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ABSTRACT
Colon adenocarcinoma (COAD) represents a major public health issue due to its
high incidence and mortality. As different histological subtypes of COAD are related
to various survival outcomes and different therapies, finding specific targets and
treatments for different subtypes is one of the major demands of individual disease
therapy. Interestingly, as these different subtypes show distinct metabolic profiles, it
may be possible to find specific targets related to histological typing by targeting COAD
metabolism. In this study, the differential expression patterns of metabolism-related
genes between COAD (n= 289) and adjacent normal tissue (n= 41) were analyzed
by one-way ANOVA. We then used weighted gene co-expression network analysis
(WGCNA) to further identify metabolism-related gene connections. To determine the
critical genes related to COAD metabolism, we obtained 2,114 significantly differen-
tially expressed genes (DEGs) and 12modules. Among them, we found the hubmodule
to be significantly associated with histological typing, including non-mucin-producing
colon adenocarcinoma and mucin-producing colon adenocarcinoma. Combining
survival analysis, we identified glycerophosphodiester phosphodiesterase 1 (GDE1)
as the most significant gene associated with histological typing and prognosis. This
gene displayed significantly lower expression in COAD compared with normal tissues
and was significantly correlated with the prognosis of non-mucin-producing colon
adenocarcinoma (p= 0.0017). Taken together, our study showed that GDE1 exhibits
considerable potential as a novel therapeutic target for non-mucin-producing colon
adenocarcinoma.
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INTRODUCTION
Colorectal cancer is a common type of digestive cancer worldwide. Its incidence has
increased rapidly in recent years and seriously impacts human health. In 2018, over 1.8
million new cases and 881,000 deaths were estimated to have occurred, accounting for
about 1 in 10 cancer cases and deaths worldwide (Bray et al., 2018). Among cancer-related
diseases, colorectal cancer ranks third in terms of incidence and second in terms of
mortality (Bray et al., 2018). With changes in people’s lifestyles and dietary habits, China
has experienced an upward trend in both the incidence and mortality of colorectal cancer
in the last decade, which now rank fourth and fifth among cancers, respectively (Ministry
of Health of the People’s Republic of China, 2016). Unlike other cancers, no single risk factor
accounts for most cases of colorectal cancer (Brenner, Kloor & Pox, 2014). Dietary intake,
nutritional status, physical activity and other changes have shown to be associated with
pathogenesis and poor outcomes of colorectal cancer (Thanikachalam & Khan, 2019).
Widely epidemiological and observational evidence showed the risk of colorectal cancer is
strictly related to lifestyle, especially to diet and physical activity (World Cancer Research
Fund/American Institute for Cancer Research, 2007). In analytical case-control and cohort
studies, risk is directly associatedwith the consumption of red and processedmeat (Roncucci
& Mariani, 2015).

The most common colorectal cancer is colon adenocarcinoma (COAD), which accounts
for 66.1% of the disease (Ji et al., 2017). Overall COAD survival has not substantially
improved over the past few decades (Liu, Chen & Xu, 2018) and its prognosis remains
poor due to the delay in diagnosis, advanced stage of disease, and lack of histology-specific
treatment (Al-Tonbary, Darwish & El-Hussein, 2013). Therefore, identification of novel
biomarkers for early diagnosis and development of histology-specific targets is one of the
foremost challenges for individual treatment of COAD.

There is a strong and multifaceted connection between cell metabolism and cancer
(Vander Heiden, Cantley & Thompson, 2009). Altered cellular metabolism can meet
cancer cell anabolic demands that result from untethered cellular growth and aberrant
differentiation. Metabolic reprogramming is widely observed during cancer development
to confer cancer cells the ability to survive and proliferate, even under stressful conditions,
such as limited nutrients (Li & Zhang, 2016). Energy metabolism reprogramming, which
fuels fast cell growth and proliferation by adjustments in energy metabolism, is considered
an emerging hallmark of cancer (Hanahan &Weinberg, 2011). Thus, new strategies for
treating various malignancies by targeting cancer metabolism are gaining increasing
attention.

In the current study,we aimed to identify potential targets involved inCOADmetabolism
by performing comprehensive transcriptome-wide analysis of COAD gene expression
patterns.We systematically analyzed clusters of genes with similar expression patterns using
weighted gene co-expression network analysis (WGCNA) and found the MEred module
to be highly associated with histological typing. Further analysis of the MEred module
identified glycerophosphodiester phosphodiesterase 1 (GDE1) as the most significant gene
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associated with COAD histological typing prognosis. Thus, GDE1 may serve as a candidate
biomarker in COAD metabolism and may be a key gene for histology-specific treatment.

MATERIALS AND METHODS
Data collection
Wedownloaded 289COAD tumor samples (transcripts permillion, TPM) fromTheCancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/repository) and 41 peritumoral
normal tissues of COAD (TPM) from the UCSC Xena website (https://xena.ucsc.edu/).
The data were analyzed with a unifying pipeline, which used a CutAdapt trimming adapter,
STAR for alignment, and RSEM and Kallisto as quantifiers. The COAD clinical data were
downloaded from the TCGA database using the ‘cgdsr’ package (Null, Team & Null, 2009;
Jacobsen, 2015).

Differentially expressed gene (DEG) screening
We downloaded metabolism-associated genes from RECON3, the most comprehensive
human metabolic network model which contains 13543 reaction, 4140 metabolites, and
3288 metabolic genes (Brunk et al., 2018), and identified 3,267 genes that corresponded to
the TPM data. We removed lowly expressed genes (TPM <1) from the COAD and normal
samples, and thus retained 2,747 genes. We used principal component analysis (PCA). To
obtain significantly changed genes in COAD, we used the ‘aov’ function to analyze the
DEGs between the COAD and normal samples. We obtained 2,114 significant DEGs in
COAD with a p< 0.01 cutoff.

Co-expression network construction by WGCNA
WGCNA can be used to analyze global gene expression profiling and identify highly
co-expressed genes. We installed WGCNA with Bioconductor (http://bioconductor.org/
biocLite.R) for co-expression analysis of metabolism-related genes in COAD. The soft
threshold method was used for correlation analysis of the expression profiles. We used
average linkage hierarchical clustering to group transcripts based on topological overlap
dissimilarity in network connection strengths. We set the minimum gene number of each
module to 30 and cutHeight parameter to 0.25 to merge similar modules.

Identification of significant histological type modules
To incorporate external information into the co-expression network, WGCNA uses gene
significance measures GS (minus log of a p-value). A gene significance measure indicates
(the absolute value of) the correlation between individual gene in a given module and
the trait. The average GS across the module genes was used to characterize the correlation
betweenmodules and clinical traits. For eachmodule, we also define a quantitative measure
of module membership MM as the correlation of the module eigengene MEs (defined as
the first principal component of a given module) and the gene expression profile. The
relationships between MEs and clinical traits were analyzed, and the relevant modules were
identified.
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Functional and pathway enrichment analysis
We used the Database for Annotation Visualization and Integrated Discovery (DAVID)
(http://david.abcc.ncifcrf.gov/) for gene functional annotation to determine biological
functions. The genes in the significant histological type modules were uploaded in DAVID
for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses.We set a cutoff of adjusted p< 0.05 for significant biological processes
and significant pathways.

Survival analysis
The prognosis profiles of the genes in significant histological type modules were analyzed
using the R survival package from Bioconductor (https://www.bioconductor.org). Samples
were classified as two subtypes based on gene expression. Samples with larger than median
gene expression levels were defined as the ‘‘high expression’’ subtype; all other samples were
defined as the ‘‘low expression’’ subtype. The log-rank p-value and survival visualization
were performed using the R ‘‘survminer’’ package.

RESULTS
Metabolism-related DEGs in COAD
We obtained gene expression TPM data from 289 COAD samples and 41 adjacent normal
tissue samples, which included 60,498 genes. The QC analyzing result showed that the
median and the quartile log 2 TPM value are similar between adjacent normal samples
and cancer samples, indicating they are comparable (Fig. S1). We used PCA to identify
the possible outlier samples, and found that all the samples are located in the confidential
ellipse (Fig. 1A). We thus remained all of the samples to further analysis. To determine if
metabolism-related genes influenced COAD, we first obtained 3,288 metabolism genes in
RECON3, a most comprehensive human metabolic network model (Brunk et al., 2018).
We removed lowly expressed genes (TPM <1) from the COAD and normal samples, and
thus acquired 2,722 genes. We then determined DEGs in COAD compared with the normal
tissue samples using ANOVA in R. We identified 2,114 DEGs with a cutoff of p< 0.01
(Fig. 1B), which included 1224 highly expressed genes and 890 lowly expressed genes
(Table S1). The profiles of the 2,114 DEGs are shown with heatmap in Fig. 1C.

Metabolism gene co-expression network constructed by WGCNA
To explore the hub metabolism-related genes in COAD, we analyzed the co-expression
network of the 2,114 DEGs using WGCNA. The power value is the most critical parameter
that can affect the independence and average connectivity degree of co-expressionmodules.
We screened network topology using different soft thresholding powers for later analysis
(Figs. 2A, 2B). The scale-free R2 equated to 0.90 at the power value of six. Therefore, the
power value of six was used to construct the co-expression network with WGCNA, which
was based on the hierarchical clustering of the calculated dissimilarities. The distance
between clusters was defined as the average distance between all inter-cluster pairs. With
a cutHeight of 0.25 (Fig. 2C) and minimum gene number of 30, we merged the modules,
with 12 then obtained (Fig. 2D). We randomly selected 500 genes in the hierarchical
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Figure 1 The metabolism related DEGs in COAD. (A) The PCA was performed based on gene TPM of
COAD and normal samples. (B) X-axis and y-axis of the Volcano plot represent gene expression fold-
changes and negative logarithm to the base 10 of p-values, respectively. Red nodes indicate DEGs up reg-
ulated in COAD with p-value of <0.01. Blue nodes indicate DEGs down regulated in COAD with p-value
of <0.01. (C) The heatmap of metabolism related DEGs in COAD. Each column represents a sample and
each row represents one gene.

Full-size DOI: 10.7717/peerj.8421/fig-1

clustering results, with the rows and columns representing each gene in each module. The
deep red color indicated high topological overlap, suggesting that the co-expressed genes
had similarity at the network topology level (Fig. 2E, Fig. S2).

Identifying genes in red module associated with histological typing
To investigate the modules associated with clinical traits, we analyzed the module
trait relationship. We first convert clinical trait data into variables which expressed in
quantitative form, next we quantify gene relationship to clinical traits and important
modules by using the gene significance and module membership (MM) measures. The
results showed that the red module was significantly but negatively correlated with COAD
clinical histological typing (r =−0.33,p= 4e−08) (Fig. 3A). We also tested the relevance
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Full-size DOI: 10.7717/peerj.8421/fig-2

between each module and COAD clinical traits. The red module demonstrated much
higher module significance than any other module, suggesting its stronger connection with
COAD histological typing (Fig. 3B), viz., non-mucin-producing colon adenocarcinoma
(N-COAD) and mucin-producing colon adenocarcinoma (M-COAD). Red module
membership was also significantly correlated with gene significance (Fig. 3C). Taken
together, our results indicated that the red module was significantly correlated to COAD
histological typing.

The red module contained 199 genes (Table S2). To clarify the function of these genes,
GO and KEGG pathway analyses were conducted using DAVID (v6.8). Genes in the
red module were significantly enriched in ATP-binding (Benjamini–Hochberg method
adjusted p-value = 4.83e−13) molecular function (Fig. 3D) and in N-Glycan biosynthesis
pathways (Benjamini–Hochberg method adjusted p-value = 6.23e−04) (Fig. 3E).
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relationship. Each cell include the the corresponding correlation and p-value. Each row and column
corresponds to a module eigengene and a COAD clinical trait,respectively. The result indicated that the
MEred module is highly correlated with the histological type with the p-value of 4e–8. COAD clinical
traits(histology type: M-COAD,N-COAD; os_month:survival time(months); os_status:deceased or
living; stage:AJCC_PATHOLOGIC_TUMOR_STAGE; M:AJCC_METASTASIS_PATHOLOGIC_PM;
N:AJCC_NODES_PATHOLOGIC_PN; T: AJCC_TUMOR_PATHOLOGIC_PT_). (B) Bar plot of gene
significance across the WGCNA modules.The red module shows much higher GS than any other modules
(C) Correlation between MEred membership and gene significance. (D) GO and (E) KEGG enrichment
analysis of 199 genes in MEred. Y -axis is the significance of the enrichment results with the ‘–log10
(adjusted p-value)’.

Full-size DOI: 10.7717/peerj.8421/fig-3

Significant association of GDE1 gene with histological typing
and prognosis
To identify which genes in the redmodule were associated with different histological typing
and prognosis of COAD, we performed survival analysis (Table 1). We found GDE1 to be
the most significant prognosis-related gene. This gene demonstrated lower expression in
COAD at the RNA level (Fig. 4A) and its expression level was significantly associated with
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Table 1 Top 10 significant prognosis in different histological type of COAD.

Gene Gene
expression
direction

All COAD
prognosis
HR (p-value)

N-COAD
prognosis
HR (p-value)

M-COAD
prognosis
HR (p-value)

GDE1 Down*** 0.41(0.001** 0.4(0.0017** 0.93(0.92)
DARS Up*** 2.1(0.0043** 2(0.0091** 2.9(0.1)
SLCO4A1 Up*** 2(0.0066** 1.7(0.043* 3.1(0.087)
EPHB2 Up*** 0.53(0.016* 0.51(0.019* 0.97(0.96)
B3GNT8 Down*** 0.54(0.02* 0.53(0.022* 0.68(0.56)
DGUOK Up*** 1.7(0.029* 1.7(0.052) 2.3(0.2)
MARS2 Up*** 0.57(0.03* 0.67(0.15) 1.1(0.92)
MAPKAPK5 Up*** 0.57(0.031* 0.58(0.053) 0.35(0.099)
AURKA Up*** 0.59(0.041* 0.7(0.2) 1(0.98)
ALG1 Up*** 0.6(0.054) 0.75(0.3) 0.57(0.36)

Notes.
HR represents the Hazard ratio.
Significances are cataloged as ∗P -value of 0.05–0.01, ∗∗P-value of 0.01−10−6, or ∗∗∗P < 10−6.
This table was ranked by the p-value of the prognosis of all COAD samples.

survival time (p= 0.001; Table 1). Interestingly, we also observed that GDE1 expression in
N-COAD was significantly lower than that in normal tissues (p< 1e−6) but higher than
that in M-COAD (p= 0.003) (Fig. 4A). Furthermore, GDE1 was the most significant gene
correlated with N-COAD subtype prognosis (Table 1).

Although different histological subtypes of COAD showed similar prognosis profiles
(Fig. 4B), we found that the correlation of GDE1 with prognosis was distinct in the
N-COAD and M-COAD subtypes (Figs. 4C and 4D). Specifically, GDE1 was significantly
associatedwithN-COADprognosis (p= 0.0017), andN-COADwith highGDE1 expression
demonstrated significantly longer survival time (Fig. 4C). In M-COAD, however, GDE1
was not correlated with prognosis (p= 0.92) (Fig. 4D). Taken together, our results showed
that GDE1 was specially associated with N-COAD subtype prognosis, suggesting that it
could be a potential novel cancer target for N-COAD.

DISCUSSION
Both the incidence and mortality of COAD have increased markedly in colorectal cancer
in the past few decades (Guo et al., 2018). From a molecular basis, COAD results from
multistep processes of aberration and accumulation, which drive malignant transformation
of normal colon cells (Liu et al., 2017). However, the genetic changes responsible for the
development and progression of COAD are still under investigation.

In this study, we obtained 2,114 metabolism-related DEGs in COAD, among which we
identified GDE1 as the most significant gene related to prognosis and histological typing
of COAD. This gene (also referred to as MIR16 or 363E6.2), localized on chromosome
16 (16p12.3) and containing six exons and five introns (https://www.ncbi.nlm.nih.gov),
produces a 331-residue protein with an apparent molecular mass of 37.7 kDa (Bachmann,
Duennebier & Mocz, 2006). The expression of GDE1 in mammalian tissues was first
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Figure 4 Survival profile of GDE1 in different histological typing of COAD. (A) Gene expression pro-
file of GDE1 in normal (n = 41), M-COAD (n = 38), and N-COAD (n = 233). (B) Survival curve in M-
COAD (n = 38) and N-COAD (n = 233). (C) Survival curves of N-COAD with high (magenta, n = 116)
and low (dark cyan, n= 117) GED1 expression. (D) Survival curves of M-COAD with high (magenta, n=
19) and low (dark cyan, n= 19) GED1 expression.

Full-size DOI: 10.7717/peerj.8421/fig-4

identified in 2000 (Zheng, Chen & Farquhar, 2000). It is an integral membrane glycoprotein
and interacts with the RGS16 proteins, which regulates G protein signaling.

GDE1 also participates in glycerophosphoinositol-phosphodiesterase (GPI-PDE)
activity. GDE1 possesses the evolutionarily conserved GDE domain. The GDE domain
contains a putative catalytic motif (Zheng et al., 2003), which is important for GDE1-
mediated hydrolysis of glycerophosphoinositol (GPI) (Zheng et al., 2003). GDE1 prefers
GPI and some of its phosphorylated derivatives as potential substrates and demonstrates
dramatic GPI-PDE activity (Zheng et al., 2003). As a GPI-PDE, GDE1 can further hydrolyze
GPI to its final catabolic products, inositol and glycerol 3-phosphate (Zheng et al., 2003).
Interestingly, inositol has been proven to show moderate anticancer activity in cell
proliferation and differentiation (Bacić et al., 2010), and thus prevents the formation and
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incidence of several cancers alone or in combination with IP6, such as colon, breast, and
lung cancer (Bacić et al., 2010; Vucenik & Shamsuddin, 2003; Bizzarri et al., 2016; Vucenik
& Shamsuddin, 2006). Inositol is considered to be the parent compound of IP6 when all
of its six carbons are attached to phosphate groups, and IP6 can be converted to inositol
by removing all six phosphates (Vucenik & Shamsuddin, 2006). In addition, inositol is a
precursor in the phosphatidylinositol cycle and conducts important second messengers in
cellular signal transduction systems, such as phosphatidylinositol 4,5-bisphosphate (PIP2)
and inositol 1,4,5-P3(IP3). Taken together, these studies show that inositol, as an enzymatic
product of GDE1, plays a key role in anti-cancer.

Contra to the attention paid to the anti-cancer effects of inositol, little is known about
the connection between GDE1 and cancer. In this study, we provide the first piece of
evidence to show that GDE1 is an important tumor suppressor gene through the function
of its metabolite inositol. Indeed, GDE1 demonstrated significantly lower expression in
COAD tissues compared with normal tissues. Furthermore, its expression level showed a
positive correlation with survival time; i.e., COAD patients with lower GDE1 expression
displayed a shorter survival time. A possible explanation for this observation is that
lower expression of GDE1 converted to less inositol, with less inositol resulting in poorer
prognosis. Previous studies have indicated that increasing concentrations of inositol in
vivo and in vitro may control cancer metastases and improve quality of life (Bacić et al.,
2010; Vucenik & Shamsuddin, 2003; Vucenik & Shamsuddin, 2006; Lam et al., 2006; Abul
Kalam, Shamsuddin & Ivana, 2005; Shamsuddin, Ullah & Chakravarthy, 1989; Carlomagno
& Unfer, 2011; Fu et al., 2016; Nishino et al., 1999). Supporting evidence for this comes
from our survival analysis results, in which higher expression of GDE1 showed better
survival in COAD.

Furthermore, GDE1 showed different expression levels in different histological subtypes
of COAD. Variant histological subtypes are reportedly associated with different survival
outcomes (Hyngstrom et al., 2012) and treatments. For example, chemotherapy and
radiotherapy have been administered to a higher percentage of patients with mucinous
tumors than patients with non-mucinous adenocarcinomas (Hyngstrom et al., 2012).
Individual therapy for different histological subtypes may result in an optimal effect. In our
study, the expression of GDE1 in N-COAD was higher than that in M-COAD. In addition,
N-COAD showed better survival with higher expression of GDE1. In contrast, there was
no correlation between GDE1 and prognosis in M-COAD. Therefore, GDE1 may serve as
a prognostic factor and candidate target in the N-COAD subtype.

CONCLUSIONS
Our results suggest that GDE1 may be a cancer suppressor by up-regulating the inositol
metabolism pathway. Its high association with N-COAD prognosis suggests this gene could
also act as a promising cancer therapeutic target for this COAD subtype.
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