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Abstract

Motivation: The technology of high-throughput chromatin conformation capture (Hi-C) allows genome-wide meas-
urement of chromatin interactions. Several studies have shown statistically significant relationships between gene–
gene spatial contacts and their co-expression. It is desirable to uncover epigenetic mechanisms of transcriptional
regulation behind such relationships using computational modeling. Existing methods for predicting gene co-
expression from Hi-C data use manual feature engineering or unsupervised learning, which either limits the predic-
tion accuracy or lacks interpretability.

Results: To address these issues, we propose HiCoEx (Hi-C predicts gene co-expression), a novel end-to-end frame-
work for explainable prediction of gene co-expression from Hi-C data based on graph neural network. We apply
graph attention mechanism to a gene contact network inferred from Hi-C data to distinguish the importance among
different neighboring genes of each gene, and learn the gene representation to predict co-expression in a supervised
and task-specific manner. Then, from the trained model, we extract the learned gene embeddings as a model inter-
pretation to distill biological insights. Experimental results show that HiCoEx can learn gene representation from 3D
genomics signals automatically to improve prediction accuracy, and make the black box model explainable by cap-
turing some biologically meaningful patterns, e.g., in a gene contact network, the common neighbors of two central
genes might contribute to the co-expression of the two central genes through sharing enhancers.

Availability and implementation: The source code is freely available at https://github.com/JieZheng-ShanghaiTech/
HiCoEx.

Contact: zhengjie@shanghaitech.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The chromatin organization in 3D space plays essential role in tran-
scriptional regulation (Ahn et al., 2021; Bhat et al., 2021). Advances
in the chromosome conformation capture (3C) technique and 3C-
based derivative techniques, such as 4C, 5C and Hi-C, enable the
3D characterization of chromatin interactions (Yu and Ren, 2017).
In particular, with a genome-wide measurement, Hi-C allows to
comprehensively explore the relationships between 3D genomic or-
ganization and gene regulation and reveal the underlying epigenetic
mechanisms behind such relationships. For instance, Dong et al.
(2010) observed that the Hi-C interactions between many gene pairs
are consistent with their co-expression levels, suggesting that co-

expression between two genes is strongly associated with their chro-
matin interactions. Ibn-Salem et al. (2017) analyzed the relation-
ships among genes’ spatial distribution, gene expression and
evolution of paralogous gene pairs. They found that a large propor-
tion of paralogous gene pairs tend to be both co-expressed and co-
localized within the same topological associated domains, and these
pairs of genes usually share common enhancers. These works con-
sidered the information of local spatial contacts between a pair of
genes when explaining their co-expression but neglected the indirect
contacts connecting two genes through intermediate genes (Dekker
and Misteli, 2015; Sandhu et al., 2012).

To gain a better understanding of whole-genome chromatin con-
tacts, many studies have performed network analysis on these
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contacts by constructing the so-called gene contact networks
(Thibodeau et al., 2017; Zhang and Ma, 2020), where a node repre-
sents a genomic locus and an edge connecting two nodes corre-
sponds to their spatial contacts. In such a network, two genes
without direct spatial interactions may still have connections in
terms of 3D genomics, e.g. they could have contacts with a common
set of genes. Therefore, the network-based methods are capable of
representing high-level relationships among multiple genes.

Recently, there has been increasing interest in jointly studying the
genome conformation and transcriptional regulation by computational
methods (Cao et al., 2020; Tian et al., 2020). Several studies have
attempted to establish predictive models, to quantify the interplay be-
tween 3D genomic structure and gene co-expression (Babaei et al.,
2015; Varrone et al., 2020). Here, the key is to extract representative
features of the gene contact network for the co-expression prediction.
A previous method calculates five topological properties of a gene con-
tact network as the node representations to predict co-expression
(Babaei et al., 2015). To capture the correlation between chromatin
topology and gene co-expression, two embedding-based methods in
Varrone et al. (2020) encode gene features by latent vectors. One
method uses matrix factorization to decompose a gene contact network
into factors as the gene embeddings. The other method uses the ran-
dom walk-based node2vec algorithm (Grover and Leskovec, 2016) to
learn the gene embedding. These unsupervised methods in gene repre-
sentation learning cannot extract gene features specific to the task of
co-expression prediction. Moreover, these approaches do not adequate-
ly explore the biological explanations behind gene embeddings.

Graph neural network (GNN) has emerged as a powerful tool
for graph representation learning and link prediction tasks in
Bioinformatics, such as the predictions of protein–protein interac-
tions (Fout et al., 2017) and chromatin interactions (Lanchantin and
Qi, 2020; Zhang and Ma, 2020). In particular, graph convolution
network (GCN) generalizes the traditional convolution to graphs by
propagating information of neighboring nodes for each central node
(Kipf and Welling, 2017; Niepert et al., 2016). The propagation pro-
cess can be regarded as finding connectivity patterns and integrating
these patterns into the latent embeddings. Furthermore, attention
mechanisms have been integrated into many models as they assign
weights to different parts of input data, which can improve predic-
tion performance.

Based on these observations, we present HiCoEx (Hi-C predicts
gene co-expression), a GNN-based method for the prediction of
gene co-expression using spatial chromatin contacts. With the gene
contact network as the input, HiCoEx employs the graph attention
mechanism to capture the characteristics of 3D chromatin structures
in an end-to-end manner. We collected Hi-C data and RNA-seq
data from different tissues and cell lines of human. Experimental
results on these real datasets show that our method can effectively
learn the latent graph representations and significantly outperform
existing methods. We also explored biological mechanisms behind
the predictive model, explaining the structural information encoded
in gene embeddings. Our analyses suggest that common neighbors
might contribute to the co-expression of the two central genes
through enhancer sharing. Our framework of supervised learning
followed by explanation technique can facilitate the discovery of
transcriptional regulation by 3D chromatin structures.

2 Materials and methods

2.1 Overview of HiCoEx
By pre-processing Hi-C and RNA-seq data, we obtain the input of
HiCoEx, i.e. the adjacency matrix of a gene contact network P and the
adjacency matrix of a gene co-expression network Q for genes in the
same chromosome. The size of both matrices is N�N, where N is the
number of genes in the chromosome. In matrix P, an element pij ¼ 1 if
genes vi and vj have significant spatial contact, and pij ¼ 0 otherwise.
Similarly, in matrix Q, an element qij ¼ 1 if vi and vj are significantly
co-expressed, and qij¼ 0 otherwise. Our goal is to learn the embedding
of each gene by graph representation learning and then predict whether
each pair of genes have co-expression relationship.

Existing methods for predicting co-expression from Hi-C data ei-
ther design a graph kernel or learn a random walk from the gene con-
tact network to encode the spatial features for each gene, which are
unsupervised learning and as such their gene representations do not
consider gene co-expression (Babaei et al., 2015; Varrone et al., 2020).
Here, we introduce a GNN-based model to learn the gene representa-
tions in a supervised manner, i.e. incorporating signals from both gene
contact network and gene co-expression network into the node embed-
dings. Figure 1A illustrates our overall framework. The proposed archi-
tecture of HiCoEx (Fig. 1B) consists of a graph attention layer
(Velickovic et al., 2018) and a feed-forward layer.

2.2 Data pre-processing
We collected published Hi-C data from 12 types of tissues and cell
lines, and downloaded the corresponding RNA-seq datasets of the
same tissues and cell lines from GTEx for normal samples and from
The Cancer Genome Atlas (TCGA) for tumor samples, following
the procedure used in Varrone et al. (2020). We also used a pub-
lished Hi-C dataset of human pancreatic islets from Greenwald et al.
(2019) and a corresponding RNA-seq dataset from Fadista et al.
(2014) (see Table 1 for the summary of all datasets). According to
the HbA1c index of each donor (American Diabetes Association,
2010) which measures the diabetic degree, we divided the RNA-seq
dataset into two subsets, which are named islet healthy (HbA1c <
6.5) and islet diabetic (HbA1c � 6.5). Here, we considered auto-
somes and intra-chromosomal relationships only, although our
framework can be easily adapted to sex chromosomes and inter-
chromosomal relationships.

For the Hi-C datasets used in Varrone et al. (2020), we chose the
resolution of 40 kb. For the pancreatic islet Hi-C dataset, since the
processed contact matrix was not binned at 40 kb resolution, we
selected the Hi-C data of resolution 50 kb which is the closest to
40 kb among the available resolutions. To normalize each Hi-C con-
tact matrix, we used the method of iterative correction (Imakaev
et al., 2012), to preserve the local connectivity within the gene con-
tact network during gene embedding. Next, to map contacts from
the bin level to the gene level, we queried the transcription start sites
(TSS) of all genes from the Ensembl database with GRCh37/hg19
genome assembly. Then, we map each gene to a bin that contains
the TSS of that gene. As such, we can get the contact between two
genes using the contact between their corresponding bins, following
the TSS-mapping-based procedure in Babaei et al. (2015). Such
gene-level contact information will be used to construct a gene con-
tact network for each autosome. For the RNA-seq data, we used
transcripts per kilobase million to measure gene expression levels
from GTEx, RNA-Seq by expectation maximization for the data
from TCGA and trimmed mean of M-values for the pancreatic islet
data, as these measures were used in the original databases. We fil-
tered out lowly expressed genes, i.e. those genes that have zero
expression values in 80% of samples.

2.3 Constructing gene contact network and gene

co-expression network
To estimate the co-expression between each pair of genes within the
same chromosome, we calculated the Pearson correlation coefficient
(PCC) between the two genes’ expression profiles over the samples.
As such, for each of the 22 autosomes, we obtained a co-expression
matrix, the element of which is the PCC value. If the PCC value is
above the 90th percentile across all the 22 co-expression matrices,
then the gene pair is counted as significantly co-expressed (i.e. posi-
tive label); otherwise, it is counted as not co-expressed (i.e. a nega-
tive label). A gene co-expression network is constructed for each
autosome by keeping only those significantly co-expressed gene
pairs (COPs) as edges.

Similarly, we constructed a gene contact network for each auto-
some. To select reliable contacts for our prediction, we only took
significant Hi-C contacts as the edges, i.e. above the 80th percentile
of all Hi-C contacts in a chromosome. In this way, each autosome is
associated with a gene contact matrix and a gene co-expression ma-
trix, both containing elements of 0 or 1.
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2.4 Graph attention layer
Given a graph G, a vanilla GCN takes an adjacency matrix A of G
and node features X as input. Here, G is a gene contact network
built above. GCN generalizes the convolution to the graph-structure
data. It learns the representation of a node by aggregating its neigh-
bors’ representations in G with equal weights (Wu et al., 2021).

Graph Attention Network (GAT) (Velickovic et al., 2018) can
be regarded as an advanced GCN, since it assigns different attention

weights for the neighbors of a central node during the neighborhood
aggregation (Dzmitry et al., 2015). By adopting graph attention in
the model, we can distinguish the importance of different neighbor-
ing genes when characterizing a central gene.

The graph attention layer is the only component in a GAT
model, and we employ one graph attention layer in HiCoEx.
Following Velickovic et al. (2018), we denote a set of node represen-
tations by H0 ¼ fh0

1;h
0
2; . . . ;h0

Ng, where h0
i 2 R

d is the hidden

A

B

Fig. 1. Overview of HiCoEx. (A) The basic workflow. In the prediction module, Hi-C data are used to infer contacts within each chromosome which lead to a gene contact net-

work, and gene expression data are used to construct a gene co-expression network. Dark solid lines in both networks represent that two genes have contacts or co-expression,

while light-dashed lines represent the lack of either relationship. Two genes with co-expression relationship are defined as a positive instance and otherwise are taken as a nega-

tive instance. The topology of the gene contact network and the labeled data of co-expression are fed to HiCoEx for training. In the explanation module, the trained gene

embeddings are first explained by topological properties and then the biological meaning is explored in the union subgraph of a pair of genes. (B) The architecture of HiCoEx.

xi and xj are the input feature vectors of gene vi and gene vj which are initialized randomly. Node embeddings are generated by a graph attention layer, and the node embed-

dings of two genes are merged through element-wise product to calculate the edge embedding. After passing through a feed-forward layer, the final score is obtained, which is

the predicted probability of having the co-expression relationship between vi and vj. (C) Attention mechanism within a graph attention layer, which computes the attention co-

efficient aij between vi and vj

Table 1. Summary of datasets used in our experiments

Dataset No. of gene nodes

(RNA-seq)

No. of samples

(RNA-seq)

No. of edges

(gene contact

network, intra-chrom)

No. of edges

(gene co-expression

network, intra-chrom)

Hi-C sample

Pancreatic islet healthy (Greenwald et al., 2019) 13 747 66 1 039 257 533 849 T

Pancreatic islet diabetic (Greenwald et al., 2019) 13 853 11 1 052 201 544 004 T

Adrenal gland (Schmitt et al., 2016) 20 705 258 279 731 1 190 506 T

Aorta (Schmitt et al., 2016) 20 528 432 694 523 1 133 207 T

Hippocampus (Schmitt et al., 2016) 20 930 197 407 151 1 160 528 T

Left ventricle (Schmitt et al., 2016) 19 011 432 434 768 994 113 T

Pancreas rep.1 (Schmitt et al., 2016) 20 235 328 346 286 1 118 191 T

Pancreas rep.2 (Schmitt et al., 2016) 20 235 328 135 865 1 118 191 T

Lung rep.1 (Schmitt et al., 2016) 21 903 578 188 239 1 302 634 T

Lung rep.2 (Schmitt et al., 2016) 21 903 578 293 378 1 302 634 T

Lung cell (Rao et al., 2014) 21 903 578 1 618 428 1 302 634 CL

Breast cancer (Barutcu et al., 2015) 14 519 1218 66 522 609 747 CL

Breast normal (Le Dily et al., 2019) 21 353 459 166 293 1 286 132 CL

Prostate cancer (Rhie et al., 2019) 14 643 550 657 946 583 446 CL

Note: Note that the islet dataset is split into healthy and diabetic subsets according to the HbA1c index of samples in RNA-seq data. For the column of Hi-C

sample, T means Hi-C data sequenced from a tissue and CL means Hi-C data from a cell line.
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embedding of node vi at this graph attention layer and d is the di-
mension of node features. Here, xi 2 X is randomly initialized for
gene vi as the input node feature, i.e. h0

i ¼ xi.
Suppose N i is the set of neighbors of gene vi, and let us take gene

vj 2 N i as an example. The attention coefficient e0
ij, measuring the

importance of vj’s embedding for vi at this attention layer, is com-
puted by an attention mechanism. Here, the attention mechanism is
parameterized by a 2 R

2d0 and transformed by LeakyReLU. Hence,
the attention coefficient is:

e0
ij ¼ LeakyReLUðaT ½W0h0

i jjW0h0
j �Þ; (1)

where W0 2 Rd0�d is the matrix of learned parameters of this layer
�T and ½�jj�� denote the operations of transposition and concatenation
respectively. The attention coefficient is then normalized across all
the neighbors of gene vi by the softmax function (Fig. 1C)

a0
ij ¼ softmaxjðe0

ijÞ ¼
expðe0

ijÞP
k2N i

exp ðe0
ikÞ
: (2)

Therefore, as illustrated in Figure 1B, the latent representation of
gene vi after this layer can be calculated by weighted aggregation as
below:

h1
i ¼ r

X
j2N i

aijW
0h0

j

 !
; (3)

where rð�Þ is the activation function at a graph attention layer.
Then, we obtain the embedding of an edge between two genes by
taking the element-wise product of their embeddings as follows:

h1
ij ¼ ½h

1
i � h

1
j �: (4)

2.5 Feed-Forward layer
A Feed-Forward layer can increase the nonlinearity of latent embed-
ding and be used as the classifier. For a gene pair (vi, vj), the pre-
dicted gene co-expression can be calculated by:

q̂ij ¼ pðWff h
1
ij þ bff Þ; (5)

where ðWff and bff Þ are parameters of the feed-forward layer, and
pð�Þ is the activation function.

Furthermore, we adopt cross entropy for our binary classifica-
tion and therefore our objective is to minimize:

LðHÞ ¼ 1

jCj
X
ðvi ;vjÞ2C

ðqij logðq̂ijÞ þ ð1� qijÞ logð1� q̂ijÞÞ: (6)

qij from gene co-expression matrix Q is the real co-expression be-
tween vi and vj. H represents all the training parameters in the model
and C ¼ fðvi; vjÞg is the set of gene pairs for training.

2.6 Experimental setup
2.6.1 Baselines

We compare our model with the following baseline models, named
according to their feature extraction methods and classifiers. For all the
models (except Topology-RF), we first obtain the embedding for each
gene and then compute the embedding of each edge by the element-wise
product of the embeddings of the two genes connected through the edge.
The first four models have been implemented and compared in Varrone
et al. (2020), and we re-use their code for fair comparison here.

• Distance-RF: This method takes the 1D genomic distance be-

tween two genes as the input feature for a random forest (RF)

classifier.
• Topology-RF: This method encodes the features of a gene pair

based on five topological properties of the gene contact network,

which are shortest path length, Jaccard index, degree centrality,

betweenness centrality and clustering coefficient Babaei et al.

(2015). Then, a random neural network (Babaei et al., 2015) or

a RF (Varrone et al., 2020) is used to predict gene co-expression.
• Singular vector decomposition (SVD)-RF: The gene contact net-

work can be embedded through matrix factorization. Using

SVD, the adjacency matrix of a gene contact network is decom-

posed into two factors, and then gene embeddings are obtained

by summing up the two factors.
• Node2vec-RF: Genes with similar roles or within the same com-

munities should have similar representations. Based on this as-

sumption, the node2vec algorithm is used in Varrone et al.

(2020) to learn random walks for each node in the gene contact

network to get the corresponding gene’s embedding.
• GCN: This is a vanilla model of graph convolutional network,

which automatically learns the gene embeddings and predicts

gene co-expression with a feed-forward layer similar to HiCoEx.

GCN assigns the same weights to the neighbors of a node during

the node embedding propagation.

2.6.2 Implementation details

We evaluate all the methods based on Accuracy. We randomly sam-
ple gene pairs in each dataset to balance the sizes of positive and
negative samples. Then, we split each of our datasets by the propor-
tion 7:1:2 for training, validation and testing.

In our model, we use one graph attention layer and exponential
linear units (Clevert et al., 2016) as the activation function in
Equation (3), and we use a softmax as the activation function in
Equation (5). The Adam algorithm (Kingma and Ba, 2015) is used
as the optimizer. We linearly reduce the learning rate by half in each
iteration from the initial value 1e-3 until the maximum epoch 100.
The batch size is set to 64, and the latent embedding size is 16, the
same as in Varrone et al. (2020). Batch normalization is used for
regularization, and the dropout rate is set to 0.5. We run each ex-
periment three times to compute the mean and SD of accuracy, using
an Nvidia Tesla V100 GPU.

2.7 Explanations of HiCoEx
Recently, explainable AI techniques have been proposed for GNNs
(Schlichtkrull et al., 2021; Ying et al., 2019), and one of the explan-
ation methods is to explore the structural information encoded in
the learned graph embeddings. Here, We employed a method in Jin
et al. (2021) to explain the gene embeddings trained from HiCoEx.
This method is based on the hypothesis that nodes near each other
in the embedding space have similar structural properties.

For a gene in a Hi-C contact network, we first selected its k-nearest
neighbors (k-NNs) by using Euclidean distance (we have also tried
Cosine distance) in the embedding space. Then, we calculated six types
of topological properties, namely Degree Centrality, Between
Centrality, Clustering Coefficient, PageRank, Jaccard Index and
Shortest path length. For Jaccard Index and Shortest path length, since
they are properties for gene pairs, we calculated their values for a single
gene by adding the corresponding values of all gene pairs that include
this gene. For each property, we also calculated the average value over
the k-NNs of a gene, as the property value of the neighborhood of the
gene. Finally, PCC about each topological property is computed be-
tween the genes and their neighborhoods in the embedding space. If
the PCC about a topological property is higher, it means that this topo-
logical property has been better encoded in the gene embeddings and
thereby, it makes a more significant contribution to the prediction of
gene co-expression than other topological properties.

3 Results

3.1 Predicting gene co-expression by chromosome-

specific gene contacts
To assess the performance of our model, we first conducted experi-
ments for each chromosome separately. Here, we set the node
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embedding size to 16 as in Varrone et al. (2020) and replicated each
experiment three times to obtain the average accuracy. For each
type of tissue or cell line, the prediction results on 22 autosomes are
integrated within a boxplot (Fig. 2A). See Supplementary Figure
S1A and Table S1 for complete results.

Measured by classification accuracy, distance-RF has the worst
performance, although it still exceeds 0.5, the random accuracy of a
binary classifier. This result suggests that the genomic distance is not
a key factor that affects gene co-expression. The two GNN-based
methods (i.e. GCN and HiCoEX) outperform the three feature
engineering-based methods (i.e. Topology-RF, SVD-RF and
Node2vec-RF). HiCoEx outperforms other models on all datasets.

To examine whether the good performance of GCN and
HiCoEx depends on the choice of classifier, we removed the feed-
forward layer from the two GNN-based methods. The modified
GNN models learn node embeddings with size 2, and the final pre-
diction is directly calculated by the dot product between the embed-
dings of a pair of genes. In this way, we implemented new GNN
models (named *-direct as in Fig. 2B and Supplementary Fig. S1B).
Then, we trained the two models on all the datasets and compared
them to Node2vec-RF, the best non-GNN baseline model. We
observed that the removal of the feed-forward layer leads to only
small changes in the prediction accuracy. As shown in Figure 2B,
HiCoEx-direct had comparable results with HiCoEx and even per-
formed better than HiCoEx on the breast normal dataset.
Moreover, the four GNN-based methods still outperformed
Node2vec-RF among all the datasets. These results suggest that the
graph representation learning is crucial for gene co-expression
prediction.

3.2 Predicting gene co-expression from combined

intra-chromosomal contacts
After co-expression prediction for each individual chromosome, we
conducted similar experiments on the set of all autosomes. For each

type of tissue or cell line, we constructed a network containing all
intra-chromosomal gene contacts as the input data. Following the
experimental procedure of Varrone et al. (2020), we randomly chose
some gene pairs as the training dataset. We kept the same hyper-
parameters as before, except that we used a larger batch size and
removed all regularization terms during the training of the GNN-
based models. For each tissue or cell line, since there is only one
dataset, instead of 22 datasets for the autosomes, we used bar
graphs instead of boxplots to summarize the results (Fig. 3 and
Supplementary Fig. S2). When compared with the non-GNN base-
lines, the two GNN-based models perform better on all the datasets,
and HiCoEx outperforms GCN on 12 out of 14 datasets.
Interestingly, the two GNN models have accuracies close to each
other on the lung rep.1 dataset, and GCN has higher accuracy than
HiCoEx on the breast cancer dataset. This indicates that the atten-
tion mechanism as used in HiCoEx may not help too much when all
intra-chromosomal contacts are taken as input.

3.3 Parameter analysis
Several parameters are important for constructing gene contact net-
works and gene co-expression networks, such as the bin size (i.e.
resolution) of Hi-C data, thresholds for binarizing gene–gene con-
tacts and gene–gene co-expression values. For each parameter, we
selected different values to analyze its impact on the prediction
performance.

We used Hi-C contact maps at different resolutions on the breast
cancer dataset as input data. The resolution is set to 40, 100, 250 kb
and 1 Mb, respectively. The results in Figure 4A show that HiCoEx
outperforms other baselines at four types of Hi-C resolutions.
Moreover, we found that, as the resolution decreased from 40 kb to
1 Mb, the accuracies of most models also decreased. HiCoEx
achieves the best performance at the finest resolution of 40 kb,
probably because Hi-C data at a finer resolution can identify more
contacts between proximal genes, which helps predict gene
co-expression.

A

B

Fig. 2. Performance comparison of methods using intra-chromosomal gene contact networks for 22 autosomes separately on several datasets. (A) Overall accuracy of all meth-

ods on seven datasets. (B) Accuracy of the methods after removing the feed-forward layer of two GNN-based models. Each boxplot describes the distribution of the prediction

results over 22 chromosomes for a specific tissue or cell line
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Next, we conducted experiments of preserving Hi-C contacts
above different threshold values on the prostate cancer dataset. The
threshold value for Hi-C contact is set to 80th, 60th and 40th per-
centile, respectively (Fig. 4B). Decreasing the Hi-C threshold affects
none of the models in their prediction accuracy significantly, which
means that preserving more contacts cannot help improve the

prediction performance. Additionally, we conducted experiments of
preserving gene co-expression above different threshold values on
the breast cancer dataset. The threshold for co-expression value is
set to 90th, 60th and 50th percentile, respectively. The result
(Fig. 4C) shows that our model still performs the best with the three
cutoff values. Besides, we noticed that, as the threshold decreased
from 90th to 50th percentile, the accuracies of all models decreased
as well. This is probably because more weakly COPs are preserved
as the threshold for gene co-expression becomes lower. These gene
pairs might be assigned to wrong classes and therefore mislead the
model training.

3.4 Learned gene embeddings explain predictions of

HiCoEx
To better understand what types of structural properties HiCoEx
could encode, we analyzed the Pearson correlations between some
topological features (part of which are extracted from [1]) and gene
embeddings learned by HiCoEx.

Let us take Chromosome 7 of breast cancer dataset as an ex-
ample (Fig. 5A and Supplementary Fig. S3). Among all the topo-
logical properties, the correlation about Jaccard Index is the highest
and the correlation about Degree Centrality is the second highest.
Similar results have been observed on most other autosomes (13 of
21). These results suggest that, among the six topological properties,
Jaccard Index is encoded by the gene embeddings from HiCoEx bet-
ter than all other topological properties. In a graph, Jaccard Index is
the ratio of the number of common neighbors shared by two nodes
to the number of all the neighbors connected to at least one of the
two nodes. The high correlation about the Jaccard Index suggests
that, in a gene contact network, the common neighbors of two cen-
tral genes could be important for learning gene embeddings and pre-
dicting the co-expression between the two genes.

To further test which gene pair-based properties are encoded in
the embeddings, we performed a prediction task similar to that in
Dalmia et al. (2018) and Jin et al. (2021). The embedding of a pair
of genes (i.e. the edge embedding) is calculated by the element-wise
product of the embeddings of the two genes. Given the edge embed-
ding of a gene pair as input, we used a k-NN regression model to
predict the value of a pair-based topological property for the gene
pair. We used 5-fold cross-validation and took the mean Root mean
square error (RMSE) across the 5 folds as the prediction error for
each chromosome. Here, we predicted four pair-based topological
properties, namely Jaccard Index, Resource Allocation Index,
Shortest Path Length and Pairwise Node Connectivity, using the
edge embeddings. In Figure 5B, the prediction of Jaccard Index
exhibits the smallest errors, indicating that Jaccard Index is the most
correlated with the learned edge embeddings among the four topo-
logical properties. Besides, the errors of predicting both Jaccard
Index and Resource Allocation Index are significantly smaller than
the errors of predicting the other two properties. Since the former

Fig. 3. Performance comparison of methods using intra-chromosomal gene contacts combined from 22 autosomes. The height of each bar represents the average accuracy of

three replicated experiments and the vertical line corresponds to the SD

A

B

C

Fig. 4. Performance comparison of different Hi-C resolutions, Hi-C thresholds and

co-expression thresholds. (A) Accuracy of using different Hi-C resolutions on the

breast cancer dataset. (B) Accuracy of using different Hi-C thresholds on the pros-

tate cancer dataset. (C) Accuracy of using different co-expression thresholds on the

breast cancer dataset. Each boxplot describes the distribution of the prediction

results over 22 chromosomes
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two properties are both based on the number of common neighbors
shared by two central genes, this result again shows the importance
of the common neighboring genes for the prediction of the two cen-
tral genes’ co-expression.

Based on the above observations, we extracted one-hop subgraphs
for two genes respectively (because one GAT layer used in our model
integrates first-order neighbors for a gene during message passing) and
took the intersection between the two subgraphs. Hereafter, we call it
the intersection subgraph of the central gene pair. Then we explored
the contribution of the common neighbors to the co-expression of the
two genes. As one of the most important regulatory elements, an en-
hancer could interact with some target genes and is critical to coordi-
nating their transcriptional activities. Therefore, we examined whether
enhancers are correlated with the common neighbors of two genes.
Here, we only consider the gene pairs which are both co-expressed and
interacting with each other. We searched gene–enhancer interactions
from PantherDB (Thomas et al., 2003). From the intersection subgraph
of each gene pair, we found that common neighbors are more likely to
share enhancers with both central genes. Figure 5C displays the inter-
section subgraph of SUPT6H and DHRS13 on Chromosome 17, plot-
ted using Cytoscape. Four out of seven common neighbors share
enhancers with both SUPT6H and DHRS13. Figure 5D is a diagram
describing the gene–enhancer interactions. Here, we only show the
gene–enhancer interactions for the two central genes and four of their

common neighbors (i.e. the four nodes colored in yellow in Fig. 5C)
that share enhancers with both central genes. In Figure 5D, we can see
that the two central genes, SUPT6H and DHRS13, do not directly
share any enhancer with each other, and thus their co-expression might
be driven by the enhancers shared with their common neighbors.

We tested whether the common neighbors of COPs are more
likely to share enhancers with central genes than those of non-
COPs. Here, all the central gene pairs we analyzed interact with
each other. For a pair of central genes, we estimated the probability
that, in a subgraph, a common neighboring gene (i.e. it contacts
both central genes) shares enhancers with both central genes. Note
that the two central genes may or may not share any enhancer be-
tween themselves. We selected 14 autosomes for analysis, because
Jaccard Index values are the most correlated with the learned node
embeddings on each of these chromosomes. Since the calculation of
the probability needs a sufficient number of common neighbors for
a gene pair, to estimate the probability more accurately, we first fil-
tered out the COPs and non-COPs with not enough common neigh-
bors (i.e., the number of common neighbors is less than a threshold,
which is set to 10) for all the 14 autosomes. We then picked only the
autosomes with at least 100 COPs and 100 non-COPs each with an
enough number of common neighbors, i.e. chr1, chr9, chr11, chr16
and chr17, for comparison. We downloaded the data of gene–en-
hancer interactions of breast cancer cells from the database of

A B

C D

E F

Fig. 5. Explanation of gene embeddings learned from HiCoEx on the breast cancer dataset. (A) Correlation of topological properties between genes and their k-NNs, where

k-NNs are selected by Euclidean distance or Cosine distance in the embedding space. The height of each bar represents the PCC calculated on Chromosome 7. (B) Comparison

of prediction errors of gene pair-based topological properties by the learned edge embeddings. (C) The intersection subgraph of a central gene pair (SUPT6H, DHRS13) on

Chromosome 17. RAB34, PROCA1, UNC119 and RPL23A are the common neighbors sharing enhancers with both SUPT6H and DHRS13, and TLCD1, TRAF4 and NEK8

are the common neighbors not sharing enhancers with the two central genes. (D) A diagram of gene–enhancer interactions. Shared enhancers are plotted by highlighted bars,

and interactions between a gene and shared enhancers are plotted by highlighted curves. The highlighted bars vertically aligned refer to the identical location and DNA se-

quence of the enhancers shared between one of the central genes and the common neighbors. (E) Comparison of distributions between COPs and non-COPs. The distribution

is over the intersection subgraphs of the central gene pairs with at least 10 common neighbors in a chromosome. (F) Comparison of distributions for COPs with common

neighbors and with all neighbors. The distribution is over the intersection subgraphs of the COPs with at least 10 common neighbors in a chromosome. Each violin plot in (E)

and (F) describes a distribution of the probability that, in an intersection subgraph, a common neighbor shares enhancers with both central genes
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Enhancer Atlas V2.0 (Gao and Qian, 2019). Figure 5E shows that
on three of the five autosomes, the common neighbors of COPs are
more likely to share enhancers with both central genes than those of
non-COPs (with t-test P values < 0.05). This indicates that through
sharing enhancers, the common neighboring genes might contribute
to the co-expression of the two central genes.

To further examine whether such common neighbors contribute
to gene co-expression, we compared the probability distributions of
enhancer sharing between neighboring and central genes for COPs.
The probabilities were estimated on two sets of neighboring genes.
One is the set of common neighbors, and the other is the set of all
neighbors (i.e. all the genes that contact at least one of the two cen-
tral genes). Similar to Figure 5E, we performed the comparisons on
the five autosomes. Figure 5F shows that the probability for a com-
mon neighbor to share enhancers with both central genes (which are
co-expressed and interacting with each other) is significantly higher
than that of a randomly sampled neighbor, and such a tendency is
consistent across the five autosomes (with t-test P values < 0.05). In
other words, compared to non-common neighbors, the common
neighbors are more likely to share enhancers with the co-expressed
and contacted central genes. This demonstrates the importance of
spatially proximal genes for gene co-expression.

4 Discussion

Exploring the relationship between spatial genome organization and
gene co-expression can shed light on the epigenomic mechanisms of
transcriptional regulation. To this end, we presented HiCoEx, a
novel machine learning framework based on GNN for explainable
prediction of gene co-expression using Hi-C data, which comprises a
predictive model followed by an explanation technique. HiCoEx is
able to automatically capture important patterns in the Hi-C and
RNA-seq data for the prediction of co-expression from chromosom-
al contacts between genes, and visualize the gene–gene interactions
for mechanistic exploration.

The accurate predictions of our model can be explained by
uncovering the structural information encoded in the learned gene
embeddings. Our analyses suggest that the GNN-based model could
automatically capture some topological properties, especially
Jaccard Index on most chromosomes. This also means that the top-
ology of the gene contact network may be important for gene co-
expression, which is consistent with the previous research (Babaei
et al., 2015). According to the above findings, for gene pairs which
are co-expressed and interacted with each other, we further visual-
ized the 1-hop union subgraphs of these gene pairs. We found that
the common proximal genes, sharing the same enhancers with two
central genes, may be responsible for two genes’ co-expression. By
conducting the above explanations, we showed that our framework
could be utilized to aid the exploration of the mechanism of gene
regulations. Here, we have explored several topological features. In
the future, we may include more types of topological features for
analysis, such as Closeness Centrality derived from genes and Local
Path Index (Lü et al., 2009) derived from gene pairs. Moreover,
other regulatory elements (e.g. transcription factor binding sites)
could be also analyzed (Chepelev et al., 2012; Ribeiro et al.,
2021a,b), e.g. whether they are also shared by central genes and
their spatially proximal genes, and how these regulatory elements
work together to coordinate transcriptional regulation.

In this article, we predicted gene co-expression using spatial
contacts between genes inferred from Hi-C data. Our explanation
emphasizes the importance of common neighboring genes and their
functional interactions with enhancers for gene co-expression.
Therefore, in the future, ChIA-PET data are needed to identify
such functional interactions and characterize the complex relations
between genes and their regulatory elements (Avsec et al., 2021;
Cao et al., 2017). Additionally, Hi-C data with finer resolutions
are also needed to distinguish precise gene–-gene contacts. By com-
bining the two types of spatial interactions above, we can construct
a more comprehensive network, so as to further decipher the rela-
tionship between 3D chromatin organization and gene regulation
mechanism.
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