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Abstract: In this study, an automatic robust multi-objective controller has been proposed for blood glucose (BG) regulation in
Type-1 Diabetic Mellitus (T1DM) patient through subcutaneous route. The main objective of this work is to control the BG level
in T1DM patient in the presence of unannounced meal disturbances and other external noises with a minimum amount of insulin
infusion rate. The multi-objective output-feedback controller with H∞, H2 and pole-placement constraints has been designed
using linear matrix inequality technique. The designed controller for subcutaneous insulin delivery was tested on in silico adult
and adolescent subjects of UVa/Padova T1DM metabolic simulator. The experimental results show that the closed-loop system
tracks the reference BG level very well and does not show any hypoglycaemia effect even during the long gap of a meal at night
both for in silico adults and adolescent. In the presence of 50 gm meal disturbance, average adult experience normoglycaemia
92% of the total simulation time and hypoglycaemia 0% of total simulation time. The robustness of the controller has been
tested in the presence of irregular meals and insulin pump noise and error. The controller yielded robust performance with a
lesser amount of insulin infusion rate than the other designed controllers reported earlier.

1 Introduction
Type-1 diabetes or insulin dependent diabetes mellitus is caused
due to the insufficient insulin produced by the pancreas. The
treatment of Type-1 diabetes is very challenging to the medical
practitioners and engineers in terms of quantity of drug infused into
the patient's blood stream and for maintaining the normal blood
glucose (BG) level in the presence of various noises, uncertainties
and patient parameter variations. An automated, continuous and
controlled release of insulin to the bloodstream of a Type-1
Diabetes Mellitus (T1DM) patient is required to maintain
normoglycaemia (BG level between 70 and 130 mg/dl on fasting
and BG level not exceeding 140 mg/dl after 2 h of eating) in the
presence of normal meal and activity conditions [1].

T1DM is a result of chronic autoimmune destruction of the
pancreatic β-cells resulting in an absolute insulin deficiency. The
glucose metabolism process is a non-linear complex process and is
related to a number of internal factors, which are not always
measurable. The system appears highly stochastic with accessible
information like occasional BG sensing, amount of food intake and
other activity conditions [1, 2].

The idea of artificial pancreas (AP) or closed-loop control for
maintaining normoglycaemia in T1DM patient has been discussed
by the researchers as to improve the diabetes management since the
1970s. The closed-loop AP consists of BG sensor, continuous
subcutaneous (SC) insulin infusion pump and appropriate control
algorithm. The closed-loop control of BG regulation involves the
interplay between the non-linear dynamics of the physiological
process, the inter-patient and intra-patient parameter variabilities,
noises in the actuator (insulin pump) and in glucose sensor and
other uncertainties. Robust regulation of glucose level is necessary
for the patient's physiological process in the presence of meal
disturbance, actuator and sensor noises. It is very difficult to
establish apriori, the exact relationship amongst the interacting
sub-processes due to dynamic non-linearities and parameter
variations from patient to patient.

The insulin can be infused into the patient's body through
intravenous (IV) route and SC route. Many researchers have
developed a different mathematical model for designing the
controller for controlling the BG in closed-loop fashion both

through the IV and SC routes [2–5]. Researchers also worked on
various closed-loop control algorithms for BG regulation [6–24]
both through IV and SC routes. Parker et al. [6] designed an
automatic H-infinity (H∞) controller for controlling the BG level
through the intravenous route considering Sorensen physiological
model [3] and showed that controller tracks BG level very well.
Dua et al. [12] developed a multi-objective controller based on
Bergman's model [2] for BG regulation through intravenous route.
Paoletti et al. [22] used Hovorka's model [4] for the design of data-
driven robust model-predictive controller (MPC). Due to some
inherent problems associated with IV insulin treatment, SC insulin
therapy became very popular for BG regulation in T1DM patients
and many control configurations such as proportional–integral–
derivative (PID), linear quadratic Gaussian (LQG), H-infinity
(H∞), non-linear and MPC have been suggested [8–11, 13, 16–20,
23]. Among these H∞ and MPC give a better result than the others.
The motivation of this work is in the quest of design, analysis and
synthesis of some robust controller for BG regulation in
multivariable non-linear glycaemic process of T1DM patient with
multiple constraints, where the design is based on a combination of
more than one control objectives. The multi-objective control
algorithm for BG regulation through SC route in T1DM patient has
not reported earlier by any researcher.

In this study, a multi-objective controller is designed for BG
regulation in TIDM patient through SC route applying linear
matrix inequality (LMI) technique. The meal model developed by
Man et al. [5] for the T1DM patient has been used and the
controller is designed on linearised model of the TIDM subject.
The designed controller has been tested on 22 in silico patients of
UVa/Padova T1DM metabolic simulator [25] that is approved by
the US Food and Drug Administration (FDA). The followings are
the main contributions of this research work.

• This work applies the concept of designing an output-feedback
multi-objective controller for BG regulation in T1DM patient to
deliver insulin through SC route using LMI technique.

• The time-domain and frequency-domain design specifications
such as H∞ and H2 performances and pole-placement constraints
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have been set up for the glycaemic process in T1DM patients
through the SC route.

• Multi-objective control algorithm has been developed with H∞,
H2 and pole-placement constraints for BG regulation in T1DM
patient through SC route.

• The designed multi-objective controller was tested on 11 in
silico adult and also on 11 in silico adolescent subjects of T1DM
simulator.

o Experimental results show that the proposed controller
regulates tightly the BG level in the presence of unannounced
meal disturbances and also avoids hypoglycaemia effects. The
insulin infusion required for BG regulation is also less.
o The designed controller yielded a robust performance in the
presence of irregular meals and pump error and noise. Here
patients experience hypoglycaemia 0% of total simulation time.
o The performance of the proposed multi-objective controller is
compared with the performance of the H∞ controller with safety
mechanism (SM) and insulin feedback loop (IFL), tested on in
silico adults in the T1DM simulator as reported in [19]. The
proposed controller gives better performance with lesser
hyperglycaemic and hypoglycaemic events and with a lesser
amount of insulin infusion without using SM and IFL.
o The performance of the designed controller is also compared
with fully-automated online-tuned controller based on internal
model control (IMC) strategy [23]. The designed multi-objective
controller keeps the BG level of in silico patient more time
within the clinically safe target zone (70–180 mg/dl) than this
fully-automated online-tuned controller.

2 Glucose–insulin dynamics in Type-1 diabetics
The glucose–insulin kinetic model used in this work is based on the
dynamic equations used by Dalla Man et al. [5] for the glucose-
insulin process of T1DM patient with the meal simulation model.
The closed-loop control scheme for BG regulation in T1DM
patient with the meal simulation model, glucose sensor and insulin
pump is shown in Fig. 1.

The meal model consists of a two-compartment glucose
subsystem and two-compartment insulin subsystems. The SC
insulin kinetics used in this study has been developed by Man et al.
[9]; and SC glucose kinetics has been developed by Magni et al.
[10]. This model has been successfully used by many researchers
with in silico trials for testing various control algorithms [9–11, 13,
19, 20, 23]. The dynamic equations that represent the meal
simulation model are given in the Appendix.

The block diagram of the patient model in an algebraic
framework with inputs, outputs and feedback control is shown in
Fig. 2, where w is the exogenous input vector consist of glucose
reference, meal disturbance, actuator noise and sensor noise; u is
the control input (insulin infusion); zP is the BG level error, zT is
the plasma glucose level and zu is the insulin infusion rate; y is the
measured output (glucose level error).

The design specifications that have been considered to regulate
the BG level of a T1DM patient using a multi-objective controller
are

• To reject the effect of disturbances (meal disturbances, sensor
and actuator noises).

• To minimise the postprandial BG concentration peak.
• To avoid the hypoglycaemia effect.
• To minimise the time required to settle down about the BG

target.
• To minimise insulin infusion required from the SC insulin

pump.

3 Multi-objective control via LMI technique
For the present problem, the design specifications are a
combination of performances and robustness objectives and can be
expressed both in the time and frequency domains. The multi-
objective constraints are expressed regarding LMI and have also

been solved using LMI technique. The LMI technique is very
popular for addressing the multi-objective problem. The various
frequency and time-domain convex constraints such as H∞
performance, H2 performance and pole-placement [26–29] can be
expressed as LMI and can be solved using convex optimisation
algorithms.

Linear fractional transformation model of the closed-loop
system is shown in Fig. 3 where P is the generalised plant and K is
the multi-objective controller. The output vector z1 is associated
with H∞ performance and output vector z2 is associated with the H2
performance. The output vectors are

Fig. 1  Closed-loop control scheme of glucose–insulin process
 

Fig. 2  Block diagram of T1DM patient with the multi-objective controller
 

Fig. 3  Process in an algebraic framework with the multi-objective
controller
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z1 = zP zT zu
T; z2 = zP zu

T

The state-space realisation of the plant P is

ẋP t = APxP t + BP1w t + BP2u t (1)

z1 t = CP1 xP t + D11w t + D12u t (2)

z2 t = CP2 x t + D21w t + D22u t (3)

y t = Cyx t + Dyw t (4)

where xP t  is the state vector of the plant, w t  is the exogenous
input vector, u t  is the control input and y t  is the measured
output.

Here the objective is to design a multi-objective output
feedback controller K to satisfy the robust stability and robust
performance requirements, subject to the constraint that the closed-
loop system is internally stable. Suppose the closed-loop transfer
function of the system from w to z1 and w to z2 be Tz1w s  and
Tz2w s , respectively, under output-feedback control u = Ky.

The state-space realisation of the controller is

ẋK = AKxk t + BKy t (5)

u t = CKxK t + DKy t (6)

where xK t  is state vector of the controller.
The state-space realisation of the closed-loop system as shown

in Fig. 3 is given by

ẋC t = ACxC t + BCw t (7)

z1 t = CC1xC t + DC1w t (8)

z2 t = CC2xC t + DC2w t (9)

where xC t  is the state vector of the closed-loop system and is

given by xC =
xP

xK
.

Here, for multi-objective output feedback control design, the
controller gain K is computed such that it

• Minimises the trade-off criterion between H2 and H∞ norm of
the following form:

J = αTz1w∞
2 + βTz2w2

2

where α ⪰ 0, β ⪰ 0 and α + β = 1.
• Confines the closed-loop poles in some prescribed region in the

left-half of the s-plane, called LMI region.

The H∞ norm of Tz1w  is less than any given γ where γ ≻ 0 if
there exists a positive symmetric P∞ [28], such that the following
LMI are feasible:

ACP∞ + P∞AC
T BC P∞CC

T

BC
T −γI DC

T

CC1P∞ DC1 −γI

≺ 0

P∞ ≻ 0

(10)

The H2 norm of Tz2w s  is less than δ if and only if DC2 = 0 and if
there exist positive symmetric P2 and Q [28] such that the
following LMI are feasible:

ACP2 + P2AC
T BC

BC
T −I

≺ 0 (11)

Q CCP2

P2CC
T P2

≻ 0 (12)

trace Q ≺ δ2 (13)

To improve the transient response, the closed-loop poles of the
system can be confined in a prescribed region in the left-half of the
s-plane called LMI region. An LMI region is a convex subset D of
the complex plane [28] that is defined as

D = z ∈ C: L + zM + z̄MT ≺ 0 (14)

where M and L = LT are the real matrices.
The closed-loop poles will be confined in the LMI region with

L = LT = λi j 1 ⪯ i, j ⪯ m and M = μi j 1 ⪯ i, j ⪯ m if and only if there
exits symmetric matrix Ppol [28], which satisfies

λi jPpol + μi jACPpol + μi jPpolAC
A

1 ≺ i, j ≺ m ≺ 0
Ppol ≻ 0

(15)

Here the multi-objective optimisation problem is non-convex
because the matrix inequalities involved in (10), (11) and (15) are
not jointly convex as P∞ ≠ P2 ≠ Ppol. So it becomes very difficult
to solve numerically the optimisation problem using LMI
technique. The convexity can be recovered [28, 29] by seeking a
common solution P∞ = P2 = Ppol = PC ≻ 0. The matrix
inequalities in (10), (11) and (15) also contain non-linear terms, so
the problem cannot be solved directly using the LMI technique.
The non-linear problem can be converted into a linear one by
changing the controller variables and the new controller variables
are given by (16)–(19), where R, S, M, N are the sub-matrices of
PC.

ĀK = NAKMT + NBKCyR + SBP2CKMT

+S AP + BP2DKCy R
(16)

BK = NBK + SBP2DK (17)

CK = CKMT + DKCyR (18)

DK = DK (19)

Once the new controller variables, ĀK, BK, CK, DK and R, S, M,
N are obtained, the controller variables AK, BK, CK  and DK can
be determined by solving the equations from (16)–(19). The multi-
objective output feedback controller K designed with the objectives
mentioned earlier exits if and only if the following systems of
LMIs are feasible:

∅11 ∅21
T

∅21 ∅22
≺ 0

where

∅11: =
APR + RAP

T + BP2C̄K + C̄K
T BP2

T BP1 + BP2D̄KDy

BP1 + BP2D̄KDy
T −γI

∅21: = ĀK + (AP + BP2D̄KCy)T SBP1 + B̄KDy

CP1R + D12C̄K D11 + D22D̄KDy

∅22: = AP
TS + SAP + B̄KCy + Cy

TB̄K
T CP1 + D12D̄KCy

T

CP1 + D12D̄KCy −γI

and
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Q CP2R + D22C̄K CP2 + D22D̄KCy

CP2R + D22C̄K
T R I

CP2 + D22D̄KCy
T I S

≻ 0

(see equation below). Along with trace Q < δ0
2

γ2 ≺ γ0
2

D21 + D22D̄KDy = 0

The matrices R = RT ∈ ℛn × n, S = ST ∈ ℛn × n and matrices ĀK,
BK, CK, DK can be determined by solving the above LMIs. If the

optimal solutions of the above LMI problem are γ* and Q*, then
the closed-loop H∞ and H2 performances are bounded by
Tz1w∞ ⪯ γ*, Tz2w2 ⪯ trace Q* , where the closed-loop poles are
confined in the prescribed LMI region D. The matrix elements λi j
and μi j are related to the prescribed LMI region D.

4 Multi-objective controller design for the
glucose–insulin process
The non-linear model of glucose–insulin process in SC route for
T1DM patient based on the dynamic equations given in the
Appendix is implemented using MATLAB SIMULINK®
toolboxes and the model is linearised around the target value of
glucose concentration (120 mg/dl) assuming no disturbances. The

order of the linearised model is 16th. Fig. 4 shows the control
configuration for the T1DM patient with weighting functions and
multi-objective controller K.

In Fig. 4, Wm represents meal disturbance weight. The meal
disturbances are considered as rectangular pulses. To make a
smooth rise and fall of the meal disturbance pulses that happen to
the subject [6], these signals are passed through a first-order low-
pass filter Wm. Depending on the absorption of disturbance
dynamics in the patient's physiological process, the time constant
of Wm has been selected. For the present glucose–insulin process,
the low-pass filter Wm is considered as Wm = 1/ 4s + 1 .

The weights for both actuator and sensor noise are taken as
Wn = 0.0001. The noise signals are considered Gaussian in nature
and the intensity depends on the statistics of error in the device
outputs.

In Fig. 4, Wu is the control input weight and the performance
weights are WP and WT. The WP, WT and Wu are used for shaping
the performances of closed-loop process. Here the objective for the
problem is to minimise the sensitivity function S, KS and
complementary sensitivity function T. For the glucose–insulin
process, the weight functions WP, WT and Wu are chosen as

WP s = s/MP + ωP
s + ωPAP

= 0.6667s + 0.9
s + 0.0009

WT s = s + ωT /MT
ATs + ωT

= s + 0.001
0.001s + 0.001

Wu s = s + ωu/ Mu
2

Au
2 s + ωu

2

= 1111s2 + 54.43s + 0.6667
1.111s2 + 2.108s + 1

After selection of the weight functions, the Pareto-like trade-off
curve is determined using LMI technique and by minimising the
trade-off criterion between H2 and H∞ norm of the form
J = min αγ2 + βδ2  for each value α and β between 0 and 1,

where α ⪰ 0, β ⪰ 0 and α + β = 1. The trade-off curve is shown in
Fig. 5. From this trade-off curve, the best values of H∞ and H2
norm are obtained as γ* = 142.11 and δ* = 152.02, respectively, and
these values are achieved for α = 0.887 and β = 0.113. Control
algorithm has been implemented using MATLAB LMI control
Toolbox.

The flowchart of the proposed control algorithm is shown in
Fig. 6. To improve the transient response of the process or to
provide damping, the closed-loop poles of the output feedback
system had been placed in a prescribed LMI region as shown in
Fig. 7. The region is chosen as the conic sector with the apex at x 
= 0 and angle θ = 5°.

5 Results and discussion
The performance of the designed multi-objective controller is
tested in silico subjects of UVa/Padova T1DM simulator v3.2 that
is accepted by the FDA in connection with the development of AP.
The simulator has three different groups of in silico subjects;
children, adolescent and adults. In each group, there are 11 subjects
(10 different subjects and 1 average). Each subject has a different
age, body weight and other parameters [25]. Using the simulator an
optimal bolus insulin dose can be provided for a given meal size to
each subject based on the subject's basal rate and insulin-to-
carbohydrate ratio (I:C). The proposed controller has been tested
on 11 in silico adult and 11 in silico adolescents with different meal
size, errors and noises in an insulin pump. Continuous glucose
monitor (CGM) is taken for glucose sensing and continuous SC
insulin infusion (CSII) pump is chosen for insulin infusion into the
body of the patient in this simulator.

λi j
R I
I S

+ μi j
APR + BP2C̄K AP + BP2D̄KCy

ĀK SAP + B̄KCy
+ μji

RAP
T + C̄K

T BP2
T ĀK

T

AP + BP2D̄KCy
T AP

TS + Cy
TB̄K

T
1 ⪯ i, j ⪯ m

≺ 0

Fig. 4  T1DM patient under multi-objective output-feedback control
 

Fig. 5  Multi-objective trade-off curve for the GI process
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5.1 Testing on in silico adults

For testing the multi-objective controller in this tracking problem,
the target value of plasma glucose concentration is considered as
120 mg/dl because this target value is frequently used in clinical
trials [8]. The controller has been tested on in silico adults in the
presence of unannounced meal disturbances with CGM glucose
sensor and an insulin pump with no error. One day (24 h)
simulation time is considered and the simulation is started at
midnight where the controller is turned ON at the same time. A
single meal of 50 g CHO is subjected to all adults (11) after 6 h of
starting the simulation. The BG level and insulin infusion rate
profiles of adult-average are shown in Figs. 8 and 9, respectively. 
From the responses and results, the followings can be observed:

• Postprandial BG concentration peak is within clinically safe
normoglycaemic BG zone of 70–180 mg/dl and BG level of
adult avg. remains 92% of the time within this zone.

• The minimum BG level observed is 98 mg/dl and hence the
hypoglycaemia effect is not noticed.

Fig. 6  Flowchart of the proposed control algorithm
 

Fig. 7  Prescribed LMI region
 

Fig. 8  BG level of an adult-average when subjected to 50 gm meal (green
shaded region represents the euglycemic zone and the yellow one represents
the normoglycaemic zone)

 

Fig. 9  Insulin infusion rate of an adult-average when subjected to 50 gm
meal

 

Fig. 10  CVGA plot for 11 in silico adults
 

Fig. 11  BG response of adult-avg. when subjected to 50 gm meal
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• A minimal High BG Index (HBGI = 1.45), a minimal Low BG
Index (LBGI = 0) and BG Risk Index (BGRI = 1.46) have been
achieved.

• The insulin infusion rate response shows that maximum 3.3 U/h
insulin is required to regulate the BG level, which is very much
less.

The control variability grid analysis (CVGA) plot of all 11
adults is shown in Fig. 10. Each blue dot represents each adult's
minimum and maximum BG level. From the plot, it is also
observed that the clustering of points of all adults is tighter and is
placed in upper B-zone. The BG responses of 11 in the silico adult

of the simulator with 50 gm meal are given in Fig. 11 and average
results are given in Table 1.

The designed controller is also tested through 30-days. Here
repetitive diets have been followed and patient consumes three
meals in a day (at 07:00 h, 12:00 h and 20:00 h) with a fixed
amount of CHO (40, 75, 60 gm respectively). The 30-day BG level
and insulin infusion responses are shown in Figs. 12 and 13,
respectively. The BG response shows that hypoglycaemia effect is
absent in the response. It also shows that the first-day peak BG
level is 270 mg/dl for 75 gm meal and from the Day-4, the
maximum BG level remains almost fixed within 250 mg/dl. From
the insulin infusion rate, it is seen that for 75 gm meal the insulin
infusion rate is only 4.5 U/h.

5.2 Testing on in silico adolescents

The proposed controller has also been tested on in silico
adolescents. The 24 h simulation time is considered and the
simulation is started at midnight where the controller is turned ON

Table 1 Average results for 11 in silico adult subjects of theUVa/Padova simulator with a meal of 50 gm
Adult ID Mean BG,

mg/dl
Peak BG,

mg/dl
Mean post-
meal BG

Min. BG,
mg/dl

%Time <70 
mg/dl

%Time in target
70–180 mg/dl

%Time within 80–
140 mg/dl

1 121.7 202 199 106 0 93.2 85.5
2 122.7 192 180 118 0 97.2 89.3
3 128.9 198 189 110 0 89.1 79.8
4 122.7 204 188 105 0 92 84.1
5 128.3 222 216 90 0 87.2 82
6 124.4 223 225 107 0 90.3 85.1
7 127 267 264 96 0 89.5 87.5
8 134.8 238 216 109 0 87 79.9
9 123.5 208 211 108 0 92.3 87.5
10 123.6 193 190 108 0 93.4 84.4
avg 124.4 207 200 98 0 92 85.4

 

Fig. 12  BG response through 30-days of adult-average when subjected to
multi-meal

 

Fig. 13  Insulin infusion rate through 30-days of adult-average when
subjected to multi-meal

 

Fig. 14  BG response in adolescent-average when subjected to 50 gm meal
 

Fig. 15  Insulin infusion rate in adolescent-average when subjected to 50 
gm meal
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at the same time. All adolescents (11) are subjected to a single
meal of 50 g CHO after 6 h of starting the simulation with CGM
glucose sensor and an insulin pump with no error. The BG and
insulin infusion rate profiles of the average subject are shown in
Figs. 14 and 15, respectively. The average results of the subjects
are shown in Table 2. From the results and responses, the
followings can be observed:

• Hypoglycaemia effect is absent and the postprandial BG
concentration peak is also within the clinically safe
normoglycaemic BG zone of 70–180 mg/dl.

• BG level of the average subject remains 86.47% of the time
within the normoglycaemic zone of 70–180 mg/dl.

• The time required to settle down about the target value is more
than the time required for an average adult.

• The insulin infusion rate response shows that controller delivers
a maximum of 3 U/h insulin to regulate the BG level for 50 gm
meal.

So the controller fulfils the objectives for BG regulation via the
SC route for adolescents also. Further tuning of the controller may
be required for using with adolescents. The CVGA plot of all
adolescents is shown in Fig. 16. From the plot, it can also be

observed that the clustering of points of all adolescents is tighter
and are in upper B-zone and B-zone.

5.3 Robustness analysis

• Case 1: For robustness, the controller is tested through 4-days
when the patient was subjected to irregular meals. The meal size
and meal time are given in Table 3. Here on Day 2, the patient
skipped the lunch and on Day 3, the patient was on fasting. The
BG level and insulin infusion rate responses are shown in
Figs. 17 and 18, respectively. From the response, it is observed

Table 2 Average results for 11 in silico adolescent subjects of the UVa/Padova simulator with a meal of 50 gm
Adolescent ID Mean BG, mg/dl Mean post-meal

BG
%Time <70 mg/dl %Time >300 

mg/dl
%Time in target 70–

180 mg/dl
%Time above 70–

180 mg/dl
1 121.7 254.6 0 0 89.52 10.48
2 130.5 256.27 0 0 90.08 9.92
3 134.3 216.72 0 0 88.97 11.03
4 142.2 251.91 0 0 81.96 18.04
5 151.5 206.89 0 0 76.89 23.11
6 140.2 208.63 0 0 83.55 16.45
7 142.4 272.79 0 0 84.94 15.06
8 138.2 214.5 0 0 81.75 18.25
9 143.8 209.28 0 0 80.22 19.78
10 136.6 204.53 0 0 85.84 14.16
avg 133.2 231.56 0 0 86.47 13.53
 

Fig. 16  CVGA plot for 11 in silico adolescent
 

Table 3 Meal time and meal size
Time 8 h 12 h 8 h

Day 1 size, gm 45 75 70
Day 2 size, gm 50 — 90
Day 3 size, gm — — —
Day 4 size, gm 50 80 60
 

Fig. 17  BG response of adult-average when subjected to irregular meals
 

Fig. 18  Insulin infusion rate of adult-average when subjected to irregular
meals
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that the postprandial BG level is <180 mg/dl, i.e. in the safe
region. Even on day-3, when the patient is on fasting the BG
level is in a euglycaemic zone. So the controller tracks the target
value very well and the overnight hypoglycaemia effect cannot
be noticed. The insulin requirements are also very less as
evident from the figure. So the proposed controller regulates BG
robustly with the minimum drug.

• Case 2: For robustness analysis, the simulation is also carried
out in the presence of insulin pump noise and error (i.e. in built
noise and error in T1DM simulator). The simulation time is

taken as 24 h. The subject is given 45 gm a meal at 08:00 h, 75 
gm meal at 12:00 h and 70 gm meal at 20:00 h. The BG and
insulin infusion responses with pump noise, error and without
pump noise, error are given in Figs. 19 and 20, respectively.
From the red BG curve, it can be observed that the postprandial
BG level is within a clinically safe region (70–180 mg/dl) and
hypoglycaemia effect is also not obtained. From the insulin
infusion curves, it is clear that the insulin requirements in both
the cases are almost the same. Thus the controller regulates the
BG very well in the presence of meal disturbances as well as
insulin pump noise, error with almost the same amount of
insulin. Thus the controller gives a robust performance in the
presence of pump noise and error also.

5.4 Performance comparison with other controllers from
earlier reports

• Case 1: The performance of the proposed multi-objective
controller is compared with the performance of H∞ controller
with SM and IFL, tested on in silico 101 adults in T1DM
simulator as reported in [19]. The patient was subjected to the
same meal regimen considered in [19] and is given in Table 4.
The BG target is taken as 120 mg/dl and the comparative
average performance of the proposed controller with that of the
reported in [19] are given in Table 5 for meal Protocol #1 and
Protocol #2. From the results, the followings can be seen:

o Designed multi-objective controller avoids hypoglycaemia
effect without using SM and IFL as used with H∞ controller
reported in [19].
o From Table 5, it can be seen that the postprandial BG, mean
BG and maximum BG level all are less than the H∞ controller
reported in [19].
o The percentage time in target value (70–180 mg/dl) is also
more in case multi-objective controller.
o The maximum insulin infusion rate required for the multi-
objective controller is very much less than this H∞ controller
and that is another advantage of this proposed multi-objective
controller.

• Thus the proposed controller gives better performance with
lesser hyperglycaemic and hypoglycaemic events and with a
lesser amount of insulin infusion without using SM and IFL.

Fig. 19  BG response in adult-average with and without insulin pump
noise and error

 

Fig. 20  Insulin infusion rate in adult-average with and without insulin
pump noise and error

 

Table 4 Meal time and sizes as given in [19]
Meal protocol #1 Meal protocol #2

Day 1 Day 2 Day 3 Day 1 Day 2 Day 3
breakfast time 7 am 6 am 7 pm 7 pm — 7 pm

size, gm 50 50 50 50 — 50
lunch time 2 pm 1 pm 1 pm — 12 pm 2 pm

size, gm 60 70 65 — 55 55
dinner time 8 pm 7 pm 9 pm 8 pm 9 pm 8 pm

size, gm 50 50 55 60 50 50
 

Table 5 Comparison of controller responses with meal protocols and controller strategies [19]
Controller performance Protocol #1 Protocol #2

As reported in [19]
postprandial (PP)

As reported in
[19] overall (O)

Proposed
controller

As reported in [19]
postprandial (PP)

As reported in
[19] overall (O)

Proposed
controller

mean BG 176 148 138.08 177 154 134.5
max. BG 229 226 228 224 220 222
min. BG 108 96 86 114 108 98
%time in [70–180 mg/dl] 54.2 75.9 77.51 54.4 75.5 79.43
%time in >300 0.3 0.1 0 0.1 0 0
%time in >180 45.8 24 22.49 45.6 24.5 20.57
%time in <70 0 0.1 0 0 0 0
max. insulin infu. rate, U/h 7 — 3.8 6 — 4
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• Case 2: The performance of the proposed controller is also
compared with the performance of fully-automated offline- and
online tuned IMC and semi-automated online-tuned IMC [23].
The patient was subjected to the same meal disturbances as in
scenario 1 [23] and is given in Table 6.

• The BG target is taken as 110 mg/dl as in [23]. The comparative
average performance of the proposed controller with that of the
reported in [23] is given in Table 7 for scenario 1. The BG and

insulin infusion rate are given in Figs. 21 and 22. The
percentage time in target value (70–180 mg/dl) and percentage
time in tight target (80–140 mg/dl) is also more in case multi-
objective controller. Percentage time below 70 mg/dl is also
zero. So the proposed controller gives better result than the
controllers reported in [23].

6 Conclusion
In this paper, a multi-objective control algorithm using LMI
technique has been proposed for closed-loop robust BG regulation
in T1DM patient through SC route. For convex stabilisation of the
insulin delivery system, multi-objective constraints H∞, H2, and
pole-placement have been expressed regarding LMI. The designed
multi-objective controller is tested on in silico subjects of UVa/
Padova T1DM Simulator v3.2 in the presence of meal disturbances
and insulin pump noise and error. The control algorithm is
validated on in silico 11 adults and 11 adolescents. The controller
response shows no postprandial hyperglycaemia and
hypoglycaemia effects and regulates the BG level with minimum
amount of insulin infusion, which is very much desired for AP
application. For robustness analysis, the proposed multi-objective
controller was tested on in silico adults and adolescents, with
irregular meals and with and without insulin pump error and
noises. The resulting controller yielded robust performance with
less amount of insulin infusion even in the presence of irregular
meals and pump error and noise. This controller regulates the BG
level very tightly with minimum control effort and does not require
any bolus insulin feedback loop as reported in earlier research
work.

The limitations of this work are that the effects of counter-
regulatory hormones such as glucagon, growth hormones and so on
have not been considered in the model of glucose–insulin process
and also the effects of physical exercise by the patient is not
considered. In future, the performance of the multi-objective
controller with proper exercise and activity model may be studied
on in silico patients.
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8 Appendix
 
8.1 Dalla-Man model of glucose–insulin dynamics in Type-1
diabetics

The meal simulation model includes glucose G and insulin I, with
the glucose fluxes, i.e. rate of appearance (Ra), endogenous glucose
production (EGP), glucose utilisation (U), renal extraction (E), and
insulin fluxes, i.e. secretion (S) which is taken as zero for type-1
patient and degradation (D) [5]. The dynamic equations that
represent the meal simulation model are given below.

8.1.1 Glucose intestinal absorption: Glucose intestinal
absorption describes [5] the glucose transit through the stomach
and intestine

Qsto t = Qsto1 t + Qsto2 t

Q̇sto1 t = − kgriQsto1 t + d t

Q̇sto2 t = − kgut t, Qsto Qsto2 t + kgriQsto1 t

Q̇gut t = − kabsQgut t + kgut t, Qsto Qsto2 t

Ra t = f kabsQgut t
BW

where Qsto (mg) is the amount of glucose in the stomach (solid
phase, Qsto1 and liquid phase, Qsto2), Qgut (mg) is the glucose mass
in the intestine, kgri is the rate of grinding, kabs is the rate constant
of intestinal absorption, f is the fraction of intestinal absorption that
actually appears in plasma, d (mg/min) is the rate of ingested
glucose, BW (kg) is body weight, Ra (mg/kg/min) is the glucose
rate of appearance in plasma, and kempt is the rate constant of
gastric emptying.

kgut t, Qsto = kmin + kmax − kmin

2 tan h a Qsto − bD̄ t

−tan h c Qsto − dD̄ t + 2

a = 5
2D̄ t 1 − b

, c = 5
2D̄ t d

, D̄ t = Qsto t + ∫
t

t f

d τ dτ

where t and tf are the initial and final times of the last ingestion,
respectively, while a, b, c, d, kmax and kmin are model parameters.

8.1.2 Glucose subsystem: Two compartment models are used to
describe glucose kinetics [5]

ĠP t = EGP t + Ra t + K2Gt t − E t − Uii t − K1GP t ,
Ġt t = K1GP t − K2Gt t − Uid t

where Gp (mg/kg) and Gt (mg/kg) are the glucose masses in plasma
and rapidly equilibrating tissues and in slowly equilibrating tissues,
respectively, EGP is the endogenous glucose production (mg/kg/
min), E (mg/kg/min) is the renal excretion, Uii and Uid are the
insulin-independent and -dependent glucose utilisations (GUs),
respectively, (mg/kg/min), and k1, k2 are the rate parameters.

8.1.3 SC glucose kinetics: SC glucose concentration GM (mg/dl)
is obtained as

ĠM t = − kscGM t + ksc
GP t
VG

where VG (dl/kg) is the body weight-normalised glucose volume
and ksc is a rate constant.

8.1.4 Glucose renal excretion: Glucose excretion by the kidney
occurs if plasma glucose exceeds a certain threshold and is
modelled as

E t =
Ke1 Gp t − Ke2 ; if Gp t > Ke2

0; if Gp t ≤ Ke2

where Ke1 (min−1) is the glomerular filtration rate and Ke2 is the
renal threshold of glucose.

8.1.5 Endogenous glucose production: It comprises a direct
glucose signal and a delayed insulin signal [5]

EGP t = kp1 − kp2Gp t − kp3Id t
EGP 0 = EGPb

where delayed insulin signal Id (pmol/l) is given by

İ1 t = − ki I1 t − I t ,

İd t = − ki Id t − I1 t ,

I1 0 = Id 0 = Ib

where I (pmol/l) is the plasma insulin concentration, kp1 is the
extrapolated EGP at zero glucose and insulin, kp2 is the liver
glucose effectiveness, kp3 is a parameter governing the amplitude
of insulin action on the liver, and ki is the rate parameter
accounting for the delay between insulin signal and insulin action.

8.1.6 Glucose utilisation: GU by body tissues during a meal
consists of two components. One is insulin-independent GU
Uii t = Fcns. Another is insulin-dependent component Uid t  which
depends non-linearly on glucose concentration in the tissues
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Uid t = Vm t Gt t
Km + Gt t ,

Vm t = Vm0 + VmxX t ,

Ẋ t = − p2uX t + p2u I t − Ib

where Km, Vm0 and Vmx are model parameters; X (pmol/l) is the
remote insulin signal; Ib is the basal insulin level; p2u is the rate
constant of the insulin action on peripheral glucose utilisation.

8.1.7 SC insulin kinetics: This work uses the variation of a model
described in Nucci and Cobelli

İsc1 t = − kd + ka1 Isc1 t + u t ,
İsc2 t = kdIsc1 t + ka2Isc2 t

where Isc1 is the amount of non-monomeric insulin in the SC
space, Isc2is the amount of monomeric insulin in the SC space, u(t)
(pmol/kg/min) is the exogenous insulin infusion rate, kd (min−1) is

the rate constant of insulin dissociation, and ka1 and ka2 are the rate
constants of non-monomeric and monomeric insulin absorption,
respectively.

8.1.8 Insulin subsystem: The two-compartment model is used to
describe insulin kinetics and the model equations are

İ l t = − m1 + m3 Il t + m2Ip t ,
İ p t = − m2 + m4 Ip t + ka1Isc1 t + ka2Isc2 t ,

I t = Ip t
Vl

where Isc1 is the amount of non-monomeric insulin in the SC
space, Isc2 is the amount of monomeric insulin in the SC space, u(t)
(pmol/kg/min) is the exogenous insulin infusion rate, kd (min−1) is
the rate constant of insulin dissociation, and ka1 and ka2 are the rate
constants of non-monomeric and monomeric insulin absorption,
respectively.
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