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Abstract

Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these
processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver
are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene
expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were
significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid
and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly
enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated
Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks
including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition,
FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study
provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main
biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These
results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related
diseases including liver cancer and diabetes.
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Introduction

As the source of materials for basal metabolism, food availability

plays an important role in the progression of diseases [1]. There

are numerous reports on undernutrition in humans. For example,

the classic Minnesota experiment assessed the physiological and

psychological effects of severe food restriction and rehabilitation

[2], and Dutch and Chinese data showed that prenatal exposure to

famine increases risk of schizophrenia in later life [3,4].

Throughout the 20th century, interest in food availability and

human health changed from concerns on the physiology of

undernutrition to increasing health problems associated with

overnutrition [5]. Overnutrition-related chronic diseases, includ-

ing cardiovascular diseases, obesity and diabetes, are becoming

increasingly common in the world as a main result of changes in

diet and physical activity [1,6]. It was reported that an estimated

14% of US adults used fasting as a means to control body weight

and this approach has long been advocated as an intermittent

treatment for gross refractory obesity [7]. Meanwhile, calorie

restriction and alternate-day fasting were reported to induce

weight loss, extend lifespan and prevent the common chronic

diseases in various species [8,9,10]. Food availability shows

multiple physiological and pathological effects, therefore the

molecular mechanisms associated with fasting and refeeding needs

to be understood in depth.

Being the biggest endocrine gland in our body, liver has a

central role in metabolism and plays a key role in the maintenance

of nutrient homeostasis [11]. Many of the regulatory effects in

response to diet initially occur in liver, which then modulates the

activities of other organs in terms of nutrient utilization and

metabolism [12]. Thus, the consequences of food availability in

liver are wide spread. Fasting induces many changes especially

lipid and glucose metabolism in liver, key among these changes are

fatty acid oxidation and hepatic gluconeogenesis [13,14]. The

previous studies show that fasting induces peroxisome proliferator-

activated receptor-a (PPARa), which stimulates the expression of

the acyl-CoA dehydrogenases (ACDs) and other fatty acid

oxidation genes [15,16]. While, phosphoenolpyruvate carboxyki-

nase (PEPCK), a key enzyme in hepatic gluconeogenesis, is

induced by glucagon, catecholamines and glucocorticoids during

periods of fasting, but is dominantly inhibited by glucose-induced

increases in insulin secretion upon refeeding [17]. Some other
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hepatic gluconeogenesis controllers such as PGC1 and SIRT1, are

altered by nutritional status and considered as drug targets for

diabetes and obesity [18,19]. The way to alter the key genes to

keep metabolism homeostasis becomes popular in the treatment of

chronic diseases. Therefore, the global gene profiling of liver under

different nutritional status will be very helpful to elucidate the key

genes and the gene networks regulated by food availability.

Microarray technology has been applied to study the genome-

wide gene expression levels in mammalian tissues regulated by food

availability [20]. Microarray expression analysis has been success-

fully used in the genomic profiling of short- and long-term caloric

restriction effects in the liver of aging mice [21]. Similarly, starvation

response in mouse liver showed strong correlation with life-span-

prolonging processes induced by calorie restriction [22]. In chicken

liver, microarray experiments revealed the central role of lipid and

acetyl-CoA metabolisms and its regulation at transcriptional level in

response to short-term fasting [23]. Recently, high-throughput

sequencing is emerging as an attractive alternative to microarrays

for transcriptome profiling, because high-throughput sequencing-

based expression analysis shows major advances in robustness,

resolution and reproducibility based on its relatively unbiased and

direct digital readout [24,25,26]. In terms of both profiling coverage

and quantitative accuracy of high throughput sequencing, the

application of this new technology in transcriptome profiling altered

by nutrient status is important to further understand the underlying

mechanisms.

In this study, we measured the gene expression profile in

feeding, fasting and refeeding mouse liver by high-throughput

sequencing, and showed the main biological processes, pathways,

networks and potential liver related diseases regulated by food

availability.

Results

High throughput sequencing and the top abundant,
abundance change and fold change genes in mouse liver
regulated by food availability

To global survey the gene expressing pattern in mouse liver

regulated by food availability, high throughput sequencing was

applied in this study. Finally, we obtained about 10.48, 10.45 and

9.72 million reads of high quality clean tags from mice fed ad

libitum, fasted and refed respectively (Figure 1A). In these high

quality clean tags, averagely, 81.6%, 65.8% and 38.6% reads can

be mapped to annotated mouse genome, genes, and unique genes

respectively (Figure 1B). Totally 12162 genes were detected, and

10878, 10702 and 10708 unique genes were detected and

quantified from fed, fasted and refed samples respectively, which

shared 9475 genes in common (Figure 1C).

Based on the Solexa sequencing data, the top 30 highly

expressed genes in normal feeding adult mouse liver were shown in

Figure 1D. Apoa1 gene encoding Apolipoprotein A-I, a major

protein component of high density lipoprotein, was identified as

the most abundant gene using this method. Furthermore, the top

15 abundance changes of genes upregulated by fasting were shown

in Figure 1E. Interestingly, the abundance changes of these 15

genes upregulated by fasting were almost completely reversed by

refeeding except Apoa4 (Figure 1E). Even in the top 100

abundance changes of genes upregulated by fasting, 82 genes

were almost completely reversed by refeeding. The top 15

abundance changes of genes downregulated by fasting were

shown in Figure 1F. However the abundance changes of Mup3,

Fgg, Alb, B2m and Fgb induced by fasting were not well reversed by

refeeding (Figure 1F). In addition, we showed the top 15 fold

changes of genes upregulated or downregulated by fasting in

Figure 1G,H. 13 of the top 15 fold change genes upregulated by

fasting were still upregulated after refeeding, however 12 of the top

15 fold change genes downregulated by fasting will be upregulated

by refeeding compared to normal feeding. The above results show

that the upregulated or downregulated genes in top abundance or

fold change have different interesting dynamic pattern and might

have critical functions in adaption to food availability.

To understand the final effects of refeeding on gene expression,

the top 15 abundance or fold change genes upregulated or

downregulated by refeeding compared to normal feeding were

shown in Figure S2A,B.

Differentially expressed genes and clustering
Among the 10878, 10702 and 10708 unique genes detected

from fed, fasted and refed samples, differentially expressed genes

between these three states were quantified and shown in Figure

S3A. To avoid the possible noise signal from high-throughput

sequencing, the genes with average TPM (transcripts per million)

less than 1 in these three states were excluded. The remained 8815

genes and their abundance were shown in Table S2, and were

used to calculate the fold changes and false discovery rate (FDR).

In this study, the absolute fold change no less than 1.5 and FDR

less than 0.001 were used to define the differentially expressed

genes. According to this definition, totally 2305 genes were

differentially expressed between fed, fasted and refed states (Figure

S3A). There were 1509 and 1180 genes significantly affected by

fasting and refeeding respectively compared to normal feeding,

and 384 genes regulated by fasting were not well reversed by

refeeding (Figure S3B).

To gain insights into the 2305 differentially expressed genes

regulated by food availability, we divided them into 8 clusters

based on the different dynamic pattern induced by fasting and

refeeding (Figure S3C). Cluster 1 to 3 contained the genes

upregulated by fasting, which is named as Cluster A. Cluster 4 to 6

contained genes downregulated by fasting, which is named as

Cluster B. Cluster 7 and 8 included the genes unaffected by fasting

but regulated by refeeding.

The main biological processes and pathways regulated
by fasting and refeeding

To identify the possible biologic functions regulated by fasting,

the 8815 genes were divided into Cluster A, B and C with 472

genes upregulated, 1037 genes downregulated and 7306 genes

unaffected by fasting respectively (Figure 2A). Based on Gene

Ontology analysis, Cluster A genes mainly enriched in carboxylic

acid metabolic process, especially in its sub-process monocarbox-

ylic acid or even more specifically in fatty acid metabolic process

(Figure 2B). Cluster A genes also enriched in generation of

precursor metabolites and energy, especially in its sub-process

electron transport. Cluster B genes mainly enriched in lipid

metabolic process, especially in its sub-process steroid metabolic

process typically including steroid and sterol biosynthetic processes

(Figure 2B). Fasting-affected 1509 genes including Cluster A and

Cluster B mainly enriched in lipid and carboxylic acid metabolic

processes, generation of precursor of metabolites and energy

(Figure 2B). Cellular lipid metabolic process and steroid

biosynthetic process in lipid metabolic process were also enriched.

These results show that fasting mainly affect lipid and carboxylic

acid metabolic processes in liver, but will not affect some hepatic

basic biological processes including biopolymer, nucleic acid and

macromolecule metabolic processes.

Furthermore, Ingenuity and KEGG pathway analysis were

performed to further elucidate the biological functions of the gene

clusters regulated by fasting. The top 5 Ingenuity and KEGG

Food-Affected Hepatic Gene Expression Profile
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Figure 1. Sequencing and mapping messages of mouse liver mRNA profiling under feeding, fasting and refeeding conditions.
(A) Reads of high quality clean tags from high-throughput sequencing experiments. Total liver RNA from C57BL/6 mice fed ad libitum with chow,
fasted for 24 hr, or fasted for 24 hr and refed for 24 hr was used to prepare the high-throughput sequencing library. (B) Proportions of high quality
clean tags unmapped and/or mapped to unique genes, multiple genes and genome. (C) Gene numbers between feeding, fasting and refeeding
states. (D) The top 30 abundant genes in normal feeding mouse liver from the high-throughput sequencing were quantified and shown as transcripts
per million (TPM). (E) The top 15 abundance change of genes upregulated by fasting, and their abundance change following refeeding. N, gene
abundance under normal feeding condition; F, gene abundance under fasting condition; R, gene abundance under refeeding condition. (F) The top
15 abundance changes of genes downregulated by fasting, and their abundance change following refeeding. (G) The top 15 fold change of genes
upregulated by fasting, and their fold change following refeeding. (H) The top 15 fold change of genes downregulated by fasting, and their fold
change following refeeding.
doi:10.1371/journal.pone.0027553.g001
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pathways significantly affected by fasting were shown in Table 1

with associated genes. These pathway analysis data further

confirmed that lipid and carboxylic acid metabolic processes in

liver, especially fatty acid metabolism, were the main biological

processes regulated by fasting.

To identify the possible biologic functions regulated by both the

whole fasting and refeeding process, the 8815 genes were divided

into nine clusters according to the dynamic patterns upregulated,

downregulated or unaffected by fasting or refeeding as shown in

Figure 3A,C. Among the fasting-affected 1509 genes, fasting-

upregulated 472 genes were divided into Cluster 1, 2, 3, and

fasting-downregulated 1037 genes were divided into Cluster 4, 5,

6, according to their expression upregulated, downregulated or

unaffected by refeeding. 384 genes in Cluster 1, 2, 4 and 5 were

significantly regulated by fasting, and none of them recovered to

normal feeding levels after refeeding (Figure 3A). Interestingly,

Cluster 1 genes are enriched in ion and chemical homeostasis and

homeostatic process (Figure 3B); Cluster 2 genes are mainly

enriched in carboxylic acid metabolic process, especially in its sub-

process monocarboxylic acid metabolic process including amino

acid metabolic process; Cluster 4 genes are enriched in alcohol

and sterol metabolic processes and steroid biosynthetic process,

especially in sterol or more specifically in cholesterol biosynthetic

process; Cluster 5 genes are enriched in regulation of cell motility

and locomotion. 1125 genes in Cluster 3 and Cluster 6 were

significantly upregulated or downregulated by fasting, but almost

completely recovered to normal feeding levels after refeeding

(Figure 3A,C). Cluster 3 mainly enriched in carboxylic acid

metabolic process and generation of precursor metabolites and

energy, and Cluster 6 genes mainly enriched in immune responses

(Figure 3B,D). These data suggest that immune responses,

carboxylic acid metabolic process and generation of precursor

metabolites and energy are significantly regulated by fasting, but

can be recovered to normal feeding states after refeeding. Fasting-

unaffected 7306 genes were divided into Cluster 7, 8, 9 according

to their expression upregulated, downregulated or unaffected by

refeeding. 796 genes in Cluster 7 and 8 were not directly affected

by fasting, but were upregulated or downregulated respectively

after refeeding (Figure 3C). Cluster 7 genes are enriched in

macromolecule biosynthetic process, protein metabolic process

and macromolecule catabolic process (Figure 3D), and Cluster 8

genes are enriched in amino acid, amine and nitrogen compound

catabolic processes. These data demonstrate the genes regulated

by fasting or refeeding with similar dynamic pattern are usually

enriched in similar feature biological processes affected by food

availability. Furthermore, all the differentially expressed genes are

mainly enriched in carboxylic acid and lipid metabolic processes

and generation of precursor metabolites and energy (Figure 3).

Moreover, Ingenuity and KEGG pathway analysis showed that

the different gene clusters with different dynamic patterns

regulated by fasting and refeeding usually enriched in different

pathways, and all the differentially expressed genes are mainly

enriched in the pathways of fatty acid metabolism and metabolism

of xenobiotics by cytochrome P450 (Table S1).

The main networks regulated by fasting and refeeding
To further understand the global gene changes during fasting-

refeeding process, we sought to computationally decipher the

principle networks regulated by fasting and refeeding using

Ingenuity. The top 5 gene networks regulated by fasting were

combined and shown in Figure 4A, including Drug Metabolism,

Small Molecule Biochemistry, Endocrine System Development

and Function (Figure 4C), Lipid Metabolism, Small Molecule

Biochemistry, Molecular Transport (Figure 4D), and Lipid

Metabolism, Molecular Transport, Small Molecule Biochemistry

(Figure 4E). The top 5 gene networks significantly regulated by

refeeding compared to normal feeding were shown in Figure 4B,

including Lipid Metabolism, Small Molecule Biochemistry, Gene

Expression (Figure 4F), Lipid Metabolism, Small Molecule

Biochemistry and Molecular Transport (Figure 4G), Hepatic

System Disease, Lipid Metabolism and Molecular Transport

(Figure 4H). The network analysis demonstrates that Lipid

Metabolism, Small Molecule Biochemistry and Molecular Trans-

port are the three main sub-networks regulated by fasting and

refeeding. In addition, the sub-network Hepatic System Disease

regulated by refeeding implicates that fasting and refeeding can

significantly affect the development of hepatic diseases.

Figure 2. Genes and the related biological processes in mouse
liver regulated by fasting. (A) The 8815 selected genes as described
in Materials and Methods and Figure S3A were separated into three
distinct clusters according to the genes upregulated, downregulated, or
unaffected by fasting compared with normal feeding. Red lines indicate
Cluster A including 472 genes upregulated by fasting. Green lines
indicate Cluster B including 1037 genes downregulated by fasting.
Purple lines indicate 1509 genes affected by fasting, which include all
genes in Cluster A and B. Yellow lines indicate Cluster C including 7306
genes unaffected by fasting. N, gene abundance under normal feeding
condition; F, gene abundance under fasting condition. (B) The clustered
genes were assigned to different biological processes based on Gene
Ontology using the web tool DAVID. The top 5 biological functions and
the case genes in each cluster ranked by P-value were listed (P,0.001,
case genes $10).
doi:10.1371/journal.pone.0027553.g002
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The potential hepatic diseases affected by fasting and
refeeding

To further elucidate the correlation between food availability

and hepatic diseases, we assigned the hepatic genes regulated by

fasting and refeeding to different diseases using web tool FunDO.

As shown in Figure 5A,B, 1509 genes regulated by fasting were

mainly related with diabetes mellitus, liver cancer, infection and

liver tumor. Fasting-affected genes enriched in the indicated

diseases were listed in Table S3. In addition, the 1180 genes

significantly affected by refeeding compared to normal feeding

Table 1. The top 5 Ingenuity and KEGG pathways and the associated genes significantly affected by fasting.

Ingenuity Pathway KEGG Pathway

Cluster A
472 genes

Fatty Acid Metabolism Fatty acid metabolism

ACAD11-ACADL-ACADM-ACADVL-ACAT1-ACOX1-ACSL1-ALDH3A2-CPT2-
CPT1A-CYP2E1-DCI-ECH1-EHHADH-HSD17B4-HSD17B10-PECI-SDS-
SLC27A1-SLC27A2

P = 6.24E-10

CPT2-TEKT3-ACSL1-ACADL-RGL3-ACADM-ACADVL-ACOX1-CUEDC2-
ALDH3A2-CPT1A-KCNK4-CACNG8-DCI-HSD17B10-HSD17B4-PECI-EHHADH-
OLFR916-ACAT1-CYP4A14

P = 1.45E-11

Valine, Leucine and Isoleucine Degradation PPAR signaling pathway

ACAD11-ACADL-ACADM-ACADVL-ACAT1-ALDH3A2-ECH1-EHHADH-
HMGCL-HSD17B4-HSD17B10-SDS

P = 6.78E-07

CPT2-TEKT3-ACSL1-PCK1-IFNE-SLC27A2-ANGPTL4-ACADL-RGL3-ACADM-
ACOX1-CUEDC2-APOA1-FABP7-CPT1A-KCNK4-CACNG8-CYP7A1-ZSCAN10-
CYP8B1-PPARA-ZFP831-SLC27A1-APOA5-EHHADH-OLFR916-CYP4A14

P = 5.69E-10

LPS/IL-1 Mediated Inhibition of RXR Function Linoleic acid metabolism

ABCC2-ABCC3-ACOX1-ACSL1-ALDH3A2-APOC4-CPT2-CPT1A-CYP7A1-
FMO1-GSTT2-JUN-LBP-NR1I2-NR1I3-PAPSS2-PPARA-SLC27A1-SLC27A2-
SULT1A1

P = 1.23E-06

AGXT-AA960436-ABAT-GOT1-PCX-LINGO4-GPT-ASL-ASNS-VWA3B-GPT2
P = 6.15E-06

Propanoate Metabolism Alanine and aspartate metabolism

ACAD11-ACADL-ACADM-ACADVL-ACAT1-ACSL1-ALDH3A2-ECH1-
EHHADH-SDS-SUCLG1

P = 1.64E-06

CYP2C37-CYP2E1-FCRLA-CYP2C39-CYP3A11-GPR124-CYP3A13-CYP3A16-
ZC3H10-CCR1L1-CYP3A25-PLA2G12A-CYP2C50

P = 1.84E-05

b-alanine Metabolism Citrate cycle (TCA cycle)

ACAD11-ACADL-ACADM-ACADVL-ALDH3A2-DPYD-ECH1-EHHADH-SDS
P = 5.60E-06

PCK1-IFNE-ACO2-MIS12-FH1-A830018L16RIK-PCX-LINGO4-SLC32A1-SUCLG1-
FAM154A-DLST

P = 1.24E-04

Cluster B
1037 genes

Biosynthesis of Steroids Complement and coagulation cascades

CYP26A1-DHCR7-HMGCR-IDI1-LSS-SQLE
P = 6.16E-04

C9-HDDC3-FGA-TIFA-FGG-C1QA-FAM114A1-C1QC-C4BP-1110007C09RIK-C6-
1110012L19RIK-CD59A-FAM125A-CFH-TXLNA-F2R-F3-CFB-HC-KNG1-MBL2-
OLFR129-CPB2-F11-C8B-C8A

P = 4.75E-07

Endometrial Cancer Signaling Nucleotide sugars metabolism

CASP9-CCND1-CDH1-CTNNB1-GRB2-MAPK6-PIK3R1-PTEN-RRAS2
P = 7.37E-04

HSD3B7-AKR1E1-HSD17B12-AKR1C6-GM6897-RDH11-OLFR382-UGDH-GALE-
OLFR1246-UGP2

P = 1.01E-06

Colorectal Cancer Metastasis Signaling Biosynthesis of steroids

BAX-CASP9-CCND1-CDH1-CTNNB1-FZD7-GRB2-LRP1-MAPK6-MMP15-
PIK3R1-RELA-RHOC-RHOU-RND3-RRAS2-TGFB1-TNFRSF1A-VEGFB

P = 2.60E-03

SC5D-DHCR7-HMGCR-LSS-GPSM1-SQLE-MVD-IDI1
P = 1.33E-05

ILK Signaling Glycine, serine and threonine metabolism

CCND1-CTNNB1-DSP-FERMT2-MAPK6-MYL9-PARVA-PIK3R1-PTEN-RELA-
RHOC-RHOU-RND3-TNFRSF1A-VEGFB

P = 5.50E-03

ALAS2-CBS-SHROOM1-6720468P15RIK-CHKA-HSD3B7-GAMT-PEMT-AKR1E1-
HSD17B12-AKR1C6-GM6897-TARS-RDH11-OLFR382

P = 3.46E-04

IL-8 Signaling Metabolism of xenobiotics by cytochrome P450

BAX-CCND1-CDH1-GNA13-GNAI3-KDR-MAPK6-NOX4-PIK3R1-RELA-
RHOC-RHOU-RND3-RRAS2-VEGFB

P = 7.42E-03

CYP2C70-ADH1-ATAD4-CYP1A2-FAM71F1-GSTA3-GSTA4-RASGEF1B-GSTM6-
ADH4-GSTM7-UGT2B1-UGT2A1-CYP2C44-GSTM3

P = 3.81E-03

Fasting affected 1509 genes

Fatty Acid Metabolism P = 3.48E-12 Fatty acid metabolism P = 3.32E-08

PXR/RXR Activation P = 3.17E-08 Linoleic acid metabolism P = 3.13E-07

LPS/IL-1 Mediated Inhibition of RXR Function P = 5.44E-07 Glycine, serine and threonine metabolism P = 1.04E-06

Tryptophan Metabolism P = 6.22E-07 Metabolism of xenobiotics by cytochrome P450 P = 3.54E-06

Metabolism of Xenobiotics by Cytochrome P450 P = 2.17E-06 PPAR signaling pathway P = 1.01E-05

doi:10.1371/journal.pone.0027553.t001
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were enriched in liver cancer, cirrhosis, diabetes mellitus and

hepatitis C (Figure 5C,D). Refeeding-affected genes enriched in

the indicated diseases were listed in Table S4. These results

demonstrate that food availability is significantly correlated with

the development of liver cancer and diabetes mellitus.

Discussion

This study provides the basic gene expression profile data of

feeding, fasting and refeeding mouse liver by high throughput

sequencing, and demonstrates the main biological processes,

pathways, networks and potential liver related diseases affected

by fasting and refeeding. Food availability mainly regulates lipid

metabolism, especially fatty acid metabolism in liver, and is

significantly correlated with some liver related diseases including

liver cancer and diabetes. These results should be very helpful to

further understand the metabolism and diseases in liver regulated

by food availability.

High throughput RNA sequencing greatly increases our ability

to quantitatively detect mRNA level with relatively unbiased

measurements of gene abundance [25,27]. With this technology,

we showed the gene expression data of mouse liver under feeding,

fasting and refeeding conditions in Table S2. The top 30 abundant

genes were shown in Figure 1. According to the mouse array data

collected in BioGPS (http://biogps.gnf.org) [28], 24 genes of the

top 30 abundant genes are specifically or most highly expressed in

liver. The rest 6 genes, including B2m, Chchd10, Hint1, Phyh,

Mettl7a1 and Pah are also highly expressed in liver when analyzed

by BioGPS. These results show that our data are comparable with

the previous array data. A common feature of liver is the key

metabolic center. By Gene Ontology analysis [29,30], we found 21

genes among the top 30 abundant genes are enriched in metabolic

Figure 3. Genes and the related biological processes in mouse liver regulated by fasting and refeeding. (A, C) The 8815 selected genes
as described in Materials and Methods and Figure S3A were separated into nine distinct clusters according to the genes upregulated, downregulated
or unaffected by fasting and refeeding compared with normal feeding. Cluster 1 included 83 genes upregulated by fasting and refeeding. Cluster 2
included 50 genes upregulated by fasting and downregulated by refeeding. Cluster 3 included 339 genes upregulated by fasting and unaffected by
refeeding. Cluster 4 included 128 genes downregulated by fasting and upregulated by refeeding. Cluster 5 included 123 genes downregulated by
fasting and refeeding. Cluster 6 included 786 genes downregulated by fasting and unaffected by refeeding. Cluster 7 included 618 genes unaffected
by fasting and upregulated by refeeding. Cluster 8 included 178 genes unaffected by fasting and downregulated by refeeding. Cluster 9 included
6510 genes unaffected by fasting and refeeding. N, gene abundance under normal feeding condition; F, gene abundance under fasting condition; R,
gene abundance under refeeding condition. (B, D) The clustered genes were assigned to different biological processes based on Gene Ontology
using the web tool DAVID. The top biological processes and the case genes in each cluster ranked by P-value were listed (P,0.001, case genes $5).
doi:10.1371/journal.pone.0027553.g003

Food-Affected Hepatic Gene Expression Profile
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Figure 4. Network representation of the biological processes in mouse liver regulated by fasting and refeeding. (A) The top 5
connected networks in 1125 genes upregulated or downregulated by fasting and recovered to normal feeding states after refeeding. The gene
networks were analyzed by Ingenuity. Genes upregulated or downregulated by fasting are represented in red or green color respectively. The top 3
networks were shown in (C), (D) and (E). (C) Network of Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and
Function. (D) Network of Lipid Metabolism, Small Molecule Biochemistry and Molecular Transport. (E) Network of Lipid Metabolism, Molecular
Transport and Small Molecule Biochemistry. (B) The top 5 connected networks of 1180 genes upregulated or downregulated after refeeding
compared to normal feeding. The top 3 networks were shown in (F), (G) and (H). (F) Network of Lipid Metabolism, Small Molecule Biochemistry and
Gene Expression. (G) Network of Lipid Metabolism, Small Molecule Biochemistry and Molecular Transport. (H) Network of Hepatic System Disease,
Lipid Metabolism and Molecular Transport.
doi:10.1371/journal.pone.0027553.g004

Food-Affected Hepatic Gene Expression Profile
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process, which is consistent with the feature of liver as the key

metabolic center. In the top 30 abundant genes, most of them are

well known for their important roles in liver. However the role of a

few genes including Chchd10 and Mettl7a1 in liver is yet to be

elucidated. In the top 30 abundant genes, 18 of them are in the top

30 abundance change genes affected by fasting as shown in

Figure 1. 17 genes among the top 30 abundance change genes

affected by fasting can be enriched in metabolic process. Similarly,

among the top 30 fold change genes affected by fasting, 19 genes

can be clustered in metabolic process. For example, Gck and Pklr

among the 19 genes encoding hexokinase and pyruvate kinase

respectively, are the key genes involved in glycolysis process

[14,31]. It has been reported that the flux through glycolysis

process is attenuated in response to fasting [32]. Consistently, we

found that fasting significantly downregulated Gck and Pklr

(Fig. 1H). In addition, Cyp4a14 and slc16a5, as the top 30 fold

change genes induced by 24-h fasting (Figure 1G), have been

reported to be involved in hypertension and the disposition of

various drugs respectively [33,34,35]. However, the role of

Cyp4a14 and slc16a5 in fasting response is still largely unknown,

and whether Cyp4a14 and slc16a5 are involved in the major

pathways including glucose and lipid metabolism regulated by

fasting needs to be studied in the future. In conclusion, these data

show that the top abundance change and fold change genes

induced by fasting are mainly involved in liver metabolic process.

Further studies focused on these top abundance change or fold

change genes, especially some largely unknown genes, will be very

helpful to understand the gene network and the related

physiological and pathological processes in liver.

It has been shown that hepatic fatty acid, amino acid and

glucose metabolism were altered by fasting [22,23,36,37].

Similarly, we found that fasting significantly affected fatty acid

and amino acid metabolism in liver using Gene Ontology analysis

and KEGG and Ingenuity pathway analysis with the digital gene

expression data from high-throughput sequencing (Figure 2 and

Table 1). In terms of fatty acid metabolism, previous studies show

that fasting induces PPARa, which stimulates the expression of

ACDs and other fatty acid oxidation genes [15,16]. Moreover,

fasting upregulates fatty acid oxidation flux [32,38]. Similarly, our

quantitative data showed that fasting upregulated mRNA levels of

PPARa and Acadm to 1.8- and 3.0-fold respectively. Besides, we

showed fasting-upregulated genes enriched in fatty acid metabo-

lism in Table 1, including Cpt1a, encoding the rate-limiting

enzyme in fatty acid oxidation, and Ehhadh, encoding the key

enzyme catalyzing two steps in fatty acid oxidation [39,40]. In

terms of amino acid metabolism, previous studies showed that

fasting significantly affected genes involved in amino acid

metabolism [37], and increased amino acid feeding into TCA

cycle [32]. Similarly, our data showed that fasting-upregulated

genes are enriched in valine, leucine and isoleucine degradation,

alanine and aspartate metabolism and other amino acids

metabolism (Table 1). It is reported that liver starts to generate

glucose from carbon-3 compounds derived from fatty acid and

amino acid as substrates during fasting [14]. Metabolic fluxes

Figure 5. Genes regulated by fasting or refeeding linked to different liver diseases. (A) The map of top 4 liver diseases enriched with the
genes regulated by fasting. 1509 genes upregulated or downregulated by fasting were assigned to different diseases using the web tool FunDO. The
sizes of the disease nodes are proportional to the number of enriched genes. (B) The number of hit genes and P-value of the top 4 enriched liver
diseases in (A). (C) The map of top 4 liver diseases enriched with the genes upregulated or downregulated after refeeding. 1180 genes affected by
refeeding were assigned to different diseases using the web tool FunDO. (D) The number of hit genes and P-value of the top 4 enriched liver diseases
in (C).
doi:10.1371/journal.pone.0027553.g005
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studies showed that glucose production from glycolysis was

decreased and limited and absolute gluconeogenesis were

markedly increased in response to fasting [41]. Liver played an

important role in keeping glucose homeostasis mainly through

downregulating glycolytic reactions, upregulating gluconeogenic

reactions and reducing glycogenolysis flux significantly [32,41].

Consistently, our data showed that fasting dramatically downreg-

ulated the mRNA level of pyruvate kinase (Pklr), a key enzyme in

glycolysis [14], to 6.6% (Table S2). Meanwhile fasting upregulated

the mRNA level of PEPCK (Pck1), a key regulatory enzyme in

gluconeogenesis [42], to 3.8-fold. And the mRNA level of glycogen

phosphorylase (Pygl), which catalyzes the rate-limiting step in

glycogenolysis, was downregulated by fasting to 30% (Table S2).

Taken together, our data provide the detailed quantitative gene

expression change involved in the metabolic changes in response

to fasting, such as the reverse of glycolysis to gluconeogenesis,

upregulation of fatty acid and amino acid metabolism for

gluconeogenesis (Figure 2,3, and Table 1). The observed gene

expression changes are in line with previous studies on metabolic

fluxes, and provide new insights into how gene expression is

regulated to meet the metabolic changes in response to fasting. It is

reported that refeeding syndrome is caused by rapid refeeding

after a period of starvation. Refeeding syndrome featured with

hypophosphataemia is caused by rapid refeeding after a period of

starvation, but the underlying molecular mechanism is unclear

[43,44]. Here, we studied the refeeding effect at gene expression

level, and we found that 1180 genes were significantly changed

after refeeding (see Cluster 1, 2, 4, 5, 7 and 8 in Figure 3. and

Table S2). Our results showed that refeeding mainly affected

amino acid, fatty acid and steroid metabolism in liver (Figure 3.

and Table S1), which might provide the underlying molecular

mechanism of refeeding syndrome. As shown in Figure 3, food

availability triggers a dynamic change in metabolic pathways and

is a good model for understanding how these pathways are

mutually organized.

Adult humans often undertake acute fasts for cosmetic, religious

or medical reasons. For example, it has been reported that fasting

was used as a means to control body weight and has long been

advocated as an intermittent treatment for obesity [5]. Hence, the

studies on fasting associated diseases are in great need for human

health. Previous study reported that starvation response in mouse

liver shows strong correlation with life-span-prolonging processes

[22]. Using the web tool FunDO, we found diabetes mellitus, liver

cancer and infection are highly correlated with fasting (Figure 5),

suggesting a molecular connection between fasting and hepatic

diseases. As shown in Table S3, among the 45 genes related to

diabetes mellitus, 17 and 28 genes were upregulated and

downregulated by fasting respectively. Among the 28 downregu-

lated genes, glycogen phosphorylase (Pygl) catalyzes the rate-

limiting step in the degradation of glycogen in animals [14], and

glycogen phosphorylase inhibitors has been proposed as potential

antidiabetic agents [45]. Similarly, thyroid hormone-binding

protein transthyretin (Ttr) downregulated by fasting (Table S3), is

increased in insulin-resistant mice, and lowing thyroid hormone-

binding protein levels may enhance insulin sensitivity in type 2

diabetes [46]. These examples show that the expression changes of

some genes regulated by fasting are beneficial for diabetes.

However, glucokinase (Gck) downregulated by fasting (Table S3),

has been identified as a promising drug target for type 2 diabetes

through its activators [47]. Therefore, fasting induced the

expression change of some genes might leading to the develop-

ment of type 2 diabetes. To further evaluate the effect of fasting on

diabetes mellitus and other diseases, mRNA and protein levels,

and even enzyme activity are required to be combined for detailed

evaluation. Furthermore, other fasting ways, such as long-term

fasting and calorie restriction, need to be used for future studies. In

addition, liver cancer, cirrhosis and diabetes mellitus is highly

correlated with refeeding (Figure 5). Taken together, these results

provide a broad view of genes, food availability and their

correlation with diseases, and whether fasting is good for diseases

treatment needs further studies.

In summary, we have generated a quantitative gene profiling in

feeding, fasting and refeeding mouse liver with high throughput

sequencing. Our results demonstrated food availability induced

dynamic changes of feature biological processes, pathways and

networks. Food availability mainly regulated lipid metabolism,

especially fatty acid metabolism in liver, and is highly correlated

with some liver-related diseases including liver cancer and

diabetes. These quantitative results should be very helpful to

further understand the metabolism and diseases in liver regulated

by food availability.

Materials and Methods

Animal experiments
All animal experimental procedures were approved by the

Institutional Animal Care and Use Committee of the Institute for

Nutritional Sciences (Protocol number 2007-AN-9). C57BL/6

male mice at the age of 7 weeks purchased from SLAC (Shanghai,

China) were randomly divided into three groups for 12 mice per

group, and were allowed to have access to water and diets ad

libitum. At the age of 9 weeks, mice fed ad libitum, fasted for 24 h,

or fasted for 24 h and then refed for 24 h were sacrificed about 3 h

after the beginning of light cycle, and the livers were immediately

removed and snap-frozen in liquid nitrogen.

Sample preparation and solexa library construction
Liver samples were ground in liquid nitrogen, and total RNA

was isolated using Trizol reagent (Invitrogen). The high quality of

total RNA was confirmed by Bioanalyzer 2100 (Agilent). Solexa

libraries were constructed following the manufacturer’s standard

according to the schematic shown in Figure S1.

Solexa sequencing and data analysis
The image files generated by from Illumina 1G sequencer were

processed to produce digital-quality sequence data. Then the high

quality reads were screened from the original data, and the

adaptors were removed from each sequence. Finally, high quality

clean tags were compared with RefSeq database (released at Feb 9,

2009) and the expression level of each gene was normalized to

transcripts per million (TPM). The significance of digital gene

expression profiles were analyzed as described previously [48]. To

avoid the potential noise signal from high-throughput sequencing,

we excluded the genes with average TPM less than 1 in these three

states. The remained 8815 genes were used to calculate the fold

changes and false discovery rate (FDR), which is adjusted p-values

based on ordered p-values for several thousands of genes testing

[49]. In this study, based on the assumption that the majority of

genes are not changed [22], the absolute fold change no less than

1.5 and FDR less than 0.001 were used to define the differentially

expressed genes including the upregulated and downregulated

genes. The genes upregulated, downregulated and unaffected by

fasting were classified into Cluster A, B and C respectively. Cluster

A, B and C were further divided into 9 groups including Cluster 1–

3, 4–6 and 7–9 respectively, according to the upregulated,

downregulated or unaffected effect of refeeding. The expression

pattern of these genes were visualized using the heat-map function

in the R base package [50].
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Biological process, pathway and network analysis
Gene Ontology constitutes a controlled vocabulary of about

20,000 terms organized in three independent hierarchies for

cellular components, molecular functions, and biological processes

(www.geneontology.org) [51]. The clustered genes were assigned

to biological processes based on Gene Ontology using the web tool

DAVID (http://david.abcc.ncifcrf.gov/home.jsp) [29,30]. Hyper-

geometric test was used as the statistical method to select enriched

biological process Gene Ontology terms for each cluster. The

pathways involved in these gene clusters were analyzed by KEGG

(www.genome.jp/kegg/pathway.html) [52] and Ingenuity (Inge-

nuity Systems Inc.) Network analysis was also performed with

Ingenuity.

FunDo analysis
To study gene-disease relationships, the differentially expressed

genes regulated by fasting or refeeding were assigned to different

diseases based on Disease Ontology and peer-reviewed evidence

from GeneRIF using the web tool FunDO (http://django.nubic.

northwestern.edu/fundo/) [53]. Then Cytoscape v2.6.2 was used

to visualize gene-disease interaction networks [54].

Supporting Information

Figure S1 Schematic of the protocol for constructing the high-

throughput sequencing library from liver total RNA. Magnetic

oligo(dT) beads were used to isolate poly(A) mRNA from the total

RNA samples. cDNA was synthesized from the isolated mRNA

using random hexamer primers. Then the cDNA was digested

with Dpn II, and the standard Solexa protocol for digital gene

expression-tag profiling was followed thereafter to create cDNA

libraries.

(TIF)

Figure S2 Top reads and fold change genes upregulated or

downregulated by refeeding compared to normal feeding. (A) The

top 15 abundance change of genes upregulated or downregulated

by refeeding. (B) The top 15 fold change of genes upregulated or

downregulated by refeeding.

(TIF)

Figure S3 Genes differentially expressed in mouse liver between

feeding, fasting and refeeding states. (A) 8815 genes with average

TPM no less than 1 in the feeding, fasting and refeeding samples

were selected to analyze the gene expression profile. Number of

genes differentially expressed between fasting and feeding states or

between refeeding and feeding states according to the indicated

fold change and FDR value was listed. (B) Venn diagram for the

2305 differentially expressed genes with absolute fold change $1.5

and FDR,0.001. (C) Heat-map images for the 2305 differentially

expressed genes. The selected genes were classified into Cluster 1

to 8, based on the genes upregulated, downregulated, or

unaffected by fasting and/or refeeding. Cluster A and Cluster B

included upregulated and downregulated genes respectively

induced by fasting. Red and blue indicate genes with high and

low abundance respectively.

(TIF)

Table S1 The top 5 Ingenuity and KEGG pathways and the

associated genes significantly affected by fasting and refeeding.

(DOC)

Table S2 Gene expression data of mouse liver under feeding,

fasting and refeeding conditions. The 8815 genes with average

TPM no less than 1 in these three states were listed. N_TPM, the

TPM of the indicated genes under normal feeding condition;

F_TPM, the TPM of the indicated genes under fasting condition;

R_TPM, the TPM of the indicated genes under Refeeding

condition.

(XLS)

Table S3 List of fasting-affected genes enriched in the correlated

liver diseases.

(XLS)

Table S4 List of Refeeding-affected genes enriched in the

correlated liver diseases.

(XLS)
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