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Abstract: In this article, the entropy generation characteristics of a laminar unsteady MHD
boundary layer flow are analysed numerically for an incompressible, electrically conducting and
dissipative fluid. The Ohmic heating and energy dissipation effects are added to the energy
equation. The modelled dimensional transport equations are altered into dimensionless self-similar
partial differential equations (PDEs) through suitable transformations. The reduced momentum and
energy equations are then worked out numerically by employing a new hybrid method called the
Gear-Generalized Differential Quadrature Method (GGDQM). The obtained numerical results are
incorporated in the calculation of the Bejan number and dimensionless entropy generation. Quantities
of physical interest, like velocity, temperature, shear stress and heat transfer rate, are illustrated
graphically as well as in tabular form. Impacts of involved parameters are examined and discussed
thoroughly in this investigation. Exact and GGDQM solutions are compared for special cases of
initial unsteady flow and final steady state flow. Furthermore, a good harmony is observed between
the results of GGDQM and those given previously by the Spectral Relaxation Method (SRM), Spectral
Quasilinearization Method (SQLM) and Spectral Perturbation Method (SPM).

Keywords: entropy generation; unsteady flow; Bejan number; energy dissipation; Ohmic heating;
Gear-Generalized Differential Quadrature Method

1. Introduction

Physically, entropy is an assessment of molecular chaos or its randomness. As a thermally
dynamic system becomes more disordered, the locations of the molecules become more and more
uncertain and therefore their positions become less predictable and the entropy increases. The boost in
the disorder of a thermodynamic system is termed entropy generation/production. Entropy generation
determines the level of irreversibilities that accumulate during a process. With the increasing rate
of entropy creation in any heated system, the quality of energy is reduced, that is, it destroys useful
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work and therefore reduces the thermal effectiveness of the system. Determining the range of entropy
generation within the fluid flow area may help to improve system efficiency and achieve the optimal
thermal or mechanical design [1–10].

Due to the vital applications of boundary layer flows in industries, technology, and manufacturing,
many researchers have analysed boundary layer flows by applying different physical situations,
such as magnetic field, heat source/sink, porous medium, suction/injection, combined mass and
heat transfer, different velocity, and thermal boundary conditions. In particular, the interest in the
boundary layer flow induced by a stretching sheet with heat transfer has developed rapidly in
recent decades because of its many applications in numerous manufacturing and industrial processes,
for example in the extrusion of polymer leaf from dye, the cooling mechanism of materials, fiberglass,
paper manufacture, illustration of plastic films, casting process, etc. The innovative work on this
topic is due to Crane [11], who originated the study of boundary layer flow past a stretching surface.
Subsequent to this well-known work, several researchers have done a lot of research on this subject.
There is a vast literature on flow over stretching surfaces, but we only mention a few very recent
studies [12–21]. Moreover, most of the research done in this direction is for the steady flows. Only a few
studies are available on the unsteady stream over a stretching area. Pop and Na [22] analyzed the
unsteady flow over a stretching sheet. They obtained the analytical resolution of the dimensionless
momentum equation by using a regular perturbation method. Chang et al. [23] discussed the unsteady
flow of a viscous fluid over an impulsively stretching sheet. They obtained the perturbation series
solution of self-similar boundary layer for small times and asymptotic analysis is also performed in
order to obtain the solution for large times. Time-dependent boundary layer flow over a stretching
sheet in a rotating fluid is examined by Nazar et al. [24]. They computed the numerical explanation of
the problem by the Keller box method. Zheng et al. [25] reported the unsteady flow with combined
effects of mass and heat transmission over an oscillatory stretching surface. Aurangzaib et al. [26]
used the Keller box method to study the unsteady run of micropolar fluid above a vertical plate
fixed in a permeable media. Malvandi et al. [27] investigated the heat source/sink impacts on the
unsteady flow of a nanofluid over a permeable stretching sheet. Motsa and Makukula [28] studied
the heat and mass transfer analysis of boundary layer flow of rotating fluid over a stretching sheet.
Motsa [29] applied spectral homotopy analysis and local linearization method to solve self-similar
equations of unsteady boundary layer flow induced by an impulsive stretching sheet. Vajravelu et
al. [30] performed the combined heat and mass transfer analysis of unsteady flow past a shrinking
surface in the presence of viscous dissipation and thermal radiation.

Lorentz force is generated when an electrically conducting fluid flow in the presence of magnetic
field. The momentum equation is modified by adding the body force J×B per unit volume. Electrically
conducting fluids have substantial applications in MHD accelerators, power generation, cooling
filaments, and electrostatic filters. Due to substantial practical applications in industry, Andersson [31]
analyzed electrically conducting fluids under the effects of a magnetic field. Three-dimensional
unsteady MHD flow has been investigated by Xu et al. [32]. Recently, Sheikholeslami [33] reported
the effects of Lorentz force and porous medium on entropy generation in a nanofluid. The effects
of magnetic field on the flow of Al2O3-water nanofluid in a porous cavity were studied by
Sheikholeslami [34] using the control volume finite element method.

Entropy generation analysis of boundary layer flows induced by a stretching sheet has been
performed by various researchers [35–44]. However, no attention has been given to understanding
the entropy generation in an unsteady boundary layer flow during linear stretching with Ohmic
heating. Therefore, the present study concentrates on the heat transfer and entropy analyses of
a magnetohydrodynamic unsteady flow of dissipative fluid with the existence of Lorentz force.
The modelled nonlinear equations are solved numerically by utilizing an auto-adaptative implicit
algorithm based on the Generalized Differential Quadrature Method (GDQM) [45–47] or the Gear
Method (GM) [48] and discretizing the physical space domain into non-uniformly distributed grid
points, which are generated simultaneously along with GDQM by the help of Gauss-Lobatto collocation
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points [49–52]. Moreover, the present numerical results are portrayed and discussed thoroughly via
various graphical and tabular illustrations, in order to examine the influences of several emerging
key parameters, such as Prandtl number Pr, magnetic parameter M, Eckert number Ec, as well as the
reduced dimensionless time ξ and the temperature difference parameter Ω.

The innovation of the current study lies essentially in the use of a new hybrid numerical method
called Gear-Generalized Differential Quadrature Method (GGDQM) for studying thermodynamically
the present unsteady boundary layer flow problem in the presence of viscous dissipation and Ohmic
heating. The robustness and efficiency of the numerical results given by GGDQM are also compared
analytically and numerically by considering the existing published results and introducing the notion
of CPU time.

2. Flow and Heat Transfer Analysis

As schematically portrayed in Figure 1, we consider a two-dimensional unsteady laminar forced
convective flow of an incompressible, viscous, and electrically conducting fluid driven by a linearly
stretching horizontal surface, in the presence of a vertical applied magnetic field of constant strength
Bo, in such a way that the induced magnetic field is neglected under the assumption of a small
magnetic Reynolds number. Initially (i.e., t = 0), the studied fluid and the sheet surface y = 0 are
stationary and have a constant temperature T∞. After this time (i.e., t > 0), the sheet surface y = 0 is
stretched linearly along the positive x-direction with a velocity Uw = Uox and heated non-uniformly
by an imposed nonlinear thermal boundary condition of the form Tw = T∞ + Tox2, where Uo and To

are two dimensional constants that characterize the present unsteady boundary layer flow.
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Figure 1. Flow configuration with Cartesian coordinate system.

In the presence of an external magnetic field, viscous dissipation and Joule heating effects,
the continuity, momentum, and energy equations governing the present unsteady boundary layer flow
are written as follows

∂u
∂x

+
∂v
∂y

= 0 (1)

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= µ

∂2u
∂y2 − σB2

o u, (2)

(
ρCp

)(∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
= k

∂2T
∂y2 + µ

(
∂u
∂y

)2
+ σB2

o u2, (3)
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with the following appropriate boundary conditions

u = Uw = Uox, v = 0, Tw = T∞ + Tox2 at y = 0, (4)

u→ 0 , T → T∞ as y→ ∞, (5)

where t is the dimensional time, (u, v) are the tangential and normal fluid velocity components,
respectively, µ is the dynamic viscosity of the incompressible fluid, ρ is the density, σ is the electrical
conductivity of the conducting fluid, Bo is the uniform magnetic field applied vertically along
the y-direction, T is the temperature of the fluid throughout the boundary layer, k is the thermal
conductivity of the working fluid and

(
ρCp

)
is the fluid heat capacitance.

By introducing the following dimensionless quantities

η =

(
Uo

υξ

)1/2
y, u = Uox fη(ξ, η), v = −(Uoυξ)1/2 f (ξ, η), θ(ξ, η) =

T − T∞

Tw − T∞
. (6)

Equations (1)–(5) reduce to

∂ fη

∂ξ
=

fηηη

(1− ξ)ξ
+

η fηη

2ξ
−

M2 fη

(1− ξ)
+

f fηη

(1− ξ)
−

f 2
η

(1− ξ)
, (7)

∂θ

∂ξ
=

θηη

Prξ(1− ξ)
+

ηθη

2ξ
+

f θη

(1− ξ)
−

2 fη θ

(1− ξ)
+

Ec f 2
ηη

ξ(1− ξ)
+

EcM2 f 2
η

(1− ξ)
, (8)

f (ξ, η) = 0, fη(ξ, η) = 1, θ(ξ, η) = 1 at η = 0 for 0 ≤ ξ ≤ 1 (9)

θ(ξ, η) = 0, fη(ξ, η) = 0 as η → ∞ for 0 ≤ ξ ≤ 1. (10)

Here, the subscripts η, ηη and ηηη used above for f and θ designate the first, second and third
partial derivatives, respectively, with respect to the variable η.

The continuity equation described above by Equation (1) is satisfied identically by introducing
the stream function ψ(t, x, y), such that (u, v) =

(
∂ψ
∂y ,− ∂ψ

∂x

)
,

ψ = (Uoυξ)1/2x f (ξ, η).
(11)

Note that in the case of a non-uniform wall temperature heating condition with linear spatial
variation (i.e., Tw = T∞ + Tox), the dimensionless energy equation takes the following form

∂θ

∂ξ
=

θηη

Prξ(1− ξ)
+

ηθη

2ξ
+

f θη

(1− ξ)
−

fη θ

(1− ξ)
+

Ec f 2
ηη

ξ(1− ξ)
+

EcM2 f 2
η

(1− ξ)
. (12)

In addition, the non-dimensional physical parameters ξ, Pr, Ec and M appearing above in
Equations (7) and (8) are defined mathematically as

ξ = 1− e−τ (reduced dimensionless time), Pr =
ν(ρCp)

k (Prandtl number),

Ec = U2
w

Cp(Tw−T∞)
(Eckert number), M2 = σB2

o
ρUw

(magnetic parameter).
(13)

Here, τ is the dimensionless time and ν is the kinematic viscosity of fluid, where τ = Uot and ν = µ/ρ.
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For the present boundary layer flow problem, the skin friction coefficient C fx and the local Nusselt
number Nux are defined as

C f x = − µ

ρU2
w

∂u
∂y

∣∣∣∣
y=0

, (14)

Nux = − x
(Tw − T∞)

∂T
∂y

∣∣∣∣
y=0

. (15)

In dimensionless form, these engineering quantities reduce to

Re1/2
x C f x = −ξ−1/2 fηη(ξ, 0), (16)

Re−1/2
x Nux = −ξ−1/2θη(ξ, 0). (17)

2.1. Closed Form Solutions

Generally, for a non-conservative fluidic system, the viscous dissipation and Joule heating terms
cannot be neglected in the energy equation (i.e., Ec 6= 0). Therefore, the closed-form analytical
solutions for f (ξ, η) and θ(ξ, η) cannot be obtained for the present dynamical system. On the contrary,
the exact solutions of the dimensionless stream function f (ξ, η) for the limiting cases of initial unsteady
flow (i.e., ξ = 0) and final steady state flow (i.e., ξ = 1) can be found easily from Equation (7). Hence,
by making use of the boundary conditions related to f (ξ, η), the special solutions for f (0, η) and f (1, η)

are expressed formally as follows

f (0, η) = ηer f c
(η

2

)
+

2√
π

[
1− exp

(
−η2

4

)]
, (18)

f (1, η) =
1− exp

[
−
(

M2 + 1
)1/2

η
]

(M2 + 1)1/2 . (19)

By virtue of these solution expressions and the boundary conditions of f (ξ, η) and θ(ξ, η),
we obtain from Equation (8) the following results fηη(0, 0) = − 1√

π
,

θηη(0, 0) = −PrEc
π ,

(20)

 fηη(1, 0) = −
(

M2 + 1
)1/2,

θηη(1, 0) = Pr
(
2− Ec

(
2M2 + 1

))
.

(21)

The validity of the numerical results presented in this paper is confirmed in the next section
by comparing our findings with those developed analytically for the physical quantities fηη(0, 0),
fηη(1, 0), θηη(0, 0) and θηη(1, 0), as shown in Equations (20) and (21).

2.2. Second Law Analysis

As is well known, the volumetric entropy production rate of an electrically conducting fluid
flowing in the presence of an externally applied magnetic field is defined thermodynamically by

.
S
′′′

gen = k
(
∇T
T

)2
+
( µ

T

)
Ψ +

(
1

σT

)
J2. (22)



Entropy 2019, 21, 240 6 of 25

Here, ∇T refers to the temperature gradient vector, Ψ denotes the viscous dissipation function of the
incompressible Newtonian fluid and J represents the current density vector, such that Ψ = 2

(
∂u
∂x

)2
+ 2
(

∂v
∂y

)2
+
(

∂u
∂y + ∂v

∂x

)2
,

J = σ(V× B0).
(23)

Using the boundary layer approximations, Equation (22) reduce to

.
S
′′′
gen =

k
T2

(
∂T
∂y

)2
+

µ

T

(
∂u
∂y

)2
+

σB2
o u2

T
. (24)

As shown in Equation (24), the expression of
.
S
′′′
gen depicts three bases of entropy production.

These thermodynamic sources are the heat transfer, the viscous friction and the Ohmic
heating, respectively.

The dimensionless form of Equation (24) is called entropy generation number Ns.
This thermodynamic quantity is given by

Ns =

.
S
′′′
gen( .

S
′′′
gen

)
o

, (25)

where
( .

S
′′′
gen

)
o

represents a characteristic entropy generation of the studied system.
By employing the similarity transformations shown in Equation (6), we get

Ns =
θ2

η

(θ + Ω)2 +
PrEc f 2

ηη

(θ + Ω)
+

M2EcPrξ f 2
η

(θ + Ω)
. (26)

Here, Ω denotes the temperature difference parameter, where

( .
S
′′′
gen

)
o
=

k
(
ρCp

)
µξ

, (27)

Ω =
Tw − T∞

T∞
. (28)

Another interesting thermodynamic quantity called the Bejan number Be can be computed from the
different entropic terms shown in Equation (26) as follows

Be =
Nh

Nh + N f + Nm
, (29)

where 

Nh =
θ2

η

(θ+Ω)2 ,

N f =
PrEc f 2

ηη

(θ+Ω)
,

Nm =
M2EcPrξ f 2

η

(θ+Ω)
.

(30)

After introducing the expressions of Nh, N f and Nm into Equation (29), we get

Be =
θ2

η

θ2
η + PrEc(θ + Ω)

(
f 2
ηη + M2ξ f 2

η

) . (31)
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From the definition of the Bejan number Be, it is obvious that Be is always comprised between
0 and 1. The zero value of Be implies that the combined contribution of fluid friction and magnetic
field completely overrides the heat transfer effect, while the unit value of Be indicates that the heat
transfer mechanism is the only cause of entropy creation. On the contrary, it is found that the heat
transfer and the combined effects of magnetic field and viscous dissipation can make an equal entropic
contribution in cases where Be = 0.5.

From the implementation point of view, the unsteady boundary layer flow problem under
consideration can be further simplified by considering the following changes

η = η∞χ,

f (ξ, n) = f (ξ, n∞χ) = F(ξ, χ),

θ(ζ, n) = θ(ξ, n∞χ) = Θ(ξ, χ).

(32)

It is worth noting that the dimensionless space variable χ is introduced above instead of η for
reducing the physical space domain from [0, ∞] to [0, 1], in which η∞ represents the optimum value of
the boundary layer thickness.

Keeping in mind the above transformations, Equations (7) and (8) with their corresponding
boundary conditions (i.e., Equations (9) and (10)) reduce to

∂Fχ

∂ξ
=

Fχχχ

η2
∞(1− ξ)ξ

+
χFχχ

2ξ
−

M2Fχ

(1− ξ)
+

FFχχ

η∞(1− ξ)
−

F2
χ

η∞(1− ξ)
, (33)

∂Θ
∂ξ

=
Θχχ

Prη2
∞ξ(1− ξ)

+
χΘχ

2ξ
+

FΘχ

η∞(1− ξ)
−

2Fχ Θ
η∞(1− ξ)

+
EcF2

χχ

η4
∞ξ(1− ξ)

+
EcM2F2

χ

η2
∞(1− ξ)

, (34)

F(ξ, χ) = 0, Fχ(ξ, χ) = η∞, Θ(ξ, χ) = 1 at χ = 0 for 0 ≤ ξ ≤ 1, (35)

Fχ(ξ, χ) = 0, Θ(ξ, χ) = 0 as χ→ 1 for 0 ≤ ξ ≤ 1, (36)

Also, the dimensionless physical quantities Re1/2
x C f x, Re−1/2

x Nux, Ns and Be become

Re1/2
x C f x = −

ξ−1/2Fχχ(ξ, 0)
η2

∞
, (37)

Re−1/2
x Nux = −

ξ−1/2Θχ(ξ, 0)
η∞

, (38)

Ns =
Θ2

χ

η2
∞(Θ + Ω)2 +

PrEcF2
χχ

η4
∞(Θ + Ω)

+
M2EcPrξ F2

χ

η2
∞(Θ + Ω)

, (39)

Be =
η2

∞ Θ2
χ

η2
∞Θ2

χ + PrEc(Θ + Ω)
(

F2
χχ + η2

∞ M2ξ F2
χ

) . (40)

3. Solution Methodology

Due to the unsteadiness of the studied boundary layer flow problem and its nonlinear dynamical
behaviour, the governing partial differential equations (PDEs) along with their associated boundary
conditions (i.e., Equations (1)–(5)) are subjected to several necessary simplifications and suitable
similarity transformations before being solved numerically by means of a powerful numerical tool.
For this purpose, the resulting set of coupled nonlinear differential equations and boundary conditions
(i.e., Equations (33)–(36)) is handled numerically using the Gear-Generalized Differential Quadrature
Method (GGDQM), in order to reach a precision to the tenth decimal place as the standard of
convergence (see Table 1).
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3.1. Gear-Generalized Differential Quadrature Method (GGDQM)

For realizing a fine spatial discretization for the variable χ, it is more useful to use GDQM with
the modified Gauss-Lobatto grid points χi, which are given by

χi =
1
2
− 1

2
cos
(

πi− π

N − 1

)
. (41)

Here, N is the total number of Gauss-Lobatto collocation points, where 1 ≤ i ≤ N.
Accordingly, the functions F (ξ, x) and Θ (ξ, x) defined above in Equation (32) can be approximated

at a collocation point χ = χi by
F(n)(ξ, χi) =

N
∑

j=1
d(n)ij Fj(ξ) for 1 ≤ i ≤ N,

Θ(n)(ξ, χi) =
N
∑

j=1
d(n)ij Θj(ξ) for 1 ≤ i ≤ N.

(42)

In addition, the weighting coefficients dij
(n) appearing in Equation (42) are given by Shu [45]

as follows 

d(n)ij =

N
∏

k=1, k 6=i
(χi−χk)

(χi−χj)
N
∏

k=1, k 6=j
(χj−χk)

for i 6= j and 1 ≤ i, j ≤ N, when n = 1,

d(n)ij = −
N
∑

j=1,j 6=i
d(1)ij for i = j and 1 ≤ i, j ≤ N, when n = 1,

d(n)ij = n

[
d(n−1)

ii d(1)ij −
d(n−1)

ij

(χi−χj)

]
for i 6= j and 1 ≤ i, j ≤ N, when n ≥ 2,

d(n)ij = −
N
∑

j=1,j 6=i
d(n)ij for i = j and 1 ≤ i, j ≤ N, when n ≥ 2.

(43)

Here, n represents the order of differentiation with respect to the variable χ.
After substituting the discretized form of F(ξ, χ) and Θ(ξ, χ) with their partial derivatives into

Equations (33)–(36), we get the following semi-discrete system

(
Sξ

)
:



F1(ξ) = 0,

N
∑

j=1
d(n)1j Fj(ξ)− η∞ = 0,

N
∑

j=1
d(1)ij

∂Fj(ξ)

∂ξ = LF
ξ
+ NLF

ξ
for 3 ≤ i ≤ N − 1,

N
∑

j=1
d(n)Nj Fj(ξ) = 0,

Θ1(ξ)− 1 = 0,

∂Θi(ξ)
∂ξ = LΘ

ξ
+ NLΘ

ξ
for 2 ≤ i ≤ N − 1,

ΘN(ξ) = 0,

where 0 < ξ < 1.

(44)
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The linear and nonlinear parts LFξ
, LΘξ

, NLFξ
and NLΘξ

arising from Equations (33) and (34) are
given by

LFξ
=

1
η2

∞(1− ξ)ξ

(
N

∑
j=1

d(3)ij Fj(ξ)

)
+

χi
2ξ

(
N

∑
j=1

d(2)ij Fj(ξ)

)
− M2

(1− ξ)

(
N

∑
j=1

d(1)ij Fj(ξ)

)
, (45)

LΘξ
=

1
Prη2

∞ξ(1− ξ)

(
N

∑
j=1

d(2)ij Θj(ξ)

)
+

χi
2ξ

(
N

∑
j=1

d(1)ij Θj(ξ)

)
, (46)

NLFξ
=

1
η∞(1− ξ)

Fi(ξ)

(
N

∑
j=1

d(2)ij Fj(ξ)

)
− 1

η∞(1− ξ)

(
N

∑
j=1

d(1)ij Fj(ξ)

)2

, (47)

NLΘξ
=



1
η∞(1−ξ)

[
Fi(ξ)

(
N
∑

j=1
d(1)ij Θj(ξ)

)
− 2

(
N
∑

j=1
d(1)ij Fj(ξ)

)
Θi(ξ)

]

+ Ec
(1−ξ)

 1
η4

∞ξ

(
N
∑

j=1
d(2)ij Fj(ξ)

)2

+ M2

η2
∞

(
N
∑

j=1
d(1)ij Fj(ξ)

)2



. (48)

It is worth pointing out that the solutions of the initial unsteady flow (i.e., ξ = 0) and final steady
state flow (i.e., ξ = 1) can be found numerically by solving successively the following nonlinear
algebraic systems

(S0) :



F1(0) = 0,

N
∑

j=1
d(n)1j Fj(0)− η∞ = 0,

LF0
+ NLF0

= 0 for 3 ≤ i ≤ N − 1,

N
∑

j=1
d(n)Nj Fj(0) = 0,

Θ1(0)− 1 = 0,

LΘ0
+ NLΘ0

= 0 for 2 ≤ i ≤ N − 1,

ΘN(0) = 0,

where ξ = 0,

(49)

(S1) :



F1(1) = 0,

N
∑

j=1
d(n)1j Fj(1)− η∞ = 0,

LF1
+ NLF1

= 0 for 3 ≤ i ≤ N − 1,

N
∑

j=1
d(n)Nj Fj(1) = 0,

Θ1(1)− 1 = 0,

LΘ1
+ NLΘ1

= 0 for 2 ≤ i ≤ N − 1,

ΘN(1) = 0,

where ξ = 1.

(50)
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In the above limiting cases, the linear and nonlinear parts
(

LF0 , LF1

)
,
(

LΘ0 , LΘ1

)
,
(

NLF0 , NLF1

)
and

(
NLΘ0 , NLΘ1

)
shown above are expressed by

LF0 = 1
η2

∞

(
N
∑

j=1
d(3)ij Fj(0)

)
+ χi

2

(
N
∑

j=1
d(2)ij Fj(0)

)
,

LF1 = 1
η2

∞

(
N
∑

j=1
d(3)ij Fj(1)

)
−M2

(
N
∑

j=1
d(1)ij Fj(1)

)
,

(51)


LΘ0 = 1

Prη2
∞

(
N
∑

j=1
d(2)ij Θj(0)

)
+ χi

2

(
N
∑

j=1
d(1)ij Θj(0)

)
,

LΘ1 = 1
Prη2

∞

(
N
∑

j=1
d(2)ij Θj(1)

)
,

(52)


NLF0 = 0,

NLF1 = 1
η∞

Fi(1)

(
N
∑

j=1
d(2)ij Fj(1)

)
− 1

η∞

(
N
∑

j=1
d(1)ij Fj(1)

)2

,
(53)



NLΘ0 = Ec
η4

∞

(
N
∑

j=1
d(2)ij Fj(0)

)2

,

NLΘ1 =


1

η∞

(
Fi(ξ)

(
N
∑

j=1
d(1)ij Θj(1)

)
− 2

(
N
∑

j=1
d(1)ij Fj(1)

)
Θi(1)

)

+Ec

 1
η4

∞

(
N
∑

j=1
d(2)ij Fj(1)

)2

+ M2

η2
∞

(
N
∑

j=1
d(1)ij Fj(1)

)2


.

(54)

By utilizing the Newton-Raphson Method (NRM), the nonlinear algebraic systems (S0)

and (S1) can be handled and then solved accurately, in order to find the numerical estimate
values of the solutions {(Fi(0), Θi(0)) and (Fi(1), Θi(1)) / 1 ≤ i ≤ N}. In this unsteady boundary
layer flow problem, the solutions {(Fi(0), Θi(0))/ 1 ≤ i ≤ N} of the initial unsteady flow
(i.e., ξ = 0) corresponding to the algebraic system (S0) are taken as the initial conditions for
the problem under consideration. Therefore, for generating numerically the general solutions
{(Fi(ξ), Θi(ξ)) / 1 ≤ i ≤ N and 0 < ξ < 1} with η∞ = 15, the non-autonomous differential system
Sξ along with the initial conditions {(Fi(0), Θi(0))/ 1 ≤ i ≤ N} is integrated temporarily using
an auto-adaptative implicit algorithm based on the Gear Method (GM). Furthermore, to achieve
an absolute accuracy of the order of 10−10, it is found that the dimensionless time-step size ∆ξ and the
number of collocation points N must be selected as ∆ξ = 10−5 and N = 150 in all subsequent analyses.

Under the above convergence criterion, the dimensionless physical quantities of interest
Re1/2

x C f x, Re−1/2
x Nux, Ns and Be can then be computed numerically from the solutions

{(Fi(ξ), Θi(ξ)) / 1 ≤ i ≤ N and 0 ≤ ξ ≤ 1} as follows

Re1/2
x C f x = −

ξ−1/2

(
N
∑

j=1
d(2)1j Fj(ξ)

)
η2

∞
, (55)

Re−1/2
x Nux = −

ξ−1/2

(
N
∑

j=1
d(1)1j Θj(ξ)

)
η∞

, (56)
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Ns(ξ, χi) =
1

η2
∞(Θi + Ω)2

(
N

∑
j=1

d(1)ij Θj(ξ)

)2

+


PrEc

η4
∞(Θi+Ω)

(
N
∑

j=1
d(2)ij Fj(ξ)

)2

+

M2EcPrξ

η2
∞(Θi+Ω)

(
N
∑

j=1
d(1)ij Fj(ξ)

)2

, (57)

Be(ξ, χi) =

η2
∞

(
N
∑

j=1
d(1)ij Θj(ξ)

)2

η2
∞

(
N
∑

j=1
d(1)ij Θj(ξ)

)2

+ PrEc(Θi + Ω)


(

N
∑

j=1
d(2)ij Fj(ξ)

)2

+

η2
∞ M2ξ

(
N
∑

j=1
d(1)ij Fj(ξ)

)2


. (58)

Also, the discretized forms of the non-dimensional velocity fη(ξ, η) and temperature θ(ξ, η) can
be deduced as follows  fη(ξ, ηi) =

1
η∞

(
N
∑

j=1
d(1)ij Fj(ξ)

)
,

θ(ξ, ηi) = Θi,

(59)

where

ηi =
η∞

2
− η∞

2
cos
(

πi− π

N − 1

)
. (60)

3.2. Validation of the Numerical Results

To authenticate the exactness of our solution methodology developed in this investigation by
the Gear-Generalized Differential Quadrature Method (GGDQM), several numerical simulations are
carried out using the Matlab software, in order to compare the numerical findings with our analytical
solutions found for fηη(0, 0), fηη(1, 0), θηη(0, 0) and θηη(1, 0) (i.e., Equations (20) and (21)) and those
obtained numerically by Motsa et al. [53] for fηη(ξ, 0) via the Spectral Relaxation Method (SRM) and
the Spectral Quasilinearization Method (SQLM), as shown in Tables 2–5. Also, GGDQM is further
tested by computing the values of θηη(ξ, 0) from Equation (12) by considering the absence of viscous
dissipation and Joule heating effects (i.e., Ec = 0). These values are evaluated for different values of
Pr and compared in Table 1 with those obtained by Agbaje and Motsa [54] with the help of the Spectral
Perturbation Method (SPM) and the Spectral Relaxation Method (SRM). As expected, it is found from
Tables 1–5 that there is a good agreement between the compared results. Hence, the accuracy of
our GGDQM numerical code is strengthened by validating our findings against the analytical and
numerical results of some limiting cases. Furthermore, the numerical results listed in Table 5 for CPU
time prove that GGDQM is a fast implementation method compared with SRM and SQLM, where the
time required for GGDQM to generate the results shown in Table 5 is less than 7 s.

4. Results and Discussion

In this paper, the behaviors of velocity and temperature fields, skin friction coefficient, Nusselt
number, entropy generation and Bejan number toward the involved pertinent parameters are examined
numerically using the Gear-Generalized Differential Quadrature Method (GGDQM). In addition,
the present numerical outputs are validated and discussed clearly and wittily via several graphical
and tabular illustrations as shown in Figures 2–17 and Tables 1–6.

Table 6 shows the effects of all physical parameters over the skin friction coefficient Re1/2
x C f x

and Nusselt number Re−1/2
x Nux for the unsteady flow. It is observed that both Re1/2

x C f x and
Re−1/2

x Nux decreases as time parameter ξ increases. Skin friction coefficient Re1/2
x C f x increases;

however, the Nusselt number Re−1/2
x Nux decreases when increasing the Hartman number. Nusselt
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number Re−1/2
x Nux increases for increasing values of Prandtl number, whereas the opposite behavior

is seen for rising values of Eckert number. Figure 2 is sketched to see the variation of time parameter ξ.
As ξ increases the velocity fη(ξ, η) and momentum boundary layer thickness decrease. The impact
of magnetic interaction parameter M on the speed shape is observed in Figure 3. Boundary layer
thickness and velocity decline as M increases. Physically, the magnetic field is correlated with the
electrically conducting fluid and creates a Lorentz force that is opposite to the direction of fluid flow;
consequently, fluid velocity decreases. Figure 4 shows that temperature θ(ξ, η) lessens by increasing
ξ. Figure 5 exhibits the impact of Prandtl number on temperature θ(ξ, η). It is clear that temperature
dropped with increasing Prandtl number. When increasing the Prandtl number (decreasing the thermal
conductivity of fluid), the heat flow rate from the stretching boundary trims down and consequently
the thermal boundary layer descends. Growing M decelerates the fluid flow; therefore, the friction
between the fluid layers increases and generates frictional heating that raises the temperature (see
Figure 6). The effect of Eckert number (Ec) on the temperature is shown in Figure 7. As expected,
temperature mounts with mounting values of Ec. By increasing Ec, the resistance sandwiched between
the fluid adjoining layers increases and leads to a change of the kinetic energy into thermal energy.
Furthermore, as Ec increases, the width of the thermal boundary layer also increases. The influence of
ξ on Ns is exposed in Figure 8. At the boundary and near to it entropy increases with ξ. However,
after reaching a maximum value a decreasing trend is observed. Figure 9 displays the effects of Pr on
entropy production number Ns. It is found that the entropy creation number is a rising function of Pr
(due to high-temperature gradients) in the boundary layer flows. Figure 10 specifies the deviation of
entropy creation number with dimensionless temperature Ω. It is observed that entropy decreases
with increasing values of Ω. Hence, one can attain the main goal, that is, entropy creation minimization
by reducing the working temperature disparity (Tw − T∞). Figure 11 specifies that entropy near the
surface increases with M but after a certain η entropy decreases Ns. Figure 12 represents the effect of
Ec on entropy production number Ns and increasing behavior is observed. Figure 13 demonstrates
the impacts of ξ on Be. The figure shows that Be decreases with an increase in ξ. The impact of
Prandtl on Bejan number Be is illustrated in Figure 14. With a large Prandtl number Pr Bejan number
decreases. Figures 15 and 16, shows that Be declines when raising the dimensionless temperature
difference Ω and Hartmann number M, respectively. Figure 17 portrays the Be for different values
of Ec. Note that for Ec = 0, entropy creation is only due to heat transport. As the Eckert number is
inversely proportional to the temperature difference, for high temperature dissimilarity between the
surface and the ambient fluid, the viscous dissipation parameter becomes zero (Ec = 0.0). Therefore,
the heat transfer irreversibility in the entire flow region is completely dominant, i.e., (Be = 1.0).

Table 1. Comparison of our numerical results with those obtained by Agbaje and Motsa [54] for θη(ξ, 0)
at different values of Pr, when ξ = 0.5, Ec = 0 and M = 1.

Pr
SPM [54] SRM [54] GGDQM

∆ξ=10−4 ∆ξ=10−4 ∆ξ=10−4 ∆ξ=10−4

0.7 −0.6278318239 −0.6278318241 −0.6278318240 −0.6278318238
1.5 −0.9704104930 −0.9704104933 −0.9704104926 −0.9704104929
3.0 −1.4270081804 −1.4270081807 −1.4270081793 −1.4270081804
5.0 −1.8845313181 −1.8845313184 −1.8845313162 −1.8845313181
7.0 −2.2577308115 −2.2577308118 −2.2577308091 −2.2577308115
10 −2.7291527800 −2.7291527804 −2.7291527770 −2.7291527800
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Table 2. Comparison between the exact values of fηη(ξ, 0) and those obtained by GGDQM at different
values of M, for the limiting cases ξ = 0 and ξ = 1.

M

fηη(ξ,0)

ξ=0 ξ=1

Exact Results GGDQM Exact Results GGDQM

0.0 −0.56418958 −0.56418958 −1.0000000 −1.0000000
1.0 −0.56418958 −0.56418958 −1.4142135 −1.4142135
1.5 −0.56418958 −0.56418958 −1.8027756 −1.8027756
2.0 −0.56418958 −0.56418958 −2.2360679 −2.2360679

Table 3. Comparison between the exact values of θηη(ξ, 0) and those obtained by GGDQM at different
values of Pr, M and Ec, for the limiting cases ξ = 0 and ξ = 1.

Pr M Ec

θηη(ξ,0)

ξ=0 ξ=1

Exact Results GGDQM Exact Results GGDQM

4.0 0.0 1.0 −1.2732395 −1.2732395 4.0000000 4.0000000
4.0 1.0 1.0 −1.2732395 −1.2732395 −4.0000000 −3.9999999
4.0 1.5 1.0 −1.2732395 −1.2732395 −14.0000000 −14.0000000
4.0 2.0 1.0 −1.2732395 −1.2732395 −28.0000000 −28.0000000

6.0 0.5 0.0 0.0000000 0.0000000 12.0000000 12.0000000
6.0 0.5 0.5 −0.9549296 −0.9549296 7.5000000 7.4999999
6.0 0.5 1.5 −2.8647889 −2.8647889 −1.5000000 −1.5000001
6.0 0.5 2.0 −3.8197186 −3.8197186 −6.0000000 −6.0000001

Table 4. Comparison of our numerical results for fηη(ξ, 0) with those obtained by Motsa et al. [53] at
different values of ξ and ∆ξ, when M = 0.

ξ Method
∆ξ

0.01 0.001 0.0005 0.0002 0.0001

0.1
SRM [53] −0.61046835 −0.61046762 −0.61046761 −0.61046761 −0.61046761

SQLM [53] −0.61045544 −0.61046674 −0.61046742 −0.61046758 −0.61046761
GGDQM −0.61041972 −0.61046718 −0.61046751 −0.61046759 −0.61046761

0.3
SRM [53] −0.70126751 −0.70126681 −0.70126680 −0.70126680 −0.70126680

SQLM [53] −0.70126943 −0.70126664 −0.70126676 −0.70126679 −0.70126680
GGDQM −0.70125747 −0.70126671 −0.70126678 −0.70126680 −0.70126680

0.5
SRM [53] −0.78982903 −0.78982837 −0.78982837 −0.78982837 −0.78982837

SQLM [53] −0.78981759 −0.78982831 −0.78982835 −0.78982836 −0.78982837
GGDQM −0.78982519 −0.78982833 −0.78982836 −0.78982836 −0.78982837

0.7
SRM [53] −0.87626715 −0.87626654 −0.87626653 −0.87626653 −0.87626653

SQLM [53] −0.87625663 −0.87626652 −0.87626653 −0.87626653 −0.87626653
GGDQM −0.87626547 −0.87626652 −0.87626653 −0.87626653 −0.87626653

0.9
SRM [53] −0.96053875 −0.96053800 −0.96053800 −0.96053800 −0.96053800

SQLM [53] −0.96053069 −0.96053800 −0.96053800 −0.96053800 −0.96053800
GGDQM −0.96053779 −0.96053799 −0.96053799 −0.96053800 −0.96053800
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Table 5. Comparison of our GGDQM computational times with those obtained by Motsa et al. [53] for
fηη(ξ, 0) at different values of ξ, when M = 0 and ∆ξ = 10−4.

ξ
CPU Time (s)

SRM [53] SQLM [53] GGDQM

0.1 01.93 04.72 5.019
0.3 06.01 14.67 5.326
0.5 10.69 24.19 5.612
0.7 15.08 33.29 5.930
0.9 19.57 42.65 6.320

Table 6. Approximate numerical values of Re1/2
x C f x and Re−1/2

x Nux computed by GGDQM at different
values of ξ, Pr, M and Ec.

ξ Pr M Ec Re1/2
x Cfx Re−1/2

x Nux

0.1

6.0 0.8 0.7

2.0415507 2.1732328
0.2 1.6200792 1.8904622
0.3 1.4625827 1.8127995
0.5 1.3401177 1.7802112

0.5

2.0

1.5 0.2

1.8162426 1.5214377
3.0 1.8162426 1.8609960
5.0 1.8162426 2.3780814
7.0 1.8162426 2.7823358

0.3 5.0

0.0

0.5

1.2803321 2.6073736
1.0 1.5602619 2.0405642
1.5 1.8757871 1.3748750
2.0 2.2665979 0.5145979

0.2 7.0 0.5

0.0 1.5276915 4.6016634
0.2 1.5276915 3.9378840
0.4 1.5276915 3.2741046
0.8 1.5276915 1.9465459
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Ec = 0.1.
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Ec = 0.5.
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Ec = 0.2.
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5. Closing Remarks

The impacts of energy dissipation and magnetic field on heat transfer and entropy generation are
analyzed by utilizing a new hybrid numerical technique called gear-generalized differential quadrature
method (GGDQM). The flow driven by a stretching boundary is assumed to be unsteady. Following
are the key findings:

Fluid decelerates with the enhancement of reduced dimensional time and magnetic parameter.
Increase in reduced dimensional time and Prandtl number reduced the fluid temperature and

reverse behavior was observed with rising values of Eckert number and magnetic parameter.
Entropy generation number Ns, rises with enhancing values of reduced dimensionless time

at the boundary and its vicinity. The effects become opposite after the certain distance from the
stretching boundary.

Entropy generation number Ns, enhances with magnetic parameter, Prandtl and Eckert number.
Reduction in Ns is observed with rising values of Ω.

The effects of emerging parameters on Ns are significantly prominent at the surface of
stretching boundary.

Decrement in Bejan number Be is observed at the surface of stretching sheet with enhancing
values of Eckert number, magnetic parameter, Prandtl number and temperature difference parameter.
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