sensitivity G1 + G2.

3. Noise in a Moving Optical Lattice

Let us consider an effective potential of the form

V = A sin2[Kx + Φ(t)] (21)

due to a laser standing wave. All three coefficients could be affected by noise around central values a,
k and φ so it is useful to consider an auxiliary “noiseless version” of Equation (21),

V(noise free) = a sin2[kx + φ(t)]. (22)

Among the periodic minima we pick up the one at Q(t) = −Φ(t)/K as the one “occupied” by an atom.
Expanding around this point we find a quadratic approximation for Equation (21),

A sin2[Kx + Φ(t)] ≈ AK2[x−Q(t)]2, (23)
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where A is the potential depth of the lattice and K is the wavenumber of the laser light. Considering
the possible time dependences, noisy or otherwise, the quadratic Hamiltonian may be written as
Equation (1) with 1

2 mΩ(t)2 = AK2. Without any noise Ω(t) = ω0, 1
2 mω2

0 = ak2, and Q = q0.

3.1. Wavenumber (Accordion) Noise

Accordion lattices have been implemented in different ways [44–47] to change the lattice
periodicity keeping other parameters fixed. We consider first that the wave vector suffers from
an involuntary “accordion noise” as K = k[1 + λξ(t)], whereas A = a and Φ = φ. Some possible
realizations of the potential at a given time are depicted in Figure 1 for a particular well (a) or for
several wells (b). The harmonic potential with K noise now can be written as

V = ak2
[

1 + λξ(t)
]2[

x +
1

1 + λξ(t)
φ(t)

k

]2

=
1
2

mω2
0

[
1 + λξ(t)

]2[
x− q0(t)

1 + λξ(t)

]2

=
1
2

mΩ2(t)[x−Q(t)]2, (24)

where Ω2(t) = ω2
0 [1 + λξ(t)]2, whereas the minimum at Q(t) = q0(t)/(1 + λξ(t)) is displaced by

the noise proportionally to q0(t). Both the spring constant and the trap position are affected by the
accordion noise.

Figure 1. (Color online) Schematic effect of accordion (K) noise. Accordion noise consists of random
compressions/expansions with respect to the pivot point x = 0. (a) In a particular minimum, the one
at q0 > 0 without noise, expansions imply smaller trap frequencies together with displacements to
the right, and compressions the opposite phenomena. The displacements of the minimum due to
K noise increase with the distance to the pivot. The black solid line is the noiseless trap at some
time during transport. The red dashed line represents a compression and the blue dotted line an
expansion. The parameter values are chosen to easily visualize the effect and do not intend to be
realistic. (b) Several lattice periods for the reference potencial without noise (black solid line) and the
compressed version (red dashed line).

Substituting the expansions of ρ(t) and qc(t) of Equation (13) into Equation (5), and keeping only
the first order in λ, ρ(1)(t) and q(1)c (t) will satisfy

ρ̈(1)(t) + 4ω2
0ρ(1)(t) = −2ω2

0ξ(t),

q̈(1)c (t) + ω2
0q(1)c (t) = [q̈(0)c (t)−ω2

0q(0)c (t)]ξ(t), (25)
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with initial conditions ρ(1)(0) = ρ̇(1)(0) = ρ̈(1)(0) and q(1)c (0) = q̇(1)c (0) = q̈(1)c (0). The solutions of
Equation (25) are

ρ(1)(t) = −ω0

∫ t

0
ds ξ(s) sin[2ω0(t− s)],

q(1)c (t) =
1

ω0

∫ t

0
ds ξ(s)[q̈(0)c (s)−ω2

0q(0)c (s)] sin[ω0(t− s)]. (26)

Substituting them into Equation (20) and using Equation (11), we get the sensitivity

G(T; n) = G1K(T; n) + G2K(T; n),

G1K(T) = h̄ω3
0(4n + 2)

∫ T

0
ds α(s)(T − s) cos(2ω0s),

G2K(T) = m
∫ T

0
ds α(s) fK(s), (27)

where

fK(s) = cos(ω0s)
∫ T−s

0
B(u)B(u + s)du, (28)

with B(u) = q̈(0)c (u) − ω2
0q(0)c (u). G1K is independent of the trajectory, it is a “static” contribution

that depends on n, the frequency ω0, the correlation function of the noise α(t), and shuttling time T.
Instead, G2K is a “dynamical” contribution that depends on the trajectory, on α(t), and on the mass
m. The static/dynamical character can be traced back to Equation (25). The noise forcing term in the
equation for ρ(1) does not depend on the trajectory whereas the one for q(1)c does. However G1 and
G2 in Equation (20) do not necessarily become, respectively, static and dynamical sensitivities for all
noises as they do here, see in particular Section 3.3 on “position noise” below. Each noise type requires
a separate analysis.

To evaluate the integrals in Equation (27) the correlation function α(t) of the noise has to be
specified. We consider Ornstein–Uhlenbeck (OU) noise with correlation function

α(t) =
D
2τ

e−t/τ (29)

as a simple, natural generalization of Gaussian white noise to introduce a finite correlation time τ. D,
with dimensions of time, sets the strength of the noise (the factor D was taken out of the correlation
function in [40] (when comparing the present work and [40] note also that λ had dimensions of square
root of time there, whereas it is dimensionless here). The convention here is as in [39]). OU noise
is not the most general colored noise, but it covers a much larger domain than the white-noise
assumption [48]. When τ → 0, it reduces to white noise, and is also instrumental in generating flicker
noise by superposing a range of correlation times [39].

To be more specific and see the behavior of the sensitivity, we assume a simple polynomial ansatz,
q(0)c (t) = ∑5

j=0 bjtj, where the bj are fixed to satisfy the imposed boundary conditions. The optical
lattice moves in our simulations from 0 to d = λL/2, where λL is the wavelength of the light creating
the optical lattice, so that d is the distance between two contiguous minima. In Figure 2, the sensitivity
components G1K and G2K are shown versus final time for a Cs atom, see further details in the caption.
The lattice parameters are realistic and taken from [49]. They correspond to a Lamb–Dicke regime,
h̄ω0/ER ≈ 58, where ER = (h̄k)2/(2m) is the recoil energy.

In Figure 2 we include small T values below the period T0 = 2π/ω0 for completeness, but note
that the harmonic and single well approximations will fail in such a regime. For a simple estimate of
minimal allowed shuttling times we may compare a lower bound for averaged potential energy during
transport [32], with the potential depth a, i.e., 6md2/(T4ω2

0a)� 1 should hold for the particle to stay
in a minimum. Using ω0 =

√
2ak2/m and d = π/k gives a minimal time scale T ≈ T0/2. Shorter
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times which would not be affected by the failure of the harmonic approximation may be implemented
by applying a time-dependent homogeneous force compensating the inertial force, this is discussed
briefly in the final section, see also [32].

G2 K HdynamicalL

G1 K HstaticL
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Τ ® 0
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105
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0.1 1 10
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Τ = 10 T0
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G
1

K
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K
�G

0

Figure 2. (Color online) Log–log plot of the sensitivity to accordion noise in units of G0 = h̄ω2
0 D

for a polynomial protocol versus final time in units of the oscillation period T0 = 2π/ω0 and for
different values of τ: (a) τ → 0 (white noise limit); (b) τ = T0; (c) τ = 10T0. The blue solid line is the
dynamical component G2K and the red dashed line the static component G1K . The parameters are
λL = 2π/k = 866 nm, d = 1

2 λL, a = 850 ER, mass of 133Cs, n = 0, ω0 =
√

2ak2/m = 2π × 116 kHz,
and recoil energy ER = (h̄k)2/(2m). The same scale is kept in these three figures and in later figures
for the other noises (Figures 4 and 6) to compare easily the different sensitivities.

In the white noise limit τ → 0 Equation (27) gives

G1K = h̄ω3
0D(2n + 1)T,

G2K = md2D

(
181
924

ω4
0T +

60
7T3 +

10ω2
0

7T

)
, (30)

which implies a minimum for the dynamical term G2K at T ≈ 0.63 T0 and a monotonous growth with
process time T for the static part G1K. For T > T0 both terms grow linearly with time T as shown in
the right part of Figure 2a. Comparing G1K and the linear part of G2K we find that for this noise G2K is
always dominant in the Lamb–Dicke regime. In the white noise limit, with d = π/k,

G2K(linear in T term)

G1K
=

181
924

mω0d2

h̄
≈ 0.96

h̄ω0

ER
. (31)

The effect of a finite correlation time with a OU correlation function is explored numerically in
Figure 2b,c: Increasing correlation times diminish the sensitivity in all time T regions and even
suppress strongly the short-time T growth of sensitivity characteristic of the white noise limit. G2K
stays dominant over G1K for all τ.
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The previous results are also consistent with the known effects of spring-constant noise in static
traps [50,51]. We assume now no transport (q0(t) = 0 and qc(t) = 0) and consider the static part G1

alone. Using Equations (18), (27) and (29) and assuming that T � τ, we then arrive at

dEn

dT
= 4ω2

0πE(0)
n SK(2ω0), (32)

where SK(2ω0) is the spectral density for the fractional fluctuation in the wavenumber at the second
harmonic of the trap (we have set λ = 1),

SK(2ω0) =
1
π

∫ ∞

0
α(t) cos(2ω0t)dt, (33)

see also the corresponding discussion for amplitude noise in the following subsection.

3.2. Amplitude (Trap Depth) Noise

Trap depth noise may be due to laser intensity fluctuations as well as to pointing instabilities
of the laser beams that could arise as a consequence of shifts of the laser beam, acoustic vibrations
or air flow [11]. For example Kuhr et al. [11], estimated the fluctuations of the trap depth in their
optical lattice setting to reach up to 3% for time scales t > 100 ms. We consider amplitude noise as
A = a[1 + λξ(t)] (whereas K = k, and Φ = φ), see Figure 3, so that the optical lattice potential can be
written as

V = a[1 + λξ(t)]k2(x− q0)
2 =

1
2

mΩ2(t)(x− q0)
2, (34)

where Ω2(t) = ω2
0 [1 + λξ(t)] is affected by a classical spring constant noise.

Figure 3. (Color online) Two realizations of the potential due to amplitude noise (red dashed line and
dotted blue line) at some given time. The corresponding noiseless potential is also represented as a
solid black line.

Similarly to the procedure followed for accordion noise, substituting the expansions of ρ(t) and
qc(t) into Equation (5), and keeping only the first order of λ, ρ(1)(t) and q(1)c (t) will satisfy

ρ̈(1)(t) + 4ω2
0ρ(1)(t) = −ω2

0ξ(t),

q̈(1)c (t) + ω2
0q(1)c (t) = q̈(0)c (t)ξ(t), (35)
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with initial conditions ρ(1)(0) = ρ̇(1)(0) = ρ̈(1)(0) and q(1)c (0) = q̇(1)c (0) = q̈(1)c (0). The solutions of
Equation (35) are

ρ(1)(t) = −ω0

2

∫ t

0
ds ξ(s) sin[2ω0(t− s)],

q(1)c (t) =
1

ω0

∫ t

0
ds ξ(s) sin[ω0(t− s)]q̈(0)c (s). (36)

Substituting ρ(1)(t) and q(1)c (t) into Equation (20), we get

G(T; n) = G1A(T; n) + G2A(T; n),

G1A(T) = h̄ω3
0

(
n +

1
2

)∫ T

0
ds α(s)(T−s) cos(2ω0s),

G2A(T) = m
∫ T

0
ds α(s) fA(s), (37)

where

fA(s) = cos(ω0s)
∫ T−s

0
du q̈(0)c (u)q̈(0)c (u + s). (38)

As before we compute the integrals for OU noise, and use the polynomial ansatz for qc. In the white
noise limit τ → 0

G1A =
D
4

h̄ω3
0(2n + 1)T,

G2A =
D60md2

7T3 . (39)

Up to the scaling due to the optical lattice parameters, these expressions coincide with the results given
in [40] for “spring-constant noise”, and different limits and regimes were discussed there in detail.
Here we note that different from the accordion noise sensitivities, G1A (static) and G2A (dynamical)
behave in opposite ways to each other in all T domains, and cross at a special optimal time with
minimal sensitivity, see Figure 4.

The static part alone (no transport, q0(t) = 0) implies for T larger than the correlation time a
heating rate in agreement with [50,51],

dEn

dT
= ω2

0πE(0)
n S(2ω0), (40)

where SA(2ω0) is the spectral density for the fractional fluctuation in the amplitude (trap depth) at the
second harmonic of the trap,

SA(2ω0) =
1
π

∫ ∞

0
α(t) cos(2ω0t)dt. (41)

Equations (33) and (41) are in fact equivalent since both SA and 4SK may be interpreted as the spectrum
for the fractional fluctuation of the spring constant.

The effect of increasing τ using OU noise is again to diminish the sensitivities, and to suppress
the growth of the dynamical sensitivity for small T < T0, see Figure 4.
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Figure 4. (Color online) Amplitude-noise sensitivity for a polynominal protocol versus final time
(log–log plot) and for different correlation times τ: (a) τ → 0; (b) τ = T0; (c) τ = 10T0. Dashed red line:
Static term G1A; solid blue line: Dynamical term G2A. The parameters and scales are the same as in
Figure 2.

3.3. Phase (Trap Position) Noise

The standing wave phase φ(t) can be changed in time, moving the interference pattern, in different
ways, e.g., [9,52]: One of the laser beams can be moved by mechanically moving a mirror [7]; the phase
of one of the laser beams can be controlled with an electro-optical modulator; or a frequency mismatch
∆ν between the counterpropagating beams controlled by acousto-optical modulators produces a phase
π∆νt. Of course all these methods are amenable to an imperfect control and fluctuations. Here we
consider phase noise as Φ(t) = φ(t)− λξ(t) independent of other possible noises (A = a, K = k),
see Figure 5. The harmonic potential takes now the form

V= ak2
[

x+
φ(t)−λξ(t)

k

]2
=

mω2
0

2

[
x−q0(t)−

λ

k
ξ(t)

]2
. (42)

The phase noise implies noise in the trap position, Q(t) = q0(t) + λ
k ξ(t).
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Figure 5. (Color online) Schematic representation of position noise in the optical lattice. The black solid
line is the noiseless potential at some instant during the driving transport. The red dashed line and
blue dotted line are two possible realizations of the potential due to position noise.

First order equations are now

ρ̈(1)(t) + 4ω2
0ρ(1)(t) = 0,

q̈(1)c (t) + ω2
0q(1)c (t) =

ω2
0

k
ξ(t), (43)

with initial conditions ρ(1)(0) = ρ̇(1)(0) = ρ̈(1)(0) and q(1)c (0) = q̇(1)c (0) = q̈(1)c (0). The solutions of
Equation (43) are

ρ(1)(t) = 0,

q(1)c (t) =
ω0

k

∫ t

0
ds ξ(s) sin[ω0(t− s)], (44)

which give the sensitivities

G(T; n) = G1Q(T; n) + G2Q(T; n),

G1Q(T) = 0,

G2Q(T) =
mω4

0
k2

∫ T

0
ds α(s)(T − s) cos(ω0s). (45)

The position noise sensitivity depends on the factor mω4
0/k2, α, and T. There is only a static contribution

which, for this noise, depends on G2 rather than on G1 as in the previous two noises. Note also the
independence on n of G2Q unlike the static terms G1K and G1A. For a transport process the way to
diminish its effect is to shorten the transport time.

As for the two previous noises we consider OU noise to compute the integral in Equation (45).
In the white noise limit,

G2Q =
mω4

0
2k2 DT (46)

as shown in Figure 6. Increasing τ diminishes the sensitivity and also affects the slopes differently for
T larger or smaller than T0.
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Figure 6. (Color online) Position-noise sensitivity for a polynomial transport protocol versus final time
(log–log plot). The parameters and the scales are the same as in Figure 2.

For times T larger than the correlation time we find in second order, in agreement with [50,51],
the heating rate

dEn

dT
= mω4

0πSQ(ω0), (47)

where SQ(ω0) is now the spectral density for the fluctuation of the trap position (we set λ = 1,
otherwise multiply by λ2),

SQ(ω0) =
1
π

∫ ∞

0

1
k2 α(t) cos(ω0t)dt. (48)

4. Discussion

In this paper we have found the energy sensitivities with respect to noise in a conveyor-belt
optical lattice that moves according to shortcut-to-adiabaticity protocols to transport atoms. The three
types of noise considered affect the periodicity, the trap depth, or the trap position. A broad range
of experimental settings may lead to these noises, to different combinations, or even to other noise
forms (e.g., rocking). While the detailed analysis of the experimental settings is out of the scope of
this work, the dependences found for the sensitivities will help to make a proper diagnosis of the
predominant noise type and to implement mitigation strategies. Position noise is only affected by the
static sensitivity which grows linearly with the shuttling time independently of the trajectory so the
noise effect can only be mitigated by shortening the process time. Trap depth noise shows a more
complex scenario for the sensitivity with a minimum at a specific shuttling time with dynamical effects
dominating at very short times and static ones at long times. To locate the shuttling time where the
sensitivity is minimal the analysis in [40] for spring constant noise is applicable. Dynamical sensitivities
can in principle be diminished by optimizing the trajectory, a task left for future work. Accordion noise
is dominated by the dynamical sensitivity at all shuttling times which also shows a minimum.

The existence of sensitivity minima demonstrates that the naive expectation that a smaller process
time is always beneficial to combat the deleterious effects of noise is not necessarily true. Each type
of noise requires a separate analysis and may or may not fulfill this expectation. It is interesting
to compare the dominant sensitivities due to different noises in the regime T > T0. In all cases
they grow linearly with time for white noise. In the Lamb–Dicke regime the amplitude noise is
found to have a weaker effect (although increased by n) than the other two, which behave similarly,
see Equations (30), (39) and (46): G2Q/G1A = h̄ω0/[ER(2n + 1)], and G2K ≈ 3.86 G2Q.

A limitation of the shortcuts as implemented in Section 2.1 is that shuttling times shorter than an
oscillation period break down the simplifying conditions assumed (motion in a single harmonic well).
Shorter-time shortcuts may however be applied by compensating the inertial acceleration of the rigidly
moving potential U[q− qc(t)] (the optical lattice potential) with an appropriate homogeneous force
−mq̈c [31,32]. This trick does not require the trapping potential U to be harmonic, and wavefunctions
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that are initially stationary stay so during the whole transport in the frame moving with qc(t). In fact,
the effective potential in the moving frame stays stationary, and “nothing happens” in that frame,
apart from possible noises. Implementing this compensation may be technically challenging and to the
best of our knowledge it has not been implemented yet for optical lattices, but the resulting benefits
could make the effort worthwhile. We point out that there are different possibilities to implement the
compensation, for example using lattice controlled rotations [45,46], or two optical lattices superposed
with a large ratio of their periodicities, so that the one with the largest period provides an effectively
linear potential.

Finally, the current noise analysis is also useful and applicable in the harmonic approximation to
other transport platforms and systems such as atomic transport in moving magnetic microtraps in
chips [53,54] or of ions in Paul traps [55–57].

Author Contributions: All authors contributed equally. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Basque Country Government (Grant No. IT986-16), by PGC2018-101355-
B-I00 (MCIU/AEI/FEDER,UE), and by the Key Research Project in Universities of Henan Province (Grant
No. 20B140016).

Acknowledgments: We are grateful to A. Alberti for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mun, J.; Medley, P.; Campbell, G.K.; Marcassa, L.G.; Pritchard, D.E.; Ketterle, W. Phase diagram for
a Bose-Einstein condensate moving in an optical lattice. Phys. Rev. Lett. 2007, 99, 150604. [CrossRef]
[PubMed]

2. Kiely, A.; Muga, J.G.; Ruschhaupt, A. Selective population of a large-angular-momentum state in an optical
lattice. Phys. Rev. A 2018, 98, 053616. [CrossRef]

3. Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys.
2017, 89, 011004. [CrossRef]

4. Okaba, S.; Takano, T.; Benabid, F.; Bradley, T.; Vincetti, L.; Maizelis, Z.; Yampol’skii, V.; Nori, F.; Katori, H.
Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre. Nat. Commun. 2014, 5, 1–9.
[CrossRef] [PubMed]

5. Langbecker, M.; Wirtz, R.; Knoch, F.; Noaman, M.; Speck, T.; Windpassinger, P. Highly controlled optical
transport of cold atoms into a hollow-core fiber. New J. Phys. 2018, 20, 083038. [CrossRef]

6. Mandel, O.; Greiner, M.; Widera, A.; Rom, T.; Hänsch, T.W.; Bloch, I. Coherent transport of neutral atoms
in spin-dependent optical lattice potentials. Phys. Rev. Lett. 2003, 91, 010407. [CrossRef]

7. Middelmann, T.; Falke, S.; Lisdat, C.; Sterr, U. Long-range transport of ultracold atoms in a far-detuned
one-dimensional optical lattice. New J. Phys. 2012, 14, 073020. [CrossRef]

8. Dinardo, B.A.; Anderson, D.Z. A technique for individual atom delivery into a crossed vortex bottle beam
trap using a dynamic 1D optical lattice. Rev. Sci. Instrum. 2016, 87, 123108. [CrossRef]

9. Schrader, D.; Kuhr, S.; Alt, W.; Müller, M.; Gomer, V.; Meschede, D. An optical conveyor belt for single
neutral atoms. Appl. Phys. B 2001, 73, 819–824. [CrossRef]

10. Kuhr, S. Deterministic Delivery of a Single Atom. Science 2001, 293, 278–280. [CrossRef]
11. Kuhr, S.; Alt, W.; Schrader, D.; Dotsenko, I.; Miroshnychenko, Y.; Rosenfeld, W.; Khudaverdyan, M.;

Gomer, V.; Rauschenbeutel, A.; Meschede, D. Coherence properties and quantum state transportation in
an optical conveyor belt. Phys. Rev. Lett. 2003, 91, 213002. [CrossRef] [PubMed]

12. Miroshnychenko, Y.; Schrader, D.; Kuhr, S.; Alt, W.; Dotsenko, I.; Khudaverdyan, M.; Rauschenbeutel, A.;
Meschede, D. Continued imaging of the transport of a single neutral atom. Opt. Express 2003, 11, 3498.
[CrossRef] [PubMed]

13. Dotsenko, I.; Alt, W.; Khudaverdyan, M.; Kuhr, S.; Meschede, D.; Miroshnychenko, Y.; Schrader, D.;
Rauschenbeutel, A. Submicrometer position control of single trapped neutral atoms. Phys. Rev. Lett. 2005,
95, 033002. [CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevLett.99.150604
http://www.ncbi.nlm.nih.gov/pubmed/17995152
http://dx.doi.org/10.1103/PhysRevA.98.053616
http://dx.doi.org/10.1103/RevModPhys.89.011004
http://dx.doi.org/10.1038/ncomms5096
http://www.ncbi.nlm.nih.gov/pubmed/24934478
http://dx.doi.org/10.1088/1367-2630/aad9bb
http://dx.doi.org/10.1103/PhysRevLett.91.010407
http://dx.doi.org/10.1088/1367-2630/14/7/073020
http://dx.doi.org/10.1063/1.4972250
http://dx.doi.org/10.1007/s003400100722
http://dx.doi.org/10.1126/science.1062725
http://dx.doi.org/10.1103/PhysRevLett.91.213002
http://www.ncbi.nlm.nih.gov/pubmed/14683295
http://dx.doi.org/10.1364/OE.11.003498
http://www.ncbi.nlm.nih.gov/pubmed/19471484
http://dx.doi.org/10.1103/PhysRevLett.95.033002
http://www.ncbi.nlm.nih.gov/pubmed/16090739


Entropy 2020, 22, 262 15 of 16

14. Miroshnychenko, Y.; Alt, W.; Dotsenko, I.; Förster, L.; Khudaverdyan, M.; Meschede, D.; Schrader, D.;
Rauschenbeutel, A. An atom-sorting machine. Nature 2006, 442, 151–151. [CrossRef]

15. Lee, P.J.; Anderlini, M.; Brown, B.L.; Sebby-Strabley, J.; Phillips, W.D.; Porto, J.V. Sublattice addressing and
spin-dependent motion of atoms in a double-well lattice. Phys. Rev. Lett. 2007, 99, 020402. [CrossRef]

16. Steffen, A.; Alberti, A.; Alt, W.; Belmechri, N.; Hild, S.; Karski, M.; Widera, A.; Meschede, D. Digital atom
interferometer with single particle control on a discretized space-time geometry. Proc. Natl. Acad. Sci. USA
2012, 109, 9770–9774. [CrossRef]

17. Calarco, T.; Dorner, U.; Julienne, P.S.; Williams, C.J.; Zoller, P. Quantum computations with atoms in optical
lattices: Marker qubits and molecular interactions. Phys. Rev. A 2004, 70, 012306. [CrossRef]

18. Dür, W.; Raussendorf, R.; Kendon, V.M.; Briegel, H.J. Quantum walks in optical lattices. Phys. Rev. A 2002,
66, 052319. [CrossRef]

19. Alberti, A.; Alt, W.; Werner, R.; Meschede, D. Decoherence models for discrete-time quantum walks and
their application to neutral atom experiments. New J. Phys. 2014, 16, 123052. [CrossRef]

20. Jané, E.; Vidal, G.; Dür, W.; Zoller, P.; Cirac, J.I. Simulation of quantum dynamics with quantum optical
systems. Quantum Inf. Comput. 2003, 3, 15–37.

21. Schmid, S.; Thalhammer, G.; Winkler, K.; Lang, F.; Denschlag, J.H. Long distance transport of ultracold
atoms using a 1D optical lattice. New J. Phys. 2006, 8, 159–159. [CrossRef]

22. Jaksch, D.; Briegel, H.J.; Cirac, J.I.; Gardiner, C.W.; Zoller, P. Entanglement of atoms via cold controlled
collisions. Phys. Rev. Lett. 1999, 82, 1975–1978. [CrossRef]

23. Treutlein, P.; Steinmetz, T.; Colombe, Y.; Lev, B.; Hommelhoff, P.; Reichel, J.; Greiner, M.; Mandel, O.;
Widera, A.; Rom, T.; et al. Quantum information processing in optical lattices and magnetic microtraps.
Fortschr. Phys. 2006, 54, 702–718. [CrossRef]

24. Kim, M.E.; Chang, T.H.; Fields, B.M.; Chen, C.A.; Hung, C.L. Trapping single atoms on a nanophotonic
circuit with configurable tweezer lattices. Nat. Commun. 2019, 10, 1647. [CrossRef]

25. Brennen, G.K.; Caves, C.M.; Jessen, P.S.; Deutsch, I.H. Quantum logic gates in optical lattices.
Phys. Rev. Lett. 1999, 82, 1060–1063. [CrossRef]

26. Bloch, I. Exploring quantum matter with ultracold atoms in optical lattices. J. Phys. B Atom. Mol. Opt. Phys.
2005, 38, S629–S643. [CrossRef]

27. Torrontegui, E.; Ibáñez, S.; Martínez-Garaot, S.; Modugno, M.; del Campo, A.; Guéry-Odelin, D.;
Ruschhaupt, A.; Chen, X.; Muga, J.G. Shortcuts to Adiabaticity. In Advances In Atomic, Molecular, and
Optical Physics, 2013 Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 62, pp. 117–169. [CrossRef]

28. Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to
adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [CrossRef]

29. Couvert, A.; Kawalec, T.; Reinaudi, G.; Guéry-Odelin, D. Optimal transport of ultracold atoms in the
non-adiabatic regime. Europhys. Lett. 2008, 83, 13001. [CrossRef]

30. Schmiedl, T.; Dieterich, E.; Dieterich, P.S.; Seifert, U. Optimal protocols for Hamiltonian and Schrödinger
dynamics. J. Stat. Mech. 2009, 2009, P07013. [CrossRef]

31. Masuda, S.; Nakamura, K. Fast-forward of adiabatic dynamics in quantum mechanics. Proc. R. Soc. A
Math. Phys. Eng. Sci. 2010, 466, 1135–1154. [CrossRef]

32. Torrontegui, E.; Ibáñez, S.; Chen, X.; Ruschhaupt, A.; Guéry-Odelin, D.; Muga, J.G. Fast atomic transport
without vibrational heating. Phys. Rev. A 2011, 83, 013415. [CrossRef]

33. Chen, X.; Torrontegui, E.; Stefanatos, D.; Li, J.S.; Muga, J.G. Optimal trajectories for efficient atomic
transport without final excitation. Phys. Rev. A 2011, 84, 043415. [CrossRef]

34. Pandey, S.; Mas, H.; Drougakis, G.; Thekkeppatt, P.; Bolpasi, V.; Vasilakis, G.; Poulios, K.; von Klitzing, W.
Hypersonic Bose–Einstein condensates in accelerator rings. Nature 2019, 570, 205–209. [CrossRef] [PubMed]

35. Tobalina, A.; Palmero, M.; Martínez-Garaot, S.; Muga, J.G. Fast atom transport and launching in a nonrigid
trap. Sci. Rep. 2017, 7, 5753. [CrossRef] [PubMed]

36. Ruschhaupt, A.; Chen, X.; Alonso, D.; Muga, J.G. Optimally robust shortcuts to population inversion in
two-level quantum systems. New J. Phys. 2012, 14, 093040. [CrossRef]

37. Lu, X.J.; Chen, X.; Ruschhaupt, A.; Alonso, D.; Guérin, S.; Muga, J.G. Fast and robust population transfer
in two-level quantum systems with dephasing noise and/or systematic frequency errors. Phys. Rev. A
2013, 88, 033406. [CrossRef]

http://dx.doi.org/10.1038/442151a
http://dx.doi.org/10.1103/PhysRevLett.99.020402
http://dx.doi.org/10.1073/pnas.1204285109
http://dx.doi.org/10.1103/PhysRevA.70.012306
http://dx.doi.org/10.1103/PhysRevA.66.052319
http://dx.doi.org/10.1088/1367-2630/16/12/123052
http://dx.doi.org/10.1088/1367-2630/8/8/159
http://dx.doi.org/10.1103/PhysRevLett.82.1975
http://dx.doi.org/10.1002/prop.200610325
http://dx.doi.org/10.1038/s41467-019-09635-7
http://dx.doi.org/10.1103/PhysRevLett.82.1060
http://dx.doi.org/10.1088/0953-4075/38/9/013
http://dx.doi.org/10.1016/b978-0-12-408090-4.00002-5
http://dx.doi.org/10.1103/RevModPhys.91.045001
http://dx.doi.org/10.1209/0295-5075/83/13001
http://dx.doi.org/10.1088/1742-5468/2009/07/P07013
http://dx.doi.org/10.1098/rspa.2009.0446
http://dx.doi.org/10.1103/PhysRevA.83.013415
http://dx.doi.org/10.1103/PhysRevA.84.043415
http://dx.doi.org/10.1038/s41586-019-1273-5
http://www.ncbi.nlm.nih.gov/pubmed/31168098
http://dx.doi.org/10.1038/s41598-017-05823-x
http://www.ncbi.nlm.nih.gov/pubmed/28720807
http://dx.doi.org/10.1088/1367-2630/14/9/093040
http://dx.doi.org/10.1103/PhysRevA.88.033406


Entropy 2020, 22, 262 16 of 16

38. Daems, D.; Ruschhaupt, A.; Sugny, D.; Guérin, S. Robust quantum control by a single-shot shaped pulse.
Phys. Rev. Lett. 2013, 111, 050404. [CrossRef]

39. Lu, X.J.; Muga, J.G.; Chen, X.; Poschinger, U.G.; Schmidt-Kaler, F.; Ruschhaupt, A. Fast shuttling of a
trapped ion in the presence of noise. Phys. Rev. A 2014, 89, 063414. [CrossRef]

40. Lu, X.J.; Ruschhaupt, A.; Muga, J.G. Fast shuttling of a particle under weak spring-constant noise of the
moving trap. Phys. Rev. A 2018, 97, 053402. [CrossRef]

41. Lewis, H.R.; Riesenfeld, W.B. An exact quantum theory of the time-dependent harmonic oscillator and of a
charged particle in a time-dependent electromagnetic field. J. Math. Phys. 1969, 10, 1458–1473. [CrossRef]

42. Lewis, H.R.; Leach, P.G.L. A direct approach to finding exact invariants for one-dimensional
time-dependent classical Hamiltonians. J. Math. Phys. 1982, 23, 2371–2374. [CrossRef]

43. Dhara, A.K.; Lawande, S.V. Feynman propagator for time-dependent Lagrangians possessing an invariant
quadratic in momentum. J. Phys. A Math. Gen. 1984, 17, 2423–2431. [CrossRef]

44. Li, T.C.; Kelkar, H.; Medellin, D.; Raizen, M.G. Real-time control of the periodicity of a standing wave: An
optical accordion. Opt. Express 2008, 16, 5465. [CrossRef] [PubMed]

45. Williams, R.A.; Pillet, J.D.; Al-Assam, S.; Fletcher, B.; Shotter, M.; Foot, C.J. Dynamic optical lattices:
Two-dimensional rotating and accordion lattices for ultracold atoms. Opt. Express 2008, 16, 16977.
[CrossRef]

46. Al-Assam, S.; Williams, R.A.; Foot, C.J. Ultracold atoms in an optical lattice with dynamically variable
periodicity. Phys. Rev. A 2010, 82, 021604. [CrossRef]

47. Tao, J.; Wang, Y.; He, Y.; Wu, S. Wavelength-limited optical accordion. Opt. Express 2018, 26, 14346.
[CrossRef]

48. Lehle, B.; Peinke, J. Analyzing a stochastic process driven by Ornstein-Uhlenbeck noise. Phys. Rev. E 2018,
97, 012113. [CrossRef]

49. Belmechri, N.; Förster, L.; Alt, W.; Widera, A.; Meschede, D.; Alberti, A. Microwave control of atomic
motional states in a spin-dependent optical lattice. J. Phys. B Atom. Mol. Opt. Phys. 2013, 46, 104006.
[CrossRef]

50. Savard, T.A.; O’Hara, K.M.; Thomas, J.E. Laser-noise-induced heating in far-off resonance optical traps.
Phys. Rev. A 1997, 56, R1095–R1098. [CrossRef]

51. Gehm, M.E.; O’Hara, K.M.; Savard, T.A.; Thomas, J.E. Dynamics of noise-induced heating in atom traps.
Phys. Rev. A 1998, 58, 3914–3921. [CrossRef]

52. Zemánek, P.; Volpe, G.; Jonáš, A.; Brzobohatý, O. Perspective on light-induced transport of particles: From
optical forces to phoretic motion. Adv. Opt. Photonics 2019, 11, 577. [CrossRef]

53. Keil, M.; Amit, O.; Zhou, S.; Groswasser, D.; Japha, Y.; Folman, R. Fifteen years of cold matter on the atom
chip: Promise, realizations, and prospects. J. Mod. Opt. 2016, 63, 1840–1885. [CrossRef] [PubMed]

54. Navez, P.; Pandey, S.; Mas, H.; Poulios, K.; Fernholz, T.; von Klitzing, W. Matter-wave interferometers
using TAAP rings. New J. Phys. 2016, 18, 075014. [CrossRef]

55. Bowler, R.; Gaebler, J.; Lin, Y.; Tan, T.R.; Hanneke, D.; Jost, J.D.; Home, J.P.; Leibfried, D.; Wineland, D.J.
Coherent diabatic Ion transport and separation in a multizone trap array. Phys. Rev. Lett. 2012, 109, 080502.
[CrossRef]

56. Walther, A.; Ziesel, F.; Ruster, T.; Dawkins, S.T.; Ott, K.; Hettrich, M.; Singer, K.; Schmidt-Kaler, F.;
Poschinger, U. Controlling Fast Transport of Cold Trapped Ions. Phys. Rev. Lett. 2012, 109, 080501.
[CrossRef]

57. Kaufmann, P.; Gloger, T.F.; Kaufmann, D.; Johanning, M.; Wunderlich, C. High-fidelity preservation of
quantum information during trapped-ion transport. Phys. Rev. Lett. 2018, 120, 010501. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevLett.111.050404
http://dx.doi.org/10.1103/PhysRevA.89.063414
http://dx.doi.org/10.1103/PhysRevA.97.053402
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1063/1.525329
http://dx.doi.org/10.1088/0305-4470/17/12/014
http://dx.doi.org/10.1364/OE.16.005465
http://www.ncbi.nlm.nih.gov/pubmed/18542649
http://dx.doi.org/10.1364/OE.16.016977
http://dx.doi.org/10.1103/PhysRevA.82.021604
http://dx.doi.org/10.1364/OE.26.014346
http://dx.doi.org/10.1103/PhysRevE.97.012113
http://dx.doi.org/10.1088/0953-4075/46/10/104006
http://dx.doi.org/10.1103/PhysRevA.56.R1095
http://dx.doi.org/10.1103/PhysRevA.58.3914
http://dx.doi.org/10.1364/AOP.11.000577
http://dx.doi.org/10.1080/09500340.2016.1178820
http://www.ncbi.nlm.nih.gov/pubmed/27499585
http://dx.doi.org/10.1088/1367-2630/18/7/075014
http://dx.doi.org/10.1103/PhysRevLett.109.080502
http://dx.doi.org/10.1103/PhysRevLett.109.080501
http://dx.doi.org/10.1103/PhysRevLett.120.010501
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Invariant-Based Inverse Engineering and Noise Sensitivities
	Invariant-Based Inverse Engineering 
	Noise Sensitivity 

	Noise in a Moving Optical Lattice 
	Wavenumber (Accordion) Noise
	Amplitude (Trap Depth) Noise
	Phase (Trap Position) Noise

	Discussion
	References

