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ABSTRACT

SENEFELD, J. W., C. C.WIGGINS, R. J. REGIMBAL, P. B. DOMINELLI, S. E. BAKER, andM. J. JOYNER. Ergogenic Effect of Nitrate

Supplementation: A Systematic Review and Meta-analysis. Med. Sci. Sports Exerc., Vol. 52, No. 10, pp. 2250–2261, 2020. Although over

100 studies and reviews have examined the ergogenic effects of dietary nitrate (NO3
−) supplementation in young, healthy men and women, it is

unclear if participant and environmental factorsmodulate thewell-described ergogenic effects—particularly relevant factors include biological

sex, aerobic fitness, and fraction of inspired oxygen (FiO2) during exercise. To address this limitation, the literature was systematically re-

viewed for randomized, crossover, placebo-controlled studies reporting exercise performance outcome metrics with NO3
− supplementation

in young, healthy adults. Of the 2033 articles identified, 80 were eligible for inclusion in the meta-analysis. Random-effects meta-analysis

demonstrated that exercise performance improved with NO3
− supplementation compared with placebo (d = 0.174; 95% confidence interval

(CI), 0.120–0.229; P < 0.001). Subgroup analyses conducted on biological sex, aerobic fitness, and FiO2 demonstrated that the ergogenic

effect of NO3
− supplementation was as follows: 1) not observed in studies with only women (n = 6; d = 0.116; 95% CI, −0.126 to 0.358;

P = 0.347), 2) not observed in well-trained endurance athletes (≥65 mL·kg−1·min−1; n = 26; d = 0.021; 95% CI, −0.103 to 0.144;

P = 0.745), and 3) not modulated by FiO2 (hypoxia vs normoxia). Together, the meta-analyses demonstrated a clear ergogenic effect of

NO3
− supplementation in recreationally active, young, healthy men across different exercise paradigms and NO3

− supplementation parameters;

however, the effect size of NO3
− supplementation was objectively small (d = 0.174). NO3

− supplementation has more limited utility as an er-

gogenic aid in participants with excellent aerobic fitness that have optimized other training parameters. Mechanistic research and studies in-

corporating a wide variety of subjects (e.g., women) are needed to advance the study of NO3
− supplementation; however, additional descriptive

studies of young, healthy men may have limited utility. Key Words: DIETARY NITRATE, EXERCISE PERFORMANCE, SEX

DIFFERENCES, BEETROOT JUICE, NITRIC-OXIDE
he study of the ergogenic effects of dietary nitrate/ supplementation improves exercise tolerance in healthy
Tbeetroot (NO3
−) supplementation has been a prominent

topic in human performance for the last decade. As
previously reviewed (1), early studies demonstrate that NO3

−
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humans with blunted effects in trained athletes (2). Although
it is generally well accepted that NO3

− supplementation may
improve exercise tolerance in healthy, young men (1,3–18),
there is substantial variability within and between studies,
and previous systematic reviews have failed to find a (signifi-
cant) performance-enhancing effect with NO3

− supplementa-
tion under some conditions (7,13,17). Indeed, nearly 70% of
studies examining the potential performance-enhancing ef-
fects of NO3

− supplementation do not observe a difference in
performance with NO3

− supplementation compared with pla-
cebo. The variability of the ergogenic effects of NO3

− sup-
plementation is likely due to several descriptive factors
including aerobic fitness, dose and timing of NO3

− supple-
mentation (19–21), environmental factors (e.g., hypoxia)
(22), biological sex (23), and interindividual variability in
pharmacodynamics and dose–response relationships (19–21).
Thus, the primary purposes of this systematic review are to
determine the magnitude of the potential ergogenic effect of
NO3

− supplementation and the influence of the aforementioned
descriptive factors that contribute to variability of the ergogenic
effects of NO3

− supplementation.
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Nitric oxide has long been recognized for vasculoprotective
effects (24), effects on mitochondrial respiration (25), and ef-
fects on fatigue development (26). In addition to the biosynthe-
sis of endogenous nitric oxide (24), exogenous dietary sources
of NO3

− (e.g., green leafy vegetables and beetroot) canmarkedly
increase the bioavailability of nitric oxide (1,27–29). After in-
gestion of a NO3

− supplement, plasma nitrate levels peak after
1–2 h and plasma nitrite levels peak after 2–3 h, both levels
gradually return to baseline after about 24 h (30). Thus, it is
not surprising that NO3

− supplementation has been shown to en-
hance exercise performance in some instances. For example, in
2009, it was shown that beetroot ingestion of 5.5mmol NO3

− per
day for 6 d improved time to exhaustion during intense cycling
exercise in eight young, healthy men compared with placebo
(NO3

−: 675 ± 203 s vs placebo: 585 ± 145 s, P < 0.05) (31). Sim-
ilarly, beetroot ingestion of ~6.2 mmol NO3

− in nine competitive
male cyclists improved performance by ~3% during laboratory-
based simulated cycling races using a 16.1-km fixed-distance
time trial compared with a placebo (NO3

−: 1614 ± 108 s vs pla-
cebo: 1662 ± 126 s,P < 0.01) (32). Despite the growing number
of studies demonstrating augmented performance with NO3

−

supplementation, there are twice as many studies demonstrating
no performance-enhancing effect of NO3

− supplementation.
Thus, several important questions persist regarding the po-

tential ergogenic effect of NO3
− supplementation: 1) what is

the magnitude and effect size of the potential ergogenic effect?
2) are there sex differences? (23) 3) what is the role of aerobic
fitness? (6) 4) what is the role of the fraction of inspired oxy-
gen (FiO2)? (22) and 5) what are the optimal dosage, duration,
and timing of NO3

− supplementation? Thus, the purpose of this
systematic review andmeta-analysis was to examine these five
questions. The information garnered may better inform appro-
priate dosing for future studies and optimal use of NO3

− supple-
mentation as an ergogenic aid for athletes and coaches.
A
PPLIED

SC
IEN

C
ES
METHODS

Methods of the analysis and inclusion criteria were speci-
fied a priori and conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
checklist (33).

Literature search. Studies were initially identified from a
search of the online PubMed database through August 2019.
Keywords used in the search included the following: (exercise)
AND [(beetroot juice) OR (beetroot) OR (beet) OR (nitrite) OR
(nitrate) OR (nitrate supplement) OR (dietary nitrate)], using the
following limits: humans and English. The references of all
eligible studies were also reviewed to identify other potentially
eligible studies that may have beenmissed using the approaches
outline previously. Only published material was used.

Identification and study selection. In order to be
considered eligible for inclusion, studies had to meet the
following criteria: 1) all subjects were previously healthy,
and mean age of study participants was between 18 and
40 yr; 2) the study must have used a single or double-
blind, within-subject crossover, placebo-controlled study,
ERGOGENIC EFFECT OF NITRATE SUPPLEMENTATION
with a randomized or counterbalanced study design; and 3) re-
sults had to be reported for both nitrate supplement and pla-
cebo as mean ± SD or SE. If the required performance data
were provided in figure format but not numerical text, authors
were contacted to obtain the numerical data. If the data could
not be provided, the study was excluded to avoid potential bias
due to estimation of values.

Selected studies were uploaded into a screening tool
(Covidence). Three independent investigators (C.C.W., J.W.S.,
and R.J.R.) screened the titles and abstracts of all studies identi-
fied by the search methodologies to determine potential eligibil-
ity. Studies that did not have an abstract, along with studies that
were deemed potentially eligible, had their full text reviewed in
order to determine if they met the criteria for inclusion in the
meta-analysis. In addition, reference lists of included studieswere
carefully inspected, and any relevant articles not initially captured
in the systematic search but met the inclusion criteria were in-
cluded. Disagreement was resolved by consensus.

Quality assessment. Risk of bias was assessed with the
Cochrane Risk of Bias (34). This standardized appraisal tool
consists of seven components: 1) sequence generation, 2) allo-
cation concealment, 3) blinding of participants and personnel,
4) blinding of outcome assessors, 5) incomplete outcome data,
6) selective outcome reporting, and 7) other sources of bias.
For each included study, components were rated as “high,”
“low,” or “unclear” risk of bias based on the detail definitions
and standardized criteria provided by the quality assessment
tool (34). Because the present systematic review included ran-
domized or counterbalanced, single- or double-blind, crossover,
placebo-controlled, within-group study design, components 1,
2, 3, and 4 were all considered “low risk of bias.” Risk of bias
was conducted independently by two authors (J.W.S. and R.J.R.),
and disagreements were resolved by review of a third author
(C.C.W.).Nostudieswereexcludedbasedon thequalityassessment.
To assess publication bias in the included studies, we used visual in-
spection of the funnel plot and the Egger’s regression test to statisti-
cally quantify funnel plot asymmetry (35).

Data extraction and analysis. Participants’ characteris-
tics (number, sex, age, and aerobic fitness (V̇O2peak)) were
identified from the selected studies. Exercise type (cycling,
handgrip, kayaking, knee extension, roller skiing, rowing, run-
ning, swimming), task end-criteria (time trial, work trial, time
to exhaustion, trials to exhaustion, fatigue index, or distance
trial), NO3

− supplementation (daily amount, total amount, and
timing relative to exercise initiation), and performance outcome
metric were extracted. Data including means and SD were ex-
tracted independently by two authors (J.W.S. and R.J.R.), and
disagreements were resolved by review of a third author
(C.C.W.). To account for differences in exercise tasks
(e.g., time trial (in seconds) vs distance trial (in meters)),
all data were transformed so that a positive mean difference
denoted “better performance with NO3

− supplementation”
and a negative mean difference denoted “better perfor-
mance with placebo.” For the exercise tasks in which a
smaller value indicates “better performance” (time trial, fa-
tigue index), the mean performance metrics for placebo and
Medicine & Science in Sports & Exercise® 2251
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NO3
− supplementation were replaced with the arithmetic op-

posite values. Using the example cycling time trial from
Lansley and colleagues (32), values of −1614 and −1662 s
were input for NO3

− and placebo, respectively, such that
the standardized mean difference (SMD) would be a positive
value indicating “better performance with NO3

− supplementation.”
Narrative synthesis. Initially, a narrative synthesis of

studies was conducted. Studies were first grouped based on
participant sex (men, mixed, or women only) and FiO2 during
exercise bout (normoxia or hypoxia), then the studies were
listed in alphabetical order based on the last name of the first
author, and then the studies were listed in chronological order
based on publication year from the earliest to most recent. This
summary table is provided a supplemental content (Table,
Supplemental Digital Content 1, Included studies characteris-
tics and result, http://links.lww.com/MSS/B962).

Meta-analysis and subgroup analyses. To support
the narrative synthesis, a meta-analysis of pooled data and sub-
group analyses were conducted. Initially, effect sizes were cal-
culated for each study using a general inverse variance and
weighted using Cohen’s d for differences in performance out-
come between placebo and NO3

− supplement. Thresholds for
very small, small, moderate, and large effect sizes were 0.15,
0.2, 0.5, and 0.8, respectively. Data were pooled with both
fixed-effects (inverse-variance method) and random-effects
(DerSimonian and Laird method [36]) models. Although both
models returned similar main effects, we only reported the re-
sults of the random-effects analyses. The a priori level of sig-
nificance for all comparisons was P < 0.05. Pooled data are
presented as (Cohen’s d SMD (95% confidence intervals, or
95%CI); z-statistic, P value) unless otherwise indicated. Com-
prehensive Meta-Analysis Software (Biostat) version 3.3.070
was used for all analyses.
RESULTS

Study selection. A total of 2033 articles were identified
in the initial search, and duplicates were removed (n = 2). Af-
ter screening titles and abstracts, 1830 articles were deemed in-
eligible for inclusion. Of the remaining 201 full-text studies,
77 studies were included. The references of the included 77
studies were then carefully inspected (3723 references, includ-
ing 1729 unique references), 41 articles were added to the full-
text screening (242 total), and an additional 8 articles were
deemed eligible for inclusion. In total, 162 studies were ex-
cluded for various reasons including the following: no re-
ported performance outcome data (n = 40), no placebo
(n = 20), between-group study design (n = 15), incorrect sub-
ject population (e.g., older adults, patient population) (n = 34),
no exhaustive exercise included in the study (n = 36), or an in-
appropriate control/placebo performance trial (n = 17). Thus,
80 studies were included in the narrative synthesis and meta-
analyses. Within these 80 studies, 2 presented data from men
and women separately, 6 presented data from different NO3

−

supplementation separately, 7 presented data from different
exercises separately, and 8 presented data from different
2252 Official Journal of the American College of Sports Medicine
ambient oxygen concentrations separately, resulting in 111
data sets (2,19,31,32,37–115). A schematic of the search strat-
agem is presented in Figure 1.

Study characteristics: narrative review. A summary
of the 80 included studies and the 113 data sets is provided
in the supplemental content (Table, Supplemental Digital
Content 1, Included studies characteristics and result, http://
links.lww.com/MSS/B962). Studies included were published
between 2009 and 2019. A total of 1,179 men and 156 women
were included in the selected studies; most data sets (79%;
n = 90) were composed of men only, 16% (n = 17) included
both men and women, and 5% (n = 6) included exclusively
women. The primary performance metrics of studies included
time to complete a fixed distance (time trial; n = 52), time to
complete a relative total work (work trial; n = 5), maximal
distance covered in a fixed time period (distance trial;
n = 6), reduction in maximal strength or power during a task
(fatigue index; n = 13), endurance time maintaining a sub-
maximal task (time-to-exhaustion (TTE); n = 32), or num-
ber of trials of a submaximal task to exhaustion (trials to
exhaustion; n = 4). NO3

− supplementation was performed be-
tween 40 and 210 min before exercise initiation with a concen-
tration between 1. and –28.7 mmol for 1–15 d resulting in a
cumulative NO3

− of 4.2–208 mmol. Most studies did not ob-
serve a difference in performance (76 of 111 studies; 68%),
but no studies reported worsened performance with NO3

− sup-
plementation compared with placebo. Generally, most studies
examined sustained, endurance-style exercise; however, sev-
eral studies incorporate single-sprint exercises (e.g., 500-m
kayak time trial; n = 5) or repeated sprint exercises (e.g., three
sequential Wingate tests; n = 8). Most studies incorporating
“sprint” exercises are encompassed within the “300[s] or less”
exercise time.

Pooled analysis. Considering all studies included in the
quantitative synthesis (Fig. 2), exercise performance was im-
proved (faster time, longer distance, lower fatigue index, or
more trials) with NO3

− supplementation compared with pla-
cebo with negligible NO3

− (0.174 (0.120–0.229); z = 6.299,
P < 0.001). Although significant, the effect size was very small
(d < 0.2); thus, it is not surprising that only ~32% studies dem-
onstrated significant improved performance with NO3

− sup-
plementation compared with placebo. There is substantial
variability in the response to NO3

− supplementation (21), in-
dicating that other factors may be contributing to the change
in performance other than NO3

− supplementation. Factors
that may contribute to variability of the effects of NO3

− sup-
plementation include interindividual differences, such as bi-
ological sex and aerobic fitness and interstudy differences,
such as performance parameters (ambient oxygen concentra-
tion, exercise time, and exercise type), and/or NO3

− supple-
mentation parameters (daily dose, dosing period, or timing).
Thus, subanalyses were undertaken to examine each identi-
fied, potential source of variability. Statistical power analyses
indicated that approximately six data sets are required within
each category for subanalyses. To reduce the potential effects
of learning, all studies included familiarization procedures for
http://www.acsm-msse.org
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FIGURE 1—Flowchart of the study selection.
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the exhaustive exercise bout and 95% of the studies included a
“control” session with completion of the exhaustive exercise
without supplementation (placebo or NO3

−).
Subgroup analysis: biological sex and aerobic fit-

ness.Comparison ofmen only, mixed sex (men and women),
and women only studies revealed a blunted overall effect of
NO3

− supplementation for women compared with mixed sex
and men only studies (Fig. 3A). As has been suggested by
Wickham and colleagues (112) in a recent investigation and re-
view (23), women are heavily underrepresented in this field of re-
search as is generally observed in biomedical research (116). Six
studies that examined women only or presented data separately
for women found no effect of NO3

− supplementation on exercise
performance (P = 0.347). However, a study examining kayak
performance in elite, international-level athletes found that NO3

−

supplementation improved 500-m time-trial performance for five
women (P = 0.004) but not 4-min distance trial performance for
six men (P = 0.110) (95). As reviewed previously (23), although
there are physiologically based sex differences that could po-
tentially reduce the efficacy of NO3

− supplementation as an er-
gogenic aid for women, there is a clear underrepresentation of
women that should be addressed in future investigations.
ERGOGENIC EFFECT OF NITRATE SUPPLEMENTATION
Apriori, V̇O2peak was delineated increments of 5mL·kg·min
−1

resulting in six categories (<45, 45–49.9,…,65+ mL·kg·min−1).
However, the lowest V̇O2peak category was underpowered and
highly variable (n = 4; d = 0.168; 95% CI, −0.134 to 0.469;
P = 0.276), and thus was combinedwith the next lowest category
(45–49.9mL·kg·min−1). Comparison across V̇O2peak demonstrates
that the ergogenic effect of NO3

− supplementation is observed
across a large range of V̇O2peak values (~40–65 mL·kg·min−1);
however, the ergogenic effect is not observed in highly fit ath-
letes (V̇O2peak > 64.9 mL·kg−1·min−1; Fig. 3B). Although a re-
cent systematic review suggested that the data were
inconclusive (6), with the inclusion of additional data, the role
of V̇O2peak can be more clearly observed. These data are in
agreement with a study from Porcelli and colleagues (96). In
a cohort of 21 men with low, moderate, and high V̇O2peak

(~40 vs ~50 vs ~70 mL·kg−1·min−1), 3-km running time was
improved with a 6-d supplementation of 5.5 mmol·d−1 of
NO3

− compared with placebo for men with low (~3% improve-
ment) and moderate (~1.5% improvement) but not high
V̇O2peak (0.2% improvement) (96). Based on these data, the
ergogenic effect of NO3

− supplementation is not observed in
highly trained athletes with likely optimal training adaptations
Medicine & Science in Sports & Exercise® 2253



FIGURE 2— Forest plot displaying random-effects meta-analysis of exercise performance after placebo or NO3
− supplementation. The vertical line represents the

mean overall effect. Symbol size reflects weight of the effect for each individual study. Symbols on the left of the continuous black line at 0 show better exercise per-
formance after placebo supplementation, whereas studies on the right of the black line demonstrate better exercise performance after NO3

− supplementation.

http://www.acsm-msse.org2254 Official Journal of the American College of Sports Medicine
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FIGURE 3—Subgroup analysis of biological sex and aerobic fitness. SMD
of NO3

− supplementation comparedwith placebo for biological sex of included
participants (A) and V̇O2peak (B) calculated used random-effects meta-
analyses. * denotes better performance after NO3

− supplementation com-
pared with placebo, P < 0.05.
(V̇O2peak > 64.9 mL·kg−1·min−1). However, in moderately
trained and untrained men without optimized fitness, a signif-
icant ergogenic effect of NO3

− supplementation is observed.
Subgroup analysis: exercise parameters. Compari-

son of hypoxic and normoxic conditions revealed a similar
overall effect of NO3

− supplementation for both conditions
(Fig. 4A). In line with a previous review from Shannon and
colleagues (22), these data suggest that NO3

− supplementation
is a promising ergogenic aid for exercising in low-O2 environ-
ments. However, these data do not suggest that the ergogenic
effects of NO3

− supplementation are greater in hypoxia than
normoxia, as previously suggested (22). Albeit, these data
are primarily from simulated altitude using normobaric hyp-
oxia with short hypoxic exposure times, and future investiga-
tions at terrestrial altitude (hypobaric hypoxia) may be
warranted, as formerly suggested (22).
FIGURE 4—Subgroup analysis of exercise parameters. SMD of NO3
− suppleme

exercise time (B), and exercise type (C) calculated used random-effects meta-ana
with placebo, P < 0.05.

ERGOGENIC EFFECT OF NITRATE SUPPLEMENTATION
Comparison across different exercise parameters (time and
type) revealed heterogeneous results for exercise type and lim-
ited effect of NO3

− supplementation in long-duration exercise
(1000 s or more). As previously reviewed (8,9), long-duration
exercise that by virtue is lower intensity than short-duration ex-
ercise likely minimizes hypoperfusion of metabolically active
tissue during exercise and reduces the requirement for NO pro-
duction through the reduction of nitrite. This physiological ratio-
nale likely underlies the finding that NO3

− supplementation is
more beneficial for short-duration exercise (<15 min) than
long-duration exercise (Fig. 4B). Most studies (~80%) used cy-
cling or running as exercise modalities, and the ergogenic effect
of NO3

− supplementation was not different between running and
cycling. However, for the other exercise types (handgrip, kayak-
ing, knee extension, roller skiing, rowing, and swimming), there
wasmarkedly less data andmore heterogeneity due to small sam-
ple sizes (Fig. 4C). These datamay suggest that NO3

− supplemen-
tation has larger effects in small muscle exercise (handgrip),
which is likely limited by peripheral factors (tissue perfusion
and metabolic accumulation) rather than cardiac output, com-
pared with whole body or large muscle exercise.

Previous systematic reviews have demonstrated an ergo-
genic effect of NO3

− supplementation that is dependent on
the criteria for exercise termination. As examples, both Hoon
et al. (7) and McMahon et al. (13) demonstrated a significant
ergogenic effect of NO3

− supplementation for TTE exercise
but not time trials or graded-exercise performance tests. The
current data demonstrated a consistent ergogenic effect of
NO3

− supplementation across all exercises regardless of criteria
for exercise termination, including the following: time trials
(n = 52; 0.086 (0.002–0.0173); z = 2.000, P = 0.045), distance
trials (n = 6; 0.318 (0.136–0.499); z = 3.430, P = 0.001), fa-
tigue index tasks (n = 13; 0.175 (0.036–0.313); z = 2.473,
P = 0.013), and TTE tasks (n = 32; 0.324 (0.213–0.436);
z = 5.690, P < 0.001). In line with findings from Hoon et al.
ntation compared with placebo for FiO2 (normoxia vs hypoxia; A), mean
lyses. * denotes better performance after NO3

− supplementation compared

Medicine & Science in Sports & Exercise® 2255
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FIGURE 5—Subgroup analysis of NO3
− supplementation parameters. SMD of NO3

− supplementation compared with placebo for different daily concentra-
tions of NO3

− supplementation (A), different number of days of NO3
− supplementation (B), and different timing of NO3

− supplementation relative to com-
mencement of exercise (C) calculated used random-effects meta-analyses. * denotes better performance after NO3

− supplementation compared with
placebo, P < 0.05.

FIGURE 6—Funnel plot of the SE and standardized effect for each study. The
angled lines define the area including the 95%CI of the SMD, and the vertical
line defines the middle of the funnel at the mean SMD. Visual inspection of the
funnel plot shows that three studies fall below 95% CI and three studies are
above 95% CI.
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(7) and McMahon et al. (13), the smallest effect size was ob-
served for studies utilizing time-trial performances and the
largest effect size was observed for TTE protocols.

Subgroup analysis: NO3
− dosage and timing. The in-

fluences of NO3
− supplementation parameters were also ex-

plored. The ergogenic effect of NO3
− supplementation was

not different between daily concentrations of NO3
− supplemen-

tation greater than 5 mmol·d−1 (range, 5.1–28.7 mmol·d−1);
however, there was no ergogenic effect with low NO3

− supple-
mentation (range, 1.6–5.0 mmol·d−1; P = 0.085). The ergo-
genic effect of NO3

− supplementation was not different
between the number of days of NO3

− supplementation (range,
1–15 d). However, the ergogenic effect of NO3

− supplementa-
tion was different with the timing of NO3

− supplementation rel-
ative to exercise performance (range, 5–210 min before
exercise; Fig. 5. The optimal timing of NO3

− supplementation
is 2–3.5 h before the onset of exercise. Dr. Jones’ groups has
previously examined the pharmacokinetics and dose response
of NO3

− supplementation on plasma [NO3
−], and determined

that the timing of the peak plasma [NO3
−] is dependent on the

NO3
− dose ingested (19). The potential interaction of NO3

− dose
and timing was explored in these data; however, no significant
interaction was evidenced. Based on these data, the optimal er-
gogenic effect of NO3

− supplementation is with the following
parameters of NO3

− supplementation: 1) any dose between
5.1 and ~25 mmol·d−1, 2) at least 1 d of supplementation,
and 3) ingestion of NO3

− 2 – 3.5 h before initiation of exercise.
Based on these data, a secondary pooled analysis was

performed after removing the studies that administered
NO3

− in an inadequate dose (≤5 mmol·d−1; n = 10) or with
insufficient time to adequately metabolize the NO3

− before
exercise (<91 min before exercise; n = 15). The results of
this secondary pooled analysis are similar to our primary
pooled analysis (0.185 (0.125–0.244); z = 6.102, P < 0.001).
Similarly, removal of these 25 data sets with ineffective NO3

−

supplementation did not change interpretations of any of the
subgroup analyses but marginally increased Cohen’s d SDM
by ~0.02.
2256 Official Journal of the American College of Sports Medicine
Despite the heterogeneity with NO3
− supplementation pa-

rameters, a vast proportion of studies used a similar type of
commercial NO3

− supplementation and placebo from Beet it
(James White Drinks, Ipswich, United Kingdom). The placebo
is created by passage of the beetroot juice, before pasteurization,
through a column containing Purolite A520E ion-exchange re-
sign, which selectively removes NO3

− ions (39). Thus, the pla-
cebo is an identical version of the beetroot juice in appearance
and taste, with negligible levels of NO3

− ions.
Risk of bias. Publication bias was assessed using a funnel

plot (Fig. 6). Visual inspection of the funnel plot shows that
three studies fall below 95% CI and three studies are above
95%CI. Egger’s regression test suggests that there is no signif-
icant asymmetry of the plot (intercept = 1.18, P = 0.07).

DISCUSSION

This systematic review incorporated 80 studies investigating
exercise performance after ingestion of NO3

− supplementation
http://www.acsm-msse.org
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or placebo supplement with negligible NO3
− content in ~1300

subjects. Contrary to much of the literature (~2/3 studies),
there was a clear ergogenic effect of NO3

− supplementation
across many different exercises modalities in normoxic and
hypoxic conditions in young men, but not women or elite
athletes (V̇O2peak > 64.9 mL·kg−1·min−1). In agreement with
previous recommendations, the ergogenic effect of NO3

− sup-
plementation is limited in highly trained athletes and lower-
intensity/long-duration exercise (>15 min) (8,9). The optimal
NO3

− supplementation was between 5 and ~25 mmol·d−1

ingested 2–3.5 h before exercise. These data provide robust
support of previous contentions from individual studies
(19,53) and narrative reviews (1,9,117) considering optimal
NO3

− supplementation parameters. Thus, the general parame-
ters for “successful” NO3

− supplementation gleaned from our
analysis are not novel; however, the current meta-analyses
substantiate previous claims from leading experts regarding
“best practices” for NO3

− supplementation. These data may
also be useful in designing studies that consider the effects
of NO3

− supplementation on other modes of exercise in other
demographic groups.

The effect size of NO3
− supplementation was objectively

small (d = 0.174) even with the removal of studies administer-
ing suboptimal NO3

− supplementation (d = 0.185), and this
small effect size likely explains the large number of studies
(~68%) that do not observe an ergogenic effect of NO3

− supple-
mentation on exercise performance. Although the effect size is
small, these data demonstrate a quantitative and repeatable
enhancement of exercise performance by ~3% (e.g., 48 s in
16.1-km cycling time trial [32]) across many different exercise
modalities and performances. In the context of athletic compe-
tition, the ~3% ergogenic effect of NO3

− supplementation may
be highly meaningful and is not dissimilar to the potential er-
gogenic effect of new running shoes with embedded carbon-
fiber plates (e.g., NikeNext%) (118). Thus, although the effect
size of NO3

− supplementation is small, these data suggest NO3
−

as a viable ergogenic aid.
Inorganic versus organic nitrates. Although often

underreported, it is nearly ubiquitous for studies to use inor-
ganic nitrate for supplementation for enhanced exercise per-
formance. The differences between organic and inorganic
nitrate are related to their underlying chemical structure, with
organic nitrates primarily used in medicine (e.g., glyceryl
trinitrate) and inorganic nitrates are primarily found in plants,
particularly green leafy vegetables and beetroot plants (119).
As reviewed previously, the pharmacokinetic properties of or-
ganic versus inorganic nitrates are markedly different, and
within the current data, all studies collated utilized inorganic
nitrate supplementation (119). Thus, the effect of organic ni-
trate supplementation as an ergogenic aid is unknown but
may be limited by developed tolerance and potential endothe-
lial dysfunction with prolonged use (119,120).

Oral microbiome. The ergogenic potential of NO3
− supple-

mentation is largely dependent on the reduction of concentrated
NO3

− to nitrite (NO2
−), which is regulated by anaerobic bacteria

in the oral cavity (121–123). Although the oral microbiome
ERGOGENIC EFFECT OF NITRATE SUPPLEMENTATION
may be disturbed by many oral substances (e.g., antibiotics, anti-
bacterial mouthwash, gum chewing, etc.) (124), only about 50%
of studies reported controlled environments for the oral
microbiome; for example, “subjects were asked to abstain from
using antibacterial mouthwash and chewing gum…” (115)
Thus, variability in the oral microbiome may contribute to the
observed variability in the efficacy of NO3

− supplementation. Fur-
thermore, recent studies have demonstrated that under controlled
conditions, the reduction of NO3

− to NO2
− in biological fluids

varies substantially within individuals across repeated visits
(121). The large variability in the performance-enhancing effects
of NO3

− supplementation may be due to the profound biological
variability of the oral microbiome (121), and this postulationwar-
rants future investigation. One approach to reduce the potential
impact of the variability of oral microbiome is to provide NO3

−

supplementation for several days before an exercise test, which
has been shown to increase abundance of some bacteria capable
of NO3

− reduction (123), whichmay optimize the effectiveness of
NO3

− supplementation.
Sex differences. As previously reviewed (23), there is a

clear underrepresentation of women in the study of NO3
− sup-

plementation and more generally in science (116). In the cur-
rent data, women account for ~10% of the total sample size,
and there was no ergogenic effect of NO3

− supplementation.
The absence of an ergogenic effect of NO3

− supplementation
in women is likely spurious because of a dearth of studies in-
cluding women, and the sex bias in studies of NO3

− supplemen-
tation has created a field that is ripe with opportunities for
future study. A recent review from Wickham and Spriet (23)
explicitly provides a strong rationale for potential sex differ-
ences in response to NO3

− supplementation and highlights
areas for future scientific inquiry.

CONCLUSIONS

This systematic review and meta-analysis clearly demon-
strates a ~3% performance-enhancing effect after optimal
NO3

− supplementation for healthy, young men that is often not
observed in individual studies likely because of the small effect
size. Importantly, these data support previous assertions from
narrative reviews regarding optimal NO3

− supplementation pa-
rameters and highlight a dearth of studies including women.
The performance-enhancing effect of NO3

− supplementation
was not observed with administration of low doses of NO3

−

(≤5 mmol·d−1) or NO3
− dose within 90 min before exercise, or in

participants with excellent V̇O2peak values (>64.9 mL·kg·min−1).
Thus, NO3

− supplementation was demonstrated to be an effec-
tive ergogenic aid for young, healthy men; however, additional
mechanistic research and studies incorporating a wide variety of
subjects (e.g., women) are warranted to advance the study of
NO3

− supplementation as an ergogenic aid.
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