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Targeting microRNAs (miRNAs) with drug small molecules
(SMs) is a new treatmentmethod formany human complex dis-
eases. Unsurprisingly, identification of potential miRNA-SM
associations is helpful for pharmaceutical engineering and dis-
ease therapy in the field of medical research. In this paper, we
developed a novel computational model of HeteSim-based
inference for SM-miRNA Association prediction (HSSMMA)
by implementing a path-based measurement method of
HeteSim on a heterogeneous network combined with known
miRNA-SM associations, integrated miRNA similarity, and in-
tegrated SM similarity. Through considering paths from an SM
to a miRNA in the heterogeneous network, the model can
capture the semantics information under each path and predict
potential miRNA-SM associations based on all the considered
paths. We performed global, miRNA-fixed local and SM-fixed
local leave one out cross validation (LOOCV) as well as 5-fold
cross validation based on the dataset of known miRNA-SM
associations to evaluate the prediction performance of our
approach. The results showed that HSSMMA gained the corre-
sponding areas under the receiver operating characteristic
(ROC) curve (AUCs) of 0.9913, 0.9902, 0.7989, and 0.9910 ±
0.0004 based on dataset 1 and AUCs of 0.7401, 0.8466,
0.6149, and 0.7451 ± 0.0054 based on dataset 2, respectively.
In case studies, 2 of the top 10 and 13 of the top 50 predicted
potential miRNA-SM associations were confirmed by pub-
lished literature. We further implemented case studies to test
whether HSSMMA was effective for new SMs without any
known related miRNAs. The results from cross validation
and case studies showed that HSSMMA could be a useful pre-
diction tool for the identification of potential miRNA-SM asso-
ciations.
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INTRODUCTION
Functional studies revealed that RNAs, once thought to be simple
messengers from DNA to protein, have important roles in many
cellular processes.1 They were found to regulate transcription, trans-
lation, RNA modification, mRNA stability, chromatin structure, and
signaling pathways by interacting with various biological molecules.2

Most of these processes are related to a variety of human diseases,
including cancers and neurodegenerative and neuromuscular dis-
eases.3,4 These discoveries have validated the potential of RNAs as
therapeutic targets.5 Therefore, scientists have been excited about
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the prospect of the new class of drug targets, and they have developed
novel tools to study the drug ability of RNAs.

For decades, small molecules (SMs) have been studied for their modu-
latory function by therapeutic targeting of proteins.6 While there are
many examples of protein-targeted drug design, similar research for
RNA targeting wasn’t uncovered until the late 1980s.7 Several classes
of antibacterial drugs were found to be able to bind to bacterial rRNA
to exert their function.8 To date, SMs have been found to target
mammalian RNAs through various mechanisms. These RNAs are
from various regions of the genome. They can be categorized into
five general classes based on structure: RNA splicing, microRNAs
(miRNAs), RNA repeat elements, G-quadruplex structures, and ribo-
somal synthesis.9

miRNAs are short 20- to 25-nt non-coding RNA (ncRNA) tran-
scripts.10 They have important post-transcriptional cellular func-
tions by binding to their target mRNA, resulting in mRNA decay
or inhibition of translation.11 Many miRNAs are correlated with a
variety of human diseases, including diabetes; obesity; cancers; and
neurodegenerative, autoimmune, and cardiovascular diseases.12

Therefore, they are becoming potential SM drug targets.13 SMs
that can bind to the Drosha- or Dicer-processing site target down-
stream miRNA to prevent the processing of mature miRNA forma-
tion or regulate function of miRNA. Several laboratories have re-
ported SM inhibitors of Drosha- or Dicer-miRNA interactions.
Disney et al.14 found that the molecule Targaprimir-96 could selec-
tively target pri-miRNA 96 and, subsequently, inhibit Drosha pro-
cessing in triple-negative breast cancer (TNBC). In a separate report,
they found that ligand Targapremir-210 targeted pre-miRNA-210
and inhibited Dicer processing under hypoxic conditions.15 Another
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search yielded a ligand bis-benzimidazole to target miRNA-544; by
targeting a functional miRNA-processing site, it achieved successful
miRNA-544 inhibition.16

To identify SM-RNA associations, several high-throughput-screening
approaches have been developed. They are based on mass spectrom-
etry, fluorescence, or reporter.17–20 Currently, reporter-based assays
are most commonly used in the identification of miRNA-targeted
SM inhibitors.12 The principle of this method is that the luciferase ac-
tivity can be suppressed when miRNA binds to the 30 UTR sequence
of its target luciferase gene. If SM can target miRNA and decrease the
binding, the luciferase readout of the labeled mRNA will increase.12

However, this assay could not provide information about specific
miRNA-gene interaction or direct miRNA engagement that the SM
may inhibit.

On the other hand, several informatics-based high-throughput-
screening methods that measure direct miRNA binding have been
developed to aid miRNA-targeted drug discovery. For example,
through two-dimensional combinatorial screening (2DCS)21 and sta-
tistical method analyzing structure-activity relationships based on
sequence (StARTS),22 Disney et al.14 constructed the RNA motif-
SM database named Inforna. These approaches have aided in the dis-
covery of miRNA-SM association, though the further mechanisms of
association were revealed during follow-up biological experiments
rather than during the screening. Recently, Lorenz and Garner23 re-
ported a novel high-throughput-screening approach that may
compensate for these drawbacks. This approach can detect direct in-
hibitors of miRNA cleavage, and it may thus be promising for discov-
ering SMs that target specific pre-miRNA.

The research of miRNA-SM associations has significantly advanced
over the past few years. Continued development of both fundamental
mechanisms and biological approaches has further benefited the dis-
covery of miRNA-targeted SM ligands. However, the identification
and validation of miRNA-SM associations by biological experiment
are still always time consuming and costly. It is urgent for the scien-
tists to elucidate how to select the best-suited miRNAs for targeting by
more efficient and accurate methods. Developing computational pre-
diction models for miRNA-SM associations is a promising strategy.
The efficient and reliable prediction models can lead to the efficient
design of miRNA-targeted ligands. Predicting miRNA-SM associa-
tion will also be crucial for the selectivity of SM targeting miRNA
and establishing guidelines for SM targeting miRNA research. This
work would significantly aid in our understanding of the relationships
between SMs andmiRNAs. Also, on the basis of the association infor-
mation between miRNAs and SMs, we could further predict synergis-
tic drug combinations.24 Therefore, there is an urgent need to develop
new computational approaches or models to speed up the studies of
this field.

In recent years, a number of studies based on computational models
have been developed on the identification of potential miRNA-SM as-
sociations, which may be helpful to a new direction of miRNA-tar-
geted therapies.12,25–27 Wang et al.28 introduced a new method to
predict potential miRNA-SM associations through calculating a func-
tional similarity score of each miRNA-SM pair. In the model, they
identified differentially expressed genes for drug treatment and
miRNA perturbation, and then they calculated the functional similar-
ity of each miRNA-SM pair by using gene ontology (GO) enrichment
analysis on their differentially expressed genes. Meng et al.29 pro-
posed a computational approach to identify the potential associations
between SMs and Alzheimer’s disease (AD)-related miRNAs based
on the differentially expressed target genes that were regulated by
the aberrantly expressed AD-related miRNAs. Differentially ex-
pressed target genes used in the model were divided into two groups
based on whether they were overexpressed or under-expressed, and
Kolmogorov-Smirnov (KS) values for the overexpressed and under-
expressed target genes were calculated respectively to obtain final
scores for the potential associations between SMs and AD-related
miRNAs by integrating the two KS values. Besides, Jiang et al.30

have done the similar work for the identification of potential
miRNA-SM associations in 23 different cancers through implement-
ing a KS test based on the differential expression of miRNA target
genes and transcriptional responses following drug treatment. They
also constructed the SM-miRNA network for each cancer to analyze
the property of each association, which could be helpful to the iden-
tification of drug candidates for cancer therapy.

Lv et al.31 developed a network-based computational method to pre-
dict the potential associations between miRNAs and SMs by imple-
menting randomwalk with restart algorithm (RWR) on the integrated
network that is composed of known miRNA-SM associations and
SM-SM and miRNA-miRNA similarity. In addition, Li et al.32 also
proposed a network-based framework named predictive SM-miRNA
Network-Based Inference (SMiR-NBI), which established a network
by connecting drugs, miRNAs, and genes and implemented a
network-based inference (NBI) framework on the network to priori-
tize miRNAs for SMs. Recently, Qu et al.33 put forward a calculation
approach of Triple Layer Heterogeneous Network based SM-miRNA
Association prediction (TLHNSMMA), in which they collected
heterogeneous data about SMs, miRNAs, and diseases and treated
disease information as a bridge to build a three-layer mixing network.
On this basis, two iterative updating processes that spread information
of heterogeneous data were generated to infer novel miRNA-SM asso-
ciations and miRNA-disease associations simultaneously.

In this paper, drawing on previous research on the development of
computational models on the miRNA-disease association predic-
tion,34–38 we introduced a novel computational model of HeteSim-
based inference for SM-miRNA Association prediction (HSSMMA)
to calculate the relevance between miRNAs and SMs by implement-
ing a path-based measurement method of HeteSim in a heteroge-
neous network that was constructed based on integrated miRNA sim-
ilarity, integrated SM similarity, and experimentally confirmed
miRNA-SM associations. The HeteSim is a path-constrained mea-
surement method to calculate the relatedness of objects with the
same or different types in a heterogeneous network based on the
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search path that connect two objects by a sequence of node types.39 In
addition, the dataset of experimentally confirmed miRNA-SM associ-
ations used in this model was downloaded from the database of
SM2miR.40 According to the known miRNA-SM associations, we
constructed two types of datasets (dataset 1 and dataset 2), and we im-
plemented HSSMMA on them for the identification of potential
miRNA-SM associations, respectively. In dataset 1, only a part of
SMs and miRNAs are involved in the known miRNA-SM associa-
tions. In dataset 2, all SMs and miRNAs are involved in the known
miRNA-SM associations.

To test the prediction performance of HSSMMA, we employed global,
miRNA-fixed local and SM-fixed local leave one out cross validation
(LOOCV) as well as 5-fold cross validation on the two datasets,
respectively. The results showed that the area under the receiver oper-
ating characteristic (ROC) curve (AUC) of global LOOCVwas 0.9913
and 0.7401 based on dataset 1 and dataset 2, respectively. Through
fixing each miRNA to predict miRNA-associated SMs, the AUC of
local LOOCV was, respectively, 0.9902 and 0.8466 for the dataset 1
and dataset 2. Through fixing each SM to predict SM-associated
miRNAs, the AUC of local LOOCV was, respectively, 0.7989 and
0.6149 for the dataset 1 and dataset 2. For 5-fold cross validation,
the average AUC and corresponding SD was 0.9910 ± 0.0004 and
0.7451 ± 0.0054 for the dataset 1 and dataset 2, respectively. In case
studies, the results showed that 2 of the top 10 and 13 of the top 50
predicted miRNA-SM associations were confirmed by published ref-
erences. We further implemented our model to the SMs without any
known associated miRNAs. The known related miRNAs for the
investigated SM would be removed from the training dataset and
5-fluorouracil, 17b-estradiol, and 5-aza-20-deoxycytidine were taken
as the investigated SMs, respectively. We found that 27, 24, and 26
of the top 50 predicted miRNAs for 5-fluorouracil (5-FU), 17b-estra-
diol (E2), and 5-aza-20-deoxycytidine (5-Aza-CdR) were confirmed
by SM2miR database and published literature reports, respectively.

RESULTS
Performance Evaluation

For evaluating the prediction performance of HSSMMA, global,
miRNA-fixed local, and SM-fixed local LOOCV as well as 5-fold cross
validation were implemented based on the dataset of known miRNA-
SM associations. We further compared the performance of HSSMMA
with one previous classical computational model of SMiR-NBI based
on dataset 1 and dataset 2, respectively. In LOOCV, we regarded each
known miRNA-SM pair as a test sample in turn; the remaining
known associations between miRNAs and SMs were considered as
training samples. The miRNA-SM pairs without known associations
were used as candidate samples. We would obtain the prediction
scores of each miRNA-SM pair after HSSMMA was implemented.
In the global LOOCV evaluation, we would compare the score of
the test sample with the scores of all the candidate samples. In the
miRNA-fixed local LOOCV, we would sort the score of the test sam-
ple with the scores of candidate samples that were made up of the
pairs between SMs and fixed miRNAs. Meanwhile, in the SM-fixed
local LOOCV, we would sort the score of the test sample with the
276 Molecular Therapy: Nucleic Acids Vol. 14 March 2019
scores of candidate samples that were made up of the all pairs between
miRNAs and fixed SMs.

In 5-fold cross validation, we would randomly divide the known
miRNA-SM associations into five equal parts; one part was selected
as the test sample in turn and the rest (four parts) were regarded as
training samples. In the same way, the miRNA-SM pairs without
any known associations would be considered as candidate samples
and the score of each test sample would be ranked with all candidate
samples, respectively. Because of the random partition of the original
samples in 5-fold cross validation, the corresponding validation results
would be different in each random process. Therefore, we repeated the
process of 5-fold cross validation 100 times in this study, and we took
the average of the 100 cross validation results to evaluate the model.

At last, we plotted the ROC curve using true positive rate (TPR, sensi-
tivity) against the false positive rate (FPR, 1-specificity) at different
thresholds. Sensitivity denotes the percentage of test samples that
were identified with higher ranks than the given threshold. Specificity
refers to the percentage of negative miRNA-SM pairs with lower ranks
than the threshold. After that, we calculated AUC as an evaluation in-
dex for the prediction performance ofHSSMMA. If the value of AUC is
0.5, the prediction performance of theHSSMMAis random; if the value
of AUC is 1, the prediction performance of HSSMMA is perfect. In the
global LOOCV, the results showed that HSSMMA and SMiR-NBI
obtained AUCs of 0.9913 and 0.8843 based on dataset 1, respectively,
and AUCs of 0.7401 and 0.7264 based on dataset 2, respectively (see
Figure 1). In the framework of miRNA-fixed local LOOCV, HSSMMA
and SMiR-NBI obtained AUCs of 0.9902 and 0.8837, respectively,
based on dataset 1 and AUCs of 0.8466 and 0.7846, respectively, based
ondataset 2 (see Figure 2). In the framework of SM-fixed local LOOCV,
HSSMMA and SMiR-NBI obtained AUCs of 0.7989 and 0.7497,
respectively, based ondataset 1 andAUCsof 0.6149 and 0.6100, respec-
tively, based on dataset 2 (see Figure 3). In 5-fold cross validation,
HSSMMA and SMiR-NBI obtained AUCs of 0.9910 ± 0.0004 and
0.8554 ± 0.0063, respectively, based on dataset 1 and AUCs of
0.7451 ± 0.0054 and 0.7104 ± 0.0087, respectively, based on dataset
2. Comparisons between evaluation results of HSSMMA and SMiR-
NBI demonstrate that HSSMMA is reliable and effective for the identi-
fication of potential miRNA-SM associations.

Case Studies

We carried out a case study based on the dataset 1 to evaluate
the effectiveness of the HSSMMA. After the implementation of
HSSMMA, we observed the number of the verified miRNA-SM asso-
ciations in the top 10, top 20, and top 50 prediction list. As the results
showed, among the top 10, 20, and 50 potential SM-miRNA associa-
tions, there were 2, 4, and 13 associations confirmed by experiments,
respectively (see Table 1). It is worth noting that the SM was pre-
sented using PubChem compound identifier (PubChem-CID) in
the dataset of known miRNA-SM associations.

For instance, in the top 10 predicted miRNA-SM associations, the
predicted association between mir-203a and 5-Aza-CdR is ranked



Figure 1. Performance Comparison between HSSMMA and SMiR-NBI in Terms of ROC Curves and AUCs Based on Global LOOCV

HSSMMA obtained AUCs of 0.9913 and 0.7401 based on dataset 1 and dataset 2, respectively.

www.moleculartherapy.org
first. Recent study revealed that treatment of esophageal squamous
cell carcinoma (ESCC) cells with 5-Aza-CdR resulted in increased
miR-203a expression.41 The seventh predicted association is be-
tween let-7d and 5-Aza-CdR. Zhang et al.42 found that let-7d could
inhibit dopamine D3 receptor (DRD3) expression in immortalized
renal proximal tubule (RPT) cells via methylation. This inhibition
could be abolished by 5-Aza-CdR. In the top 20 predicted
miRNA-SM associations, we also revealed the potential association
between miR-128-1 and 5-Aza-CdR ranked 15th. Shan et al.43 found
that miR128-1 is downregulated and closely associated with glio-
blastoma multiforme (GBM). Treatment with the 5-Aza-CdR
resulted in miR128-1 upregulation in GBM cells, and it inhibited
tumor cell proliferation, suggesting that 5-Aza-CdR may potentially
treat GBM by upregulating miR-128-1.43 Besides, the 20th predicted
association between let-7a-3 and 5-Aza-CdR was verified. Zhu
et al.44 found that treatment with 5-Aza-CdR could decrease the
methylation density of let-7a-3 promoter and increase the level of
let-7a-3 expression in acute myeloid leukemia (AML) cells. We
further used HSSMMA to predict candidate miRNAs for all SMs
in dataset 1, and the corresponding probability scores are provided
(see Table S1).

To validate the prediction effectiveness for new SMs without any
known related miRNAs, we carried out another case study based on
dataset 1 by removing all associations between miRNAs and the
investigated SM and implementing HSSMMA based on the rest of
the known miRNA-SM associations. Then all predicted miRNAs
for the investigated SM would be ranked according to their predicted
scores, and the top 50 potential associations betweenmiRNAs and the
investigated SM would be confirmed by the SM2miR database and
published references. Here, 5-FU, E2, and 5-Aza-CdR were taken as
the investigated SMs, respectively.
5-FU

The agent 5-FU is a widely used chemotherapeutic drug in can-
cers.45 It induces cytotoxic effects by altering DNA and RNA meta-
bolism and mRNA expression.46–48 Exposure to 5-FU promotes
transcriptional reprogramming, leading to the alteration of mRNA
or miRNA expression profiles that results in a change of cell
fate.49–51 After implementing HSSMMA, we got the total ranking
of potential miRNAs associated with 5-FU. As the results show,
among the top 10 potential 5-FU-related miRNAs, there are 7
confirmed miRNAs, among which 6 miRNAs were confirmed by
the known SM-miRNA association dataset constructed in the liter-
ature31 and 1 miRNA was confirmed by experimental report from
the literature.52 Among the top 50 potential 5-FU-related miRNAs,
there are 27 confirmed miRNAs, among which 19 miRNAs were
confirmed by the known SM-miRNA association dataset con-
structed in the literature31 and 8 miRNAs were confirmed by exper-
imental report from the literature (see Table 2).

For instance, Huang et al.52 found that knockdown of astrocyte-
elevated gene-1 (AEG-1) in colorectal cancer (CRC) cells can improve
the expression of miR-181a-2 and increase the sensitivity of CRC cells
to 5-FU, suggesting a potential mechanism to improve the efficiency
of 5-FU by miR-181a-2. The association between let-7b and 5-FU was
confirmed by Wang et al.53 They found that let-7b can decrease the
expression of B cell lymphoma-extra large (Bcl-xL) and sensitize
breast cancer cells to 5-FU.53 Through functional assays, Han
et al.54 revealed that restoration of miR-874 could inhibit the prolif-
eration of the CRC cells and decrease the 5-FU resistance of the
CRC cells. In TNBC, the expression level of miR-205 was significantly
elevated in MDA-MB-453 LAR-type TNBC tumor cells treated with
5-FU together with ixabepilone, suggesting the drugs may exert ef-
fects through the regulation of miR-205.55
Molecular Therapy: Nucleic Acids Vol. 14 March 2019 277
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Figure 2. Performance Comparison between HSSMMA and SMiR-NBI in Terms of ROC Curves and AUCs Based on Local LOOCV by Fixing miRNAs to

Rank SMs

HSSMMA obtained AUCs of 0.9902 and 0.8466 based on dataset 1 and dataset 2, respectively.

Molecular Therapy: Nucleic Acids
E2

The small molecular E2 is a type of human estrogen that exerts
important effects on the reproductive and other related biological
processes in both men and women.56 It has significant anticancer
activity against human breast cancer.57 After implementing
HSSMMA, we got the total ranking of miRNAs for E2. In the top
10 miRNAs, 5 miRNAs were confirmed by the database of
SM2miR31 and 1 miRNA was confirmed by previous literature.58

Moreover, 14 of the top 50 miRNAs were verified by SM2miR
and 10 were confirmed by experimental literature (see Table 3).
For example, Aqil et al.58 confirmed that the overexpression of
miR-375 following E2 treatment could be significantly protected
by jamun diet. Li et al.59 demonstrated that miR-22 could effectively
reverse E2-induced cell proliferation and invasion of tumor cells in
endometrial endometrioid carcinomas (EECs) by inhibiting Cyclin
D1 expression and the secretion of matrix metalloproteinase
(MMP)-2 and MMP-9. Zhang et al.60 reported that miR-320a
expression is significantly downregulated in cumulus granulosa cells
(CCs) from polycystic ovary syndrome (PCOS) patients and this
downregulation promotes E2 deficiency in CCs. Treatment of E2-
sensitive MCF7 breast cancer cells with fulvestrant resulted in
increased expression of endogenous miR-221.61

5-Aza-CdR

The ligand 5-Aza-CdR is an inhibitor of DNA methyltransferase
(DNMT). It can reverse methylation and reactivate the expression
of silenced genes.62 5-Aza-CdR was able to suppress the growth of
various tumors.63–65 We performed HSSMMA on 5-Aza-CdR and
got the total ranking of all 5-Aza-CdR-associated miRNAs. The re-
sults showed that 5 of the first 10 miRNAs were confirmed by the
database of SM2miR31 and 1 was confirmed by previous literature.41
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Furthermore, 17 of the top 50 miRNAs were verified by SM2miR and
9 were confirmed by experiments (see Table 4). For instance, Xu
et al.66 found that the expression level of let-7b was significantly
reduced in acute lymphoblastic leukemia (ALL) patients. The
5-Aza-CdR could increase the expression of let-7b and inhibit the
growth of ALL cells.66 Through bisulfite pyrosequencing of bladder
cancer (BCa) cell lines treated with 5-Aza-CdR and 4-phenylbutyric
acid (PBA), Shimizu et al.67 identified upregulated miRNAs by
5-aza-dC plus PBA. Among them, miR-124-2 and miR-124-3 were
frequently and tumor-specifically methylated in primary cancers.67

In breast cancer, Manavalan et al.68 found that 5-Aza-CdR in combi-
nation with histone deacetylase inhibitor trichostatin A (TSA) could
increase miR-200c in LY2 cells. In GBM, Ghasemi et al.69 revealed
that treatment of U87MG cells with 5-Aza-CdR can reverse the hy-
permethylation status of miR-149 and increase its expression, thus
decreasing target mRNA and protein levels.

DISCUSSION
miRNAs as a new potential therapeutic target have attracted wide
attention.70 Moreover, large quantities of studies have certified that
SMs could modulate the expression of miRNAs and, thus, have po-
tential for treating diseases.28 Not surprisingly, the identification of
potential miRNA-SM associations has important sense for disease
therapy and drug clinical applications. In this study, we introduced
a computational model of HSSMMA to predict potential miRNA-
SM associations by implementing a path-constrained measurement
method of HeteSim on a heterogeneous network that was established
with known miRNA-SM associations, miRNA-miRNA similarity,
and SM-SM similarity. The results of cross validation and case studies
showed that the model could effectively predict potential miRNA-SM
associations.



Figure 3. Performance Comparison between HSSMMA and SMiR-NBI in Terms of ROC Curves and AUCs Based on Local LOOCV by Fixing SMs to Rank

miRNAs

HSSMMA obtained AUCs of 0.7989 and 0.6149 based on dataset 1 and dataset 2, respectively.
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The effectiveness of HSSMMA is probably traceable in part to the
following several factors. First, the dataset of known miRNA-SM as-
sociations used in this paper was collected from a highly reliable
SM2miR database. Several other reliable datasets were also used in
the model, such as SM side effect similarity, SM chemical structure
similarity, gene functional consistency-based similarity for SMs and
miRNAs, and disease phenotype-based similarity for miRNAs and
SMs, which can greatly increase algorithm efficiency. Second,
HSSMMA is a path-based relevance measure, which can effectively
capture the subtle semantics information of search paths. Therefore,
through selecting search paths from an SM to a miRNA in the estab-
lished heterogeneous network, HSSMMA can be a useful prediction
tool for prioritizing potential miRNA-SM associations. More impor-
tantly, compared with some machine-learning-based models that
randomly select negative samples as training data, HSSMMA only re-
quires positive samples as training data. The random selection of
negative samples in machine-learning-based models would affect
their prediction accuracy. Consequently, the prediction accuracy of
the HSSMMA model is more convincing than that of the prediction
models with negative samples as training data.

However, there are also some weaknesses in our proposed model: the
664 experimentally confirmed miRNA-SM associations used in this
paper are far from enough. More known miRNA-SM associations
need to be verified by experiment, which would contribute to the
improvement of prediction accuracy for the model. Furthermore,
the function for the combination of several different HeteSim scores
based on search paths in our approach is relatively simple, and it could
be reconstructed based on advanced machine-learning methods.
Compared with previous models, HSSMMA significantly improved
prediction ability for the identification of potential miRNA-SM asso-
ciations. However, the prediction accuracy of HSSMMA is still not
satisfactory. These factors all motivate researchers to develop more
effective computational models to predict potential miRNA-SM asso-
ciations based on the reliable biological datasets.

MATERIALS AND METHODS
SM-miRNA Associations

The dataset of 664 experimentally verified miRNA-SM associations
used in this study was downloaded from the SM2miR database.40 Da-
taset 1 includes 541 miRNAs, 831 SMs, and 664 known miRNA-SM
associations, of which only a portion of miRNAs and SMs participate
in the known miRNA-SM associations. Dataset 2 includes 39 SMs,
286 miRNAs, and 664 known miRNA-SM associations, where all
SMs and miRNAs participate in the known associations. All the
known SM-miRNA associations are listed in Table S2. More impor-
tantly, we constructed an adjacency matrix A to indicate the known
miRNA-SM associations. If SM i is associated with miRNA j, the en-
tity A(i,j) is 1, otherwise 0. We further used ns and nm to indicate the
number of SMs and miRNAs in the dataset.

Integrated SM Similarity

Lv et al.31 calculated an SM similarity score based on SM side effect
similarity SsS,

71 gene functional consistency-based similarity for SMs
STS ,

72 SM chemical structure similarity SCS ,
73 and disease phenotype-

based similarity for SMs SsS.
71 Here, SM side effect similarity was

computed by using the Jaccard score71 based on the dataset of SM
drug side effects that was collected from SIDe Effect Resource
(SIDER).74 Gene functional consistency-based similarity for SMs
was reflected by employing the Gene Set Functional Similarity
(GSFS) method72 on the dataset of target genes of the SMs obtained
from DrugBank75 and Therapeutic Targets Database (TTD).76
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Table 1. Prediction of the Top 50 Potential miRNA-Related SMs Based on Dataset 1

SM miRNA Evidence SM miRNA Evidence

CID 451668 hsa-mir-203a 26577858 CID 9444 hsa-mir-21 unconfirmed

CID 451668 hsa-mir-23a unconfirmed CID 451668 hsa-let-7b 26708866

CID 451668 hsa-mir-15b unconfirmed CID 451668 hsa-let-7e 22053057

CID 451668 hsa-let-7a-1 unconfirmed CID 451668 hsa-mir-199a-1 unconfirmed

CID 60750 hsa-mir-23a unconfirmed CID 451668 hsa-mir-152 unconfirmed

CID 9444 hsa-mir-106b unconfirmed CID 3385 hsa-mir-181a-1 unconfirmed

CID 451668 hsa-let-7d 26802971 CID 451668 hsa-mir-146a 24885368

CID 451668 hsa-mir-132 unconfirmed CID 3385 hsa-let-7b 25789066

CID 9444 hsa-mir-93 unconfirmed CID 36462 hsa-let-7f-1 unconfirmed

CID 9444 hsa-mir-16-1 unconfirmed CID 5288826 hsa-mir-17 unconfirmed

CID 451668 hsa-mir-128-2 unconfirmed CID 9444 hsa-let-7f-1 unconfirmed

CID 9444 hsa-mir-16-2 unconfirmed CID 3229 hsa-let-7g unconfirmed

CID 451668 hsa-mir-18a unconfirmed CID 60750 hsa-mir-17 23001407

CID 9444 hsa-mir-210 unconfirmed CID 3229 hsa-let-7e unconfirmed

CID 451668 hsa-mir-128-1 27705931 CID 9444 hsa-mir-191 unconfirmed

CID 9444 hsa-mir-15a unconfirmed CID 60750 hsa-mir-24-2 25841339

CID 451668 hsa-let-7a-2 unconfirmed CID 451668 hsa-mir-30e unconfirmed

CID 451668 hsa-mir-199a-2 unconfirmed CID 451668 hsa-mir-26b unconfirmed

CID 451668 hsa-mir-92a-1 unconfirmed CID 3385 hsa-mir-26a-1 unconfirmed

CID 451668 hsa-let-7a-3 26227220 CID 3385 hsa-mir-155 28347920

CID 9444 hsa-mir-25 unconfirmed CID 451668 hsa-mir-342 unconfirmed

CID 451668 hsa-mir-106a unconfirmed CID 5288826 hsa-let-7f-1 unconfirmed

CID 3229 hsa-mir-24-1 unconfirmed CID 9444 hsa-mir-23b unconfirmed

CID 451668 hsa-mir-26a-1 unconfirmed CID 451668 hsa-mir-200b 23626803

CID 3385 hsa-mir-126 26062749 CID 36462 hsa-mir-23b unconfirmed

The SMwas presented using the PubChemcompound identifier (CID) in the dataset of knownmiRNA-SMassociations. The first two columns record the top 1–25miRNA-SMassociations.
The fourth and fifth columns record the top 26–50 miRNA-SM associations. The evidence for the associations was recent experimental literature with the corresponding PubMed ID.
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Moreover, SM chemical structure similarity was gained by enforcing a
graph-based method of SIMilar COMPound (SIMCOMP),73 in light
of the dataset of SM chemical structure extracted from the drug and
compound sections of the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) ligand database.77 At last, based on the dataset of
SM-related diseases downloaded from DrugBank and TTD, disease
phenotype-based similarity for SMs was defined by employing Jac-
card score.

To balance the four types of SM similarity and reduce the deviation of
each similarity, the integrated SMsimilarity SS can be defined as follows:

SS =
�
b1S

D
S + b2S

T
S + b3S

C
S +b4S

s
S

�,X
j

bjðj= 1; 2; 3; 4Þ ;

(Equation 1)

where the default value bj = 1 means that the separated similarities
have the same weight. In this paper, we have released the inte-
grated similarity of all 831 SMs that were used in dataset 1 (see
Table S3).
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Integrated miRNA Similarity

In the same way, Lv et al.31 also calculated miRNA similarity by a
weighed combination of gene functional consistency-based similarity
for miRNAs STMand disease phenotype-based similarity for miRNAs
SDM .

71,72 On the basis of the target genes of each miRNA from
TargetScan,78 gene functional consistency-based similarity formiRNAs
could be gained through carrying out the GSFS method72 to compute
functional consistency of their miRNA target gene sets;72 disease
phenotype-based similarity for miRNAs was calculated by using Jac-
card score according to the dataset of miRNA-related diseases extracted
from Human MicroRNA Disease Database (HMDD) version (v.)2.079

database andmiR2Disease80 and PhenomiR81 databases. At last, the in-
tegrated miRNA similarity SM can be defined as follows:

SM =
�
a1S

D
M +a2S

T
M

�,X
i

aiði= 1; 2Þ; (Equation 2)

where the default value ai = 1means the separated similarities possess
the same weight. Likewise, we have released the integrated similarity
of all 541 miRNAs that were used in dataset 1 (see Table S4).



Table 2. Top 50 miRNAs Associated with 5-Fluorouracil Were Predicted by HSSMMA Based on Dataset 1

SM miRNA Evidence SM miRNA Evidence

CID 3385 hsa-mir-324 unconfirmed CID 3385 hsa-mir-155 28347920

CID 3385 hsa-mir-24-1 26198104 CID 3385 hsa-mir-320a 26198104

CID 3385 hsa-mir-23a 26198104 CID 3385 hsa-mir-126 26062749

CID 3385 hsa-mir-24-2 26198104 CID 3385 hsa-mir-1226 26198104

CID 3385 hsa-mir-500a unconfirmed CID 3385 hsa-mir-409 unconfirmed

CID 3385 hsa-mir-501 26198104 CID 3385 hsa-mir-197 26198104

CID 3385 hsa-mir-181a-1 unconfirmed CID 3385 hsa-mir-27b 26198104

CID 3385 hsa-mir-21 26198104 CID 3385 hsa-mir-345 unconfirmed

CID 3385 hsa-mir-27a 26198104 CID 3385 hsa-mir-132 26198104

CID 3385 hsa-mir-181a-2 24462870 CID 3385 hsa-let-7d 26198104

CID 3385 hsa-let-7b 25789066 CID 3385 hsa-mir-199a-2 26198104

CID 3385 hsa-mir-874 27221209 CID 3385 hsa-mir-128-2 26198104

CID 3385 hsa-mir-16-1 26198104 CID 3385 hsa-mir-299 unconfirmed

CID 3385 hsa-let-7a-1 26198104 CID 3385 hsa-mir-205 24396484

CID 3385 hsa-mir-650 unconfirmed CID 3385 hsa-mir-373 –

CID 3385 hsa-mir-125b-1 unconfirmed CID 3385 hsa-mir-128-1 26198104

CID 3385 hsa-mir-26a-1 unconfirmed CID 3385 hsa-mir-342 26198104

CID 3385 hsa-mir-125b-2 unconfirmed CID 3385 hsa-mir-194-1 unconfirmed

CID 3385 hsa-mir-124-1 unconfirmed CID 3385 hsa-let-7c 25951903

CID 3385 hsa-mir-181b-1 unconfirmed CID 3385 hsa-mir-149 26198104

CID 3385 hsa-mir-328 unconfirmed CID 3385 hsa-mir-186 unconfirmed

CID 3385 hsa-mir-124-2 unconfirmed CID 3385 hsa-mir-154 unconfirmed

CID 3385 hsa-mir-124-3 unconfirmed CID 3385 hsa-mir-204 27095441

CID 3385 hsa-mir-346 unconfirmed CID 3385 hsa-mir-337 unconfirmed

CID 3385 hsa-mir-181b-2 unconfirmed CID 3385 hsa-mir-1-2 28347920

The top 1–25 miRNAs are shown in the second column while the top 26–50 are in the fifth column. As a result, 7 and 27 of the top 10 and top 50 were confirmed by the known
experimental literature, respectively.
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HSSMMA

In this study, motivated by previous research introduced by Zheng
et al.,82 we combined integrated SM similarity, integrated miRNA
similarity, and known miRNA-SM associations into a heteroge-
neous network (see Figure 4 step 1), and we proposed a computa-
tional method of HSSMMA to infer potential associations between
miRNAs and SMs by implementing HeteSim on an established het-
erogeneous network. Here, HeteSim is a path-based measurement
method that evaluates the relatedness of object pairs depending
on the considered search paths that connect two objects through
a sequence of node types.39 Unlike homogeneous networks, the
paths in heterogeneous networks possess semantics. Consequently,
on the basis of a basic idea that similar objects are relevant to
similar objects, Kong and colleagues39 designed the uniform and
symmetric measure of HeteSim for arbitrary paths to compute the
associations of heterogeneous objects. For a given path (symmetric
or asymmetric), the measure can calculate the association score of
each heterogeneous object pair. Moreover, HeteSim has been imple-
mented in the identification of lncRNA-protein interactions,82 dis-
ease-gene associations,83 and lncRNA-protein associations,84 which
demonstrated the high precision and good performance of HeteSim.
Therefore, we carried out HeteSim measurement to infer potential
miRNA-SM associations.

SM and miRNA are two types of objects in the miRNA-SM heteroge-
neous network. SM/

R
miRNA indicates a relationship from type SM

to typemiRNA and the length l of the path is 1, where SM andmiRNA
represent the source type and target type of relationship R, respec-
tively. A is an adjacent matrix between SM and miRNA, and the
row-normalized matrix of A can be defined as follows:

Tsmði; jÞ= Aði; jÞPnm
k= 1Aði; kÞ

; (Equation 3)

where Tsm can be regarded as the transition probability matrix from
SM tomiRNA. In the sameway, Tss and Tmm can be calculated to indi-
cate the transition probability matrix from SM to SM and miRNA to
miRNA by obtaining the row-normalized matrix of integrated SM
similarity SS and integrated miRNA similarity SM , respectively.
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Table 3. Top 50 miRNAs Associated with 17b-Estradiol Were Predicted by HSSMMA Based on Dataset 1

SM miRNA Evidence SM miRNA Evidence

CID 5757 hsa-mir-375 27030099 CID 5757 hsa-mir-146b 29331043

CID 5757 hsa-mir-324 unconfirmed CID 5757 hsa-mir-17 26198104

CID 5757 hsa-mir-23a 26198104 CID 5757 hsa-mir-125b-1 unconfirmed

CID 5757 hsa-mir-21 26198104 CID 5757 hsa-mir-345 unconfirmed

CID 5757 hsa-mir-194-1 unconfirmed CID 5757 hsa-mir-125b-2 unconfirmed

CID 5757 hsa-mir-24-1 unconfirmed CID 5757 hsa-mir-195 unconfirmed

CID 5757 hsa-mir-124-1 26198104 CID 5757 hsa-mir-203a 26198104

CID 5757 hsa-mir-181a-1 unconfirmed CID 5757 hsa-mir-34a 24050776

CID 5757 hsa-mir-124-2 26198104 CID 5757 hsa-mir-20a 21914226

CID 5757 hsa-mir-124-3 26198104 CID 5757 hsa-mir-335 unconfirmed

CID 5757 hsa-mir-346 unconfirmed CID 5757 hsa-mir-196a-1 unconfirmed

CID 5757 hsa-mir-22 24715036 CID 5757 hsa-mir-663a 26198104

CID 5757 hsa-mir-194-2 unconfirmed CID 5757 hsa-mir-130b unconfirmed

CID 5757 hsa-mir-16-1 unconfirmed CID 5757 hsa-mir-92a-1 unconfirmed

CID 5757 hsa-mir-27b 26198104 CID 5757 hsa-mir-370 unconfirmed

CID 5757 hsa-mir-27a 26198104 CID 5757 hsa-mir-373 unconfirmed

CID 5757 hsa-mir-320a 27965096 CID 5757 hsa-mir-25 unconfirmed

CID 5757 hsa-mir-26a-1 unconfirmed CID 5757 hsa-mir-106b 28422740

CID 5757 hsa-mir-15b 26198104 CID 5757 hsa-mir-152 unconfirmed

CID 5757 hsa-mir-221 21057537 CID 5757 hsa-mir-15a unconfirmed

CID 5757 hsa-mir-126 26198104 CID 5757 hsa-mir-18a 24245576

CID 5757 hsa-mir-16-2 – CID 5757 hsa-mir-150 –

CID 5757 hsa-mir-29a 22334722 CID 5757 hsa-mir-9-1 26198104

CID 5757 hsa-mir-26a-2 unconfirmed CID 5757 hsa-mir-9-2 26198104

CID 5757 hsa-mir-24-2 27030099 CID 5757 hsa-mir-196a-2 29331043

The top 1–25 miRNAs are shown in the second column while the top 26–50 are in the fifth column. As a result, 6 and 24 of the top 10 and top 50 were confirmed by the known
experimental literature, respectively.
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Definition 1 (Reachable Probability Matrix)

A reachable probability matrix for path P = ðA1;A2;/;Al + 1Þ in a
heterogeneous network can be defined as follows:

Rp =TA1A2TA2A3/TAlAl + 1
: (Equation 4)

Given two entities, a˛SM and b˛miRNA, the relatedness between a
and b can be calculated based on the HeteSim measure. Because
HeteSim is a path-based relevance measurement, it is significant to
consider different search paths that connect SM and miRNA. In gen-
eral, the contribution of short paths may bemore significant than long
paths. Therefore, we only considered the paths from an SM to a
miRNA in our heterogeneous network with length less than four
(see Figure 4 step 2). If the length l of the search path is even, the
search path can be divided into two parts with equal length. As we
can see from Figure 4 step 2, a relevance path from an SM to amiRNA
along a sequence of object types with length two can be indicated as

SM/
R1
SM/

R2
miRNA. The search path P = (SM, SM, miRNA) can be

expressed as P = ðPLPRÞ, where the left path PL = SM/
R1
SM and the
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right path PR = SM/
R2
miRNA. The reachable probability matrix for

the left and right paths in the heterogeneous network are RPL = Tss

and RPR = Tsm, respectively. Finally, the HeteSim score between a
and b based on the path P can be calculated as follows:

HeteSimða; b j PÞ=
RPLða; :Þ �

�
RP�1

R
ðb; :Þ

�T
RPLða; :Þ2 � RP�1

R
ðb; :Þ2

; (Equation 5)

where P�1
R is the reverse path of PR. We give an example of using He-

teSim to calculate the score between s3 and m1 under the path P =
(SM, SM, miRNA), i.e., RPL =Tss and RP�1

R
= Tms:

HeteSimðs3;m1 j PÞ=Tssð3; :Þ � ðTmsð1; :ÞÞT
Tssð3; :Þ2 � Tmsð1; :Þ2

: (Equation 6)

For the other three search paths with the length two listed in Figure 4
step 2, the corresponding HeteSim scores can also be calculated. If the
length l of the search path is odd, the path cannot be equally divided



Table 4. Top 50 miRNAs Associated with 5-Aza-20-Deoxycytidine Were Predicted by HSSMMA Based on Dataset 1

SM miRNA Evidence SM miRNA Evidence

CID 451668 hsa-mir-125b-1 26198104 CID 451668 hsa-mir-16-1 26198104

CID 451668 hsa-mir-125b-2 26198104 CID 451668 hsa-mir-26a-1 unconfirmed

CID 451668 hsa-mir-19b-1 unconfirmed CID 451668 hsa-mir-181b-1 unconfirmed

CID 451668 hsa-mir-24-1 26198104 CID 451668 hsa-mir-155 26198104

CID 451668 hsa-mir-18a unconfirmed CID 451668 hsa-mir-132 unconfirmed

CID 451668 hsa-mir-17 26198104 CID 451668 hsa-mir-181b-2 unconfirmed

CID 451668 hsa-mir-324 unconfirmed CID 451668 hsa-mir-194-1 unconfirmed

CID 451668 hsa-mir-203a 26577858 CID 451668 hsa-let-7c unconfirmed

CID 451668 hsa-mir-145 26198104 CID 451668 hsa-mir-346 unconfirmed

CID 451668 hsa-mir-21 26198104 CID 451668 hsa-mir-320a 26198104

CID 451668 hsa-mir-20a 26198104 CID 451668 hsa-mir-197 unconfirmed

CID 451668 hsa-mir-19a 26198104 CID 451668 hsa-mir-199a-2 unconfirmed

CID 451668 hsa-mir-23a unconfirmed CID 451668 hsa-mir-200c 23626803

CID 451668 hsa-mir-27a 26198104 CID 451668 hsa-mir-128-2 unconfirmed

CID 451668 hsa-let-7a-1 unconfirmed CID 451668 hsa-let-7a-2 unconfirmed

CID 451668 hsa-mir-181a-1 26198104 CID 451668 hsa-let-7a-3 26227220

CID 451668 hsa-mir-124-1 unconfirmed CID 451668 hsa-mir-126 26198104

CID 451668 hsa-mir-27b 26198104 CID 451668 hsa-mir-128-1 27705931

CID 451668 hsa-let-7b 26708866 CID 451668 hsa-mir-221 unconfirmed

CID 451668 hsa-mir-328 unconfirmed CID 451668 hsa-mir-133a-1 unconfirmed

CID 451668 hsa-mir-124-2 23200812 CID 451668 hsa-mir-342 unconfirmed

CID 451668 hsa-mir-124-3 23200812 CID 451668 hsa-mir-205 unconfirmed

CID 451668 hsa-let-7d 26802971 CID 451668 hsa-mir-149 27783537

CID 451668 hsa-mir-181a-2 26198104 CID 451668 hsa-mir-1-2 unconfirmed

CID 451668 hsa-mir-24-2 26198104 CID 451668 hsa-mir-137 26198104

The top 1–25 miRNAs are shown in the second column while the top 26–50 are in the fifth column. As a result, 6 and 24 of the top 10 and top 50 were confirmed by the known
experimental literature, respectively.
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into two parts. For example, a relevance path from an SM to a miRNA
along a sequence of object types with length three can be indicated as

SM/
R1
SM/

R2
SM/

R3
miRNA. Therefore, we consider the following two

cases: (1) PL = SM/
R1
SM/

R2
SM and PR = SM/

R3
miRNA. The reach-

able probability matrix for the left and right paths can be defined as

RPL = TssTss and RPR = Tsm, respectively; (2) PL = SM/
R1
SM and

PR = SM/
R2
SM/

R3
miRNA: The reachable probability matrix of the

left and right paths are RPL = Tss and RPR = TssTsm, respectively.
The final HeteSim value of the search path P = (SM, SM, SM, miRNA)
would be obtained through calculating the average of two HeteSim
values based on the above two different cases. We can also calculate
HeteSim score of another search path with the length three listed in
Figure 4 step 2.

Consequently, we would obtain six different HeteSim scores of six
relevance paths and integrate these scores to obtain the final associa-
tion scores between a and b, which can be defined as follows (see Fig-
ure 4 step 3):
Sða; bÞ=
X3
l = 2

 
bl�1 �

X
Pi˛jl

HeteSimða; b j PiÞ
!
; (Equation 7)

where a is the entity of object type SM, b is the entity of object
type miRNA, and jl is the set of path Pifrom SM to miRNA with
the length of l. b is a decay factor, which can further punish the longer
paths.
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Figure 4. Flowchart of Potential miRNA-SM Association Prediction Based on HSSMMA

We constructed a miRNA-SM heterogeneous network based on knownmiRNA-SM associations, integrated SM similarity, and integrated miRNA similarity, and we obtained

potential association probability of miRNA-SM associations by implementing HeteSim on the heterogeneous.
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