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Abstract

Glomalin-related soil protein (GRSP), a widespread glycoprotein produced by arbuscular

mycorrhizal fungi (AMF), is crucial for ecosystem functioning and ecological restoration. In

the present study, an investigation was conducted to comprehensively analyze the effects

of heavy metal (HM) contamination on AMF status, soil properties, aggregate distribution

and stability, and their correlations at different soil depths (0–10, 10–20, 20–30, 30–40 cm).

Our results showed that the mycorrhizal colonization (MC), hyphal length density (HLD),

GRSP, soil organic matter (SOM) and soil organic carbon (SOC) were significantly inhibited

by Pb compared to Zn at 0–20 cm soil depth, indicating that HM had significant inhibitory

effects on AMF growth and soil properties, and that Pb exhibited greater toxicity than Zn at

shallow layer of soil. Both the proportion of soil large macroaggregates (>2000 μm) and

mean weight diameter (MWD) were positively correlated with GRSP, SOM and SOC at

0–20 cm soil depth (P < 0.05), proving the important contributions of GRSP, SOM and SOC

for binding soil particles together into large macroaggregates and improving aggregate sta-

bility. Furthermore, MC and HLD had significantly positive correlation with GRSP, SOM and

SOC, suggesting that AMF played an essential role in GRSP, SOM and SOC accumulation

and subsequently influencing aggregate formation and particle-size distribution in HM pol-

luted soils. Our study highlighted that the introduction of indigenous plant associated with

AMF might be a successful biotechnological tool to assist the recovery of HM polluted soils,

and that proper management practices should be developed to guarantee maximum bene-

fits from plant-AMF symbiosis during ecological restoration.
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Introduction

With the rapid development of the industrialization and urbanization process over the past

several decades, soils contaminated with heavy metals (HMs) have become major issues in

many developing countries [1, 2]. Elevated soil HMs can be attributed to a number of human

activities such as mining, smelting, electroplating, fuel production, gas exhausts and intensive

agriculture [3]. Due to less advanced technologies and more emphasis on economic growth,

mining and smelting operations for metallic ores have been the dominant sources of soil HMs

and subsequently caused severe environmental pollution in China [4]. Unlike carbon-based

organic pollutants, HMs cannot be degraded or destroyed easily and therefore tend to accumu-

late in various ecosystems over a long period of time [5]. Considerable amounts of HMs not

only have long-term hazardous impacts on soil function and quality, microbial activity and

diversity, plant growth and metabolism, but also threaten the health and life of animals and

human beings through the food chain [1, 6]. However, some plants develop many detoxifica-

tion and tolerance mechanisms that are able to survive, grow and reproduce without obvious

toxicity symptoms in HM polluted soils [7]. Phytoremediation refers to the use of these plants

to remove HM pollutants from soils in a non-polluting and cost-effective way [8]. Whereas,

most of these plants are not good for phytoremediation due to their slow growth rate and

small biomass, thus will take very long time for effective remediation of a site [4].

Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil organisms that form mutual sym-

biotic association with over 80% terrestrial plants, providing a direct physical link between soil

and plant roots [9]. AMF have been shown to promote plant growth and HM tolerance by

increasing plant access to relatively immobile nutrients [10], enhancing plant growth hor-

mones [11], influencing the uptake and distribution of HMs in plant tissues [12, 13], and

improving the conditions of rhizosphere soil micro-environment [14]. Therefore, AMF can

serve as a potential biotechnological tool to increase the phytoremediation efficiency of HM

contaminated soils [15, 16]. The influence of AMF on improving soil quality and structure in

HM polluted area has been largely neglected, although numerous studies have revealed benefi-

cial role of AMF in phytoremediation from symbiont perspective [17, 18].

AMF can contribute to soil aggregate stability directly by a physical effect of a network

around soil particles, and indirectly by the hyphal exudation of an iron-containing, heat stable

glycoprotein (extracted at 121˚C) named glomalin as an aggregate binding agent [19, 20]. Glo-

malin has been operationally defined as glomalin-related soil protein (GRSP) by extraction

and detection conditions from soil, and it is detected in large amounts in diverse ecosystems

[20]. The sticky GRSP acts as biological glue, helping to bind soil tiny particles into small

aggregates of different sizes [21]. Well-aggregated soil is stable enough to resist wind and water

erosion, and has better air and water infiltration rates favorable for plant and microbial growth

[22, 23]. Additionally, GRSP is recalcitrant enough to have a long residence time in soils, and

plays a pivotal role in long-term carbon/nitrogen storage and HM sequestration [19, 24].

Therefore, the release and accumulation of GRSP in soils can be a very important mechanism

for ecological restoration of soils degraded by mining and smelting activities.

Although the studies concerning the responsiveness of GRSP for agricultural and land-use

practices are increasing [25], we still have a poor understanding of the potential changes and

distribution characteristics of GRSP at different soil depths in HM contaminated soils. GRSP

is a glycoprotein produced by mycelium and spore walls of AMF, presenting correlation with

mycorrhizal colonization, spore density, hyphal length and other soil properties to some extent

[26]. Our previous study reported that long-term HM pollution had significant effects on

AMF status and soil properties [27], thereby probably disturbing GRSP production and aggre-

gate formation. We also found that Sophora viciifolia was a dominant plant species grown
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widely in HM polluted soils and commonly colonized by AMF [28]. As pioneer plant species,

they appeared to be suitable for phytoremediation and revegetation of HM contaminated sites

due to their fast growth, deep root system and high stress resistance [28, 29]. However, a

detailed information about the effects of AMF on distribution of GRSP, aggregate stability and

soil quality at different soil depths in HM polluted area are still lacking. Therefore, better

understandings of GRSP distribution, aggregate composition, AMF status, soil properties and

their relationships along gradients of HM contamination is required for phytoremediation

improvement and degraded ecosystem restoration. The present study was conducted to (1)

evaluate the influences of HM contamination on soil properties, AMF status, GRSP and aggre-

gate distribution at different soil depths; (2) analyze the relationships among these measured

index; and (3) identify the important biological factors affecting aggregate-size distribution

and stability in HM contaminated area.

Materials and methods

Ethics statement

The study area is not privately-owned or protected in any way, so no specific permits were

required for the described field studies. The field studies did not involve endangered or pro-

tected species. Informed consent was obtained from all participants.

Study area and sampling

The study was conducted during the wet season in September 2011 in Qiandongshan lead (Pb)

and zinc (Zn) polluted area which is located about 230 km to the west of Xi’an city (the capital

of Shaanxi Province). The area is one of the four largest Pb and Zn bases in China with an

annual production capacity of 30,000 tons of Pb concentrates, 100,000 tons of Zn concentrates,

10,000 tons of electrolytic Pb, and 5,000 tons of Pb alloy. The mineral resources are very abun-

dant in this area and mining industry has become an important economic mainstay in Shaanxi

Province. In addition, the Qiandongshan Pb and Zn polluted area is the largest and the most

typical of five national nonferrous metal planning mines, accounting for 25% of the total

reserves of Feng County [30]. This area was operated on a small scale from 1985 until it

became a large-scale operation in 1996 [28]. The predominant pollution sources in this region

are mine wastewater, beneficiation wastewater, and mine tailings.

The study area belongs to a warm temperate semiarid climate, with maximum temperature

of 22.7˚C, minimum temperature of -1.1˚C and average annual temperature of 11.4˚C. The

annual average rainfall and frost-free period are 613.2 mm and 188 days, respectively. It has an

elevation ranging from 1,000–2,200 m above sea level, and the soil type is cinnamon and bru-

nisolic and the soil texture is from light to heavy according to the traditional soil genesis classi-

fication in China [31].

Five sampling sites in this area with gradually increasing concentrations of HM were

selected according to our previous study [4, 28, 29]: S1, S2, S3, S4, located within 50, 150, 500,

1500 m to the west of a smelter and mine (33˚51’17"N, 106˚39’25"E), respectively (S1 Fig). The

S5 (33˚48’03"N, 106˚46’26"E), intended as a control site, was located approximately 12 km to

the southeast of the smelter and mine, where no HM pollution was known to exist. The divi-

sion of polluted soils into different levels was based on the variations of Pb and Zn concentra-

tions and recommendation of environmental quality standard (Grade II) in soils of China (GB

15618–1995).

Six sampling plots at each site were selected on the basis of having dominated plant (S. vicii-
folia) [28, 29], and an individual of dominated plant was randomly selected from each sam-

pling plot (3 × 3 m). After removing the surface residue (5 mm), the undisturbed soil blocks
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(10 cm length × 5 cm width × 10 cm height) from 0–10, 10–20, 20–30 and 30–40 cm soil

depths were taken with a clean spade, knife, and trowel directly beneath the patches of domi-

nated plant. One portion of soil blocks (5 cm length × 5 cm width × 10 cm height) collected

were stored in plastic boxes and transported to laboratory for soil physical and chemical, AMF

spore density (SP) and hyphal length density (HLD) assay, while the other portion of soil

blocks (5 cm length × 5 cm width × 10 cm height) were passed through a 1 mm sieve to obtain

sufficient roots samples of S. viciifolia for mycorrhizal colonization (MC) analysis.

Soil chemical properties

Portions of soil samples were dried by spreading them out on paper in ambient air and at

room temperature for two weeks, and then were homogenized, grounded in an agate mortar

and sieved to 0.2 mm for soil chemical property analysis. Soil pH was determined in a suspen-

sion with deionized water (soil/water, 1:5) using a pHS-3D digital pH meter (Leici, Shanghai,

China) with a combined glass-calomel electrode. Soil organic matter (SOM) was measured by

the wet combustion method using a mixture of potassium dichromate and sulfuric acid under

heating [32]. Soil organic carbon (SOC) concentration was determined by dry combustion

method using total organic carbon analyzer (TOC-VCPH, Shimadzu, Japan). Total nitrogen

(TN) concentration was determined according to the semi-micro Kjeldahl method [33]. Total

phosphorus (TP) concentration was measured colorimetrically after wet digestion with

HF-HClO4 according to Jackson [34]. For the assessment of total Pb and Zn concentrations,

0.5 g soil material was accurately weighed and digested with a mixture of HNO3 and HCl

(aqua regia digestion) in a ratio 3:1 (v/v). The extractable Pb and Zn concentrations were

determined by treating 2 g soil material with DTPA solution (0.005 M diethylene triamine

penta-acetic acid (DTPA), 0.01 M CaCl2, 0.1 M triethanolamine, pH = 7.3). The digests were

then analyzed for metal concentrations using flame atomic absorption spectrometry (FAAS,

Hitachi Z-2000, Tokyo, Japan). The blank reagent and standard reference soil were assayed for

quality assurance and quality control [4].

Mycorrhizal colonization

For the evaluation of mycorrhizal colonization (MC), root samples were taken out from FAA,

washed several times with running tap water, and cut into 1-cm length segments which were

then stained according to the modified method of Koske and Gemma [35]. The root segments

were first softened with 5% KOH at 90˚C in a water bath for 40 min, bleached with fresh alka-

line H2O2 at room temperature for 30 min, acidified with 2% HCl for 10 min, and then stained

in 0.05% (w/v) trypan blue solution (200 mL phenol, 0.5 g trypan blue, 250 mL lactic acid, 250

mL glycerol, and 300 mL distilled water) at room temperature for 2 h. The stained root sam-

ples were then transferred into acidified glycerol and incubated for 12 h at room temperature.

The MC was estimated according to the method modified by Trouvelot et al [36]. More than

one hundred root segments per specimen were used to measure the MC under a light micro-

scope (Olympus BX51, Japan) at 200× magnification. The percentage of mycorrhizal structures

in each 1 cm root fragment was assessed as 0, 10, 20 . . . 100%. The intensity of MC was calcu-

lated using the following equation [37]:

MC ð%Þ ¼
P
ð0%� N0 þ 10%� N10 þ 20%� N20 þ � � � þ 100%� N100Þ

ðN0 þ N10 þ N20 þ � � � þ N100Þ

Where N is the number of root fragments.
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AMF spore density

AMF spores were isolated from soil samples using wet sieving method described by Daniels

and Skipper [38]. Briefly, fifty grams of soil from each plant rhizosphere was independently

suspended in 500 mL water, stirred with a glass stirring rods for 0.5 min, and the suspension

passed through a sequence of sieves (500, 250, 100 and 30 μm). Spores were collected from the

last two sieves with tap water, and then the residues from the sieves were filtered through filter

paper using a vacuum pump. The filter paper was placed on a 9-cm Petri dish, and the number

of AMF spores was counted under a binocular stereomicroscope using a hand tally counter.

Spores were counted and categorized as live and dead: dead spores typically lacking cytoplasm,

and/or showing signs of parasitism [39]. AMF spore density (SP) was expressed as number of

spores in 1 g of dry soil.

Hyphal length density of AMF

Hyphal length density (HLD) was measured by the modified grid-line intersection method

described by Jakobsen et al [40]. A soil subsample (5 g) was blended for 20 s with distilled

water. The suspension was then poured through a 250 μm and a 32 μm sieve to separate the

hyphae. The material was suspended again in 250 mL distilled water, transferred to a beaker,

shaken for 30 s, and then left to settle for 5 min at room temperature. The supernatant (con-

taining hyphae) was filtered on to the filtration apparatus under vacuum. The procedure was

repeated 3 times on each subsample for thorough extraction of soil fungal hyphae. The hyphae

recovered from the six subsamples taken from each site were stained by a 0.05% (w/v) trypan

blue solution. The hyphal length was measured by the gridline intercept method at 200× mag-

nification under a microscope and the HLD was presented in units of m g-1 dry soil.

Soil GRSP concentration

The concentrations of easily extractable glomalin-related soil protein (EE-GRSP) and total

glomalin-related soil protein (T-GRSP) were measured according to procedures described by

Wright and Upadhyaya [41]. Briefly, 1 g soil sample was placed into a centrifuge tube. The

EE-GRSP was incubated with 8 mL of 20 mM citrate solution (pH 7.0), autoclaved at 121˚C

and 0.11 Mpa for 30 min, and then centrifuged at 10,000 g for 5 min to remove residual soil

particles. The T-GRSP was extracted with 8 mL of 50 mM citrate solution (pH 8.0) by autoclav-

ing at 121˚C for 60 min. After each autoclaving cycle, the supernatant was removed by centri-

fugation at 5,000 g for 20 min for sequential extraction. The extraction of a soil sample

continued until the supernatant showed none of the red-brown color. After extraction cycles

were completed, extracts from each replicate were pooled and then centrifuged at 10,000 g for

5 min to remove residual soil particles. Protein in the supernatant was determined by the Brad-

ford dye-binding assay with bovine serum albumin as a standard [41].

Aggregate size distribution

The concentration of water stable aggregates (WSA) was measured and the four soil aggregate

fractions were separated according to the wet-sieving method [42]. Briefly, a series of three

sieves was used to collect four aggregate size fractions: (1) >2000 μm (large macroaggregates);

(2) 2000–250 μm (small macroaggregates); (3) 250–53 μm (microaggregates); (4) <53 μm (silt

and clay fraction). Fifty grams of air-dried soil was prewetted by submerging with distilled

water overnight at room temperature to equilibrate. During sieving, aggregates were separated

by manually moving the sieve up and down 3 cm with 50 repetitions during a period of 2 min.

Finally, the residue on each sieve were then collected over a preweighed filter paper, oven
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dried at 60˚C for 48 h until steady weight was achieved. The water stable aggregates (WSA)

fraction was expressed as a percentage of WSA size against total dry soil sample. Aggregate sta-

bility was measured as the mean weight diameter (MWD) of stable aggregates as equation:

MWD ð%Þ ¼
Xnþ1

i¼1

ri� 1 þ ri

2
�mi

where r0 = r1, r1 = 2 mm, r2 = 0.25 mm, r3 = 0.053 mm, r3 = 0 mm, mi is the proportion of soil

aggregates on the ith sieve, and n is the number of the sieves.

Chlorophyll concentration and net photosynthetic rate of S. viciifolia

The terminal leaflet of the 4th, fully expanded, compound leaf (from the top) of each S. viciifolia
grown at different study sites was used to determine chlorophyll (Chl) concentration and net

photosynthetic rate (Pn). The Chl concentration was measured by using a SPAD Chl meter

(SPAD-502, Konica Minolta Sensing, Inc., Japan) according to the manufacturer’s instruction.

The Pn was determined by using a portable open flow gas-exchange system LI-6400 (LI-6400,

LI-COR, Lincoln, NE, USA) from 08:30 to 11:30 in the morning. The photosynthetically active

irradiation was 1200 μmol m–2 s–1, CO2 concentration was 400 cm3 m–3, the leaf temperature

was 25˚C, and the air flow rate was about 0.5 dm3 min–1.

Statistical analysis

Prior to data analysis, the Kolmogorov-Smirnov test was used to check for data normality and

the Levene test for homogeneity of variance in SPSS 16.0 for Windows 7 (SPSS Inc., Chicago,

IL, USA). In the present study, all the original datasets conformed to a normal distribution.

When necessary, dependent variables were transformed using the natural logarithmic, arcsine

or Box-Cox functions to achieve requirements of homogeneity of variance (P> 0.05). Poten-

tial differences in parameters among study sites and plant species were analyzed using one-

way followed by Student-Newman-Keuls (SNK) test. One-way ANOVA was used to determine

the differences among soil properties, HM concentrations, MC, SP, GRSP and Chl concentra-

tions, Pn, WSA and MWD at different soil depths. Pearson correlation coefficients were used

to analyze the relationships among soil properties, HM concentrations, MC, SP, GRSP and

Chl concentrations, Pn, WSA and MWD. All tests were two-tailed and significance of the

obtained results was judged at the 5% level. Redundancy analyses (RDA) were conducted to

determine the multivariate relationship among soil aggregate distribution, stability and soil

properties at different soil depths using the software Canoco (version 4.5, Centre for Biometry,

Wageningen, The Netherlands). All data in the figures and tables are presented with original

data, and they are presented as mean ± SD (standard deviation).

Results

Soil chemical properties and HM concentrations

The chemical properties and HM concentrations in the rhizosphere soil of S. viciifolia grown

at five different study sites are presented in Table 1. Soil pH was variable, ranging from

neutral to slightly alkaline or alkaline values (6.85–8.79). The highest SOM concentration

(12.7 mg g-1) was found at S3 (10–20 cm soil depth), while the lowest value (6.01 mg g-1) could

be detected at S5 (20–30 cm soil depth). A large variability was found with respect to SOC,

ranging from 10.2–22.7 mg g-1, and the highest and the lowest values appeared at S2 (0–10 cm

soil depth) and S5 (30–40 cm soil depth) respectively. However, there was less variability in

TN (0.96–1.62 mg g-1) and TP concentrations (0.92–1.63 mg g-1) than other soil properties.

The effects of AMF on GRSP distribution and aggregate stability in heavy metal contaminated soils

PLOS ONE | https://doi.org/10.1371/journal.pone.0182264 August 3, 2017 6 / 19

https://doi.org/10.1371/journal.pone.0182264


The largest and the lowest values of TN concentrations were found at S2 (10–20 cm soil depth)

and S4 (20–30 cm soil depth), respectively. S3 (0–10 cm soil depth) had the highest TP concen-

tration, while the lowest TP concentration could be detected at S5 (30–40 cm soil depth).

The rhizosphere soil of S. viciifolia varied greatly in total/DTPA-extractable Pb and Zn con-

centrations at different soil depths and studied sites, ranging from 35.4–5636 mg kg-1 for total

Pb, 116–668 mg kg-1 for total Zn, 1.66–380 mg kg-1 for DTPA-extractable Pb, and 11.6–76.4

mg kg-1 for DTPA-extractable Zn (Fig 1, S1 Table). The concentrations of DTPA-extractable

HM in relation to total concentrations were 5.37% for Pb and 11.61% for Zn when all soil sam-

ples from different depths and study sites were taken into consideration. There were signifi-

cantly positive correlations between DTPA-extractable Pb and total Pb (P = 0.000), and

DTPA-extractable Zn and total Zn (P = 0.000). Total/DTPA-extractable Pb also had notably

positive relationship with Pb and Zn availabilities (P< 0.05) except for soil samples at 10–20

cm depth (S2 Table).

Mycorrhizal colonization, AMF spore density and hyphal length density

Mycorrhizal colonization (MC) in plant roots, spores and hyphae of AMF in rhizosphere soil

of S. viciifolia could be found even at the most heavily contaminated site (S2 Fig). The MC,

spore density (SP) and hyphal length density (HLD) of AMF varied among different soil

depths and study sites, ranging from 30.2–56.0% for MC, 3.91–6.49 number g-1 for SP and

71.5–128 m g-1 for HLD (Fig 2). The root and soil samples at 0–10 cm soil depth had much

higher MC, SP and HLD compared with that at 30–40 cm soil depth. There were significantly

positive correlations between MC and SOM, SOC, but negative correlations could be found

Table 1. Soil chemical properties at different soil depths and study sites.

Sites Depth (cm) pH SOM (mg g-1) SOC (mg g-1) TN (mg g-1) TP (mg g-1)

S1 0–10 8.14±0.82a 9.93±1.71a 18.6±3.20a 1.32±0.15a 1.31±0.20a

10–20 8.21±1.27a 11.3±1.87ab 17.2±2.04ab 1.45±0.24a 1.27±0.14a

20–30 8.79±0.29a 9.12±1.26ab 13.2±3.18b 1.08±0.20b 1.04±0.23b

30–40 8.28±0.27a 7.96±1.44b 13.7±3.13b 1.02±0.18b 0.93±0.13b

S2 0–10 8.35±0.54a 12.3±1.63a 22.7±3.13a 1.39±0.32ab 1.47±0.28a

10–20 8.29±0.87a 12.4±1.79a 18.7±3.81ab 1.62±0.21a 1.49±0.25a

20–30 8.18±0.50a 9.36±1.76b 15.8±3.24b 1.06±0.18b 1.13±0.18b

30–40 8.50±1.27a 10.4±1.82ab 15.7±3.60b 1.21±0.18b 1.02±0.18b

S3 0–10 8.33±0.55a 10.9±1.19a 19.5±2.41a 1.57±0.34a 1.63±0.29a

10–20 8.20±0.41a 12.7±1.73ab 21.1±2.19a 1.43±0.28ab 1.24±0.20b

20–30 8.54±0.78a 10.9±1.94ab 15.6±1.74ab 1.30±0.06ab 1.28±0.20b

30–40 8.13±1.08a 9.27±2.21b 17.7±3.42b 1.17±0.16b 1.14±0.16b

S4 0–10 8.30±0.70a 10.1±2.00a 16.6±2.41ab 1.37±0.31a 1.29±0.09ab

10–20 7.95±0.30a 7.59±2.16ab 19.6±3.34a 1.34±0.09a 1.47±0.36a

20–30 8.35±0.78a 6.48±1.05ab 15.0±2.48b 0.96±0.17b 1.02±0.19b

30–40 8.10±0.12a 7.77±1.77b 14.2±3.36b 1.05±0.19b 0.99±0.18b

S5 0–10 7.09±0.66ab 6.14±1.37b 11.4±1.25a 1.00±0.15a 1.09±0.23a

10–20 6.85±0.55b 7.15±1.17ab 12.7±2.48a 1.18±0.14a 1.17±0.14a

20–30 7.34±0.35ab 6.01±1.65b 11.9±2.80a 1.05±0.11a 1.00±0.10a

30–40 7.79±0.55a 8.17±1.10a 10.2±1.40a 1.02±0.18a 0.92±0.18a

SOM, soil organic matter; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus. Each value is the mean (±SD) of six replicates (SNK test,

P < 0.05). Different letter indicates statistically significant difference (one-way ANOVA, P < 0.05) at four soil depths (0–10, 10–20, 20–30, 30–40 cm).

https://doi.org/10.1371/journal.pone.0182264.t001
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between MC and total/DTPA-extractable Pb at 0–10 and 10–20 cm soil depths (S3 and S4

Tables). However, no correlations could be found between MC and soil properties at 20–30

and 30–40 cm soil depths (P> 0.05). Similarly, soil properties did not have significant influ-

ence on SP in all soil samples except for SOM at 20–30 cm soil depth (P< 0.01). HLD had sig-

nificantly positive correlations with SOM, SOC, TN and TP at 0–10 cm soil depth, but was

greatly inhibited by total/DTPA-extractable Pb at 0–10, 10–20 and 20–30 cm soil depths.

GRSP concentration

The concentrations of T-GRSP and EE-GRSP in rhizosphere soil of S. viciifolia at different

soil depths and study sites decreased with increase of HM contamination level, varying from

2.97–5.51 mg g-1 for T-GRSP and 0.61–1.13 mg g-1 EE-GRSP, respectively (Fig 3). T-GRSP

was significantly and positively correlated with SOM, SOC and TN, but negatively correlated

with total/DTPA-extractable Pb and Pb availability at 0–10, 10–20 and 20–30 cm soil depths

(S2 and S3 Tables). EE-GRSP had significantly positive correlation with SOC at all soil depths

(P< 0.05), but positive correlated with pH, SOM and TN only at 10–20 cm soil depth

(P< 0.05). Additionally, the significantly negative correlation could be found between

EE-GRSP and total/DTPA-extractable Pb at both 0–10 and 10–20 cm soil depths (P< 0.05).

Soil aggregate distribution and MWD

Aggregate-size distribution was dominated by small macroaggregates (2000–250 μm) and

microaggregates (250–53 μm) in all soil samples, totally accounting for 59.9–71.0% of the dry

soil weight followed by silt and clay (<53 μm) with 13.9–27.0%. However, large macroaggre-

gates (>2000 μm) made up the lowest proportion, ranging from 10.9–18.9% (Fig 4). Soil sam-

ples at 0–10 cm depth had significantly higher percentage of WSA2000-250 μm but lower

percentage of WSA<53 μm compared with that at 30–40 cm depth.

The mean weight diameter (MWD) of soil aggregates exhibited a high variability (0.62–0.86)

at different soil depths and study sites (Fig 4). MWD decreased with increase of soil HM

Fig 1. Soil total/DTPA-extractable Pb (a) and Zn (b) concentrations at different soil depths and study sites. The bar charts represent

total Pb or Zn concentration, while the line graphs show DTPA-extractable Pb or Zn concentration. Each value is the mean ± SD (n = 6).

Different letters indicate statistically significant differences (one-way ANOVA followed by SNK test, P < 0.05) at four soil depths (0–10, 10–

20, 20–30, 30–40 cm).

https://doi.org/10.1371/journal.pone.0182264.g001
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concentration, and the MWD at top soil was significantly higher than that at bottom soil at all

study sites (P< 0.05).

Correlations among GRSP concentration, soil properties, AMF status,

and aggregate distribution

T-GRSP had significantly positive correlations with SOM, SOC and TN (P< 0.05), but was

negatively correlated with total/DTPA-extractable Pb at 0–10, 10–20 and 20–30 cm soil depths

(Table 2). However, no correlation could be detected between T-GRSP and total/DTPA-

extractable Pb at 30–40 cm soil depth (P> 0.05). EE-GRSP was significantly and positively

correlated with SOC at all soil depths, while had significantly negative correlations with total/

DTPA-extractable Pb at only shallow soil layer (0–20 cm).

Soil EE-GRSP, pH, SOM and SOC had significantly positive correlations with WSA>2000 μm

and MWD, but were negatively correlated with WSA<53 μm at 0–10 cm depth. However, both

total and DTPA-extractable Pb showed significantly negative correlations with WSA>2000 μm

and MWD at 0–30 cm depth (S5 Table). Soil T-GRSP and EE-GRSP were significantly and

positively correlated with WSA>2000 μm and MWD at 10–20 cm depth, but no significant

Fig 2. Mycorrhizal colonization (MC, a), AMF spore density (SP, b) and hyphal length density (HLD, c) at different soil depths and

study sites. Each value is the mean ± SD (n = 6). Different letters indicate statistically significant differences (one-way ANOVA followed by

SNK test, P < 0.05) at four soil depths (0–10, 10–20, 20–30, 30–40 cm).

https://doi.org/10.1371/journal.pone.0182264.g002
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correlations could be found between T-GRSP, EE-GRSP and WSA2000-250 μm, WSA250-53 μm

and WSA<53 μm at 10–20 and 30–40 cm depths. In addition, MC had significantly positive

relationship with MWD at 0–20 cm depth, while SP was significantly and positively correlated

with WSA>2000 μm, WSA2000-250 μm and MWD at 20–30 cm depth (S5 Table).

Fig 3. Total glomalin-related soil protein (T-GRSP, a) and easily extractable glomalin-related soil protein (EE-GRSP, b)

concentrations at different soil depths and study sites. Each value is the mean ± SD (n = 6). Different letters indicate statistically

significant differences (one-way ANOVA followed by SNK test, P < 0.05) at four soil depths (0–10, 10–20, 20–30, 30–40 cm).

https://doi.org/10.1371/journal.pone.0182264.g003

Fig 4. The percentage of water-stable aggregates (WSA, bar chart) and mean weight diameter (MWD, line graph) of

rhizosphere soils at different soil depths and study sites. Each value is the mean ± SD (n = 6). Different letters indicate

statistically significant differences (one-way ANOVA followed by SNK test, P < 0.05) of MWD at five study sites (S1, S2, S3, S4

and S5).

https://doi.org/10.1371/journal.pone.0182264.g004
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Discussion

HM Pollution levels at different study sites

The maximum total concentrations of Pb and Zn at S1 and S2 did not exceed their corre-

sponding limits of the National Soil Environmental Quality Standard II (GB15618-1995), indi-

cating that the HM concentrations at S1 and S2 were normal (Fig 1). However, the total

concentrations of Pb at S4, S5 and Zn at S3 were 5.69, 12.72 and 2.13 times above grade II of

GB15618-1995 respectively, suggesting that these sites were severely contaminated by Pb or Zn

according to either national grade II standard or Shaanxi provincial background values. The

results reflected that long-term smelting and mining activities could result in significant accu-

mulations of Pb and Zn in soils. The slope of the linear regression line with the order of

Zn>Pb indicated the higher solubility and availability of Zn compared with that of Pb in soils,

which was consistent with results of other researchers for contaminated soils around mining

area [43].

HM availability and correlations with soil properties

It has been accepted that HM speciation and the resulting availability rather than total HM

concentration determines the overall physiological and toxic effects of a metal on biological

systems [44]. In this study, the availability of HM was defined as the ratio of the DTPA-

extractable concentration to the corresponding total concentration of HM to characterize HM

toxicity. The availability of Zn (11.61%) was significantly larger than that of Pb (5.37%), indi-

cating that Zn had higher mortality than Pb when present at the same concentration (S3 Fig).

In addition, soil pH and SOM are two of the most important soil properties influencing the

speciation, movement, and final or actual HM availability [45]. Our study showed that the

availabilities of Pb and Zn had significantly negative correlations with soil pH (Pb: r = -0.374,

P = 0.000; Zn: r = -0.402, P = 0.000) and SOM (Pb: r = -0.329, P = 0.000; Zn: r = -0.226,

Table 2. Correlational analysis among GRSP concentration, soil properties AMF status at different soil depths and study sites.

Soil properties T-GRSP EE-GRSP

0–10 cm 10–20 cm 20–30 cm 30–40 cm 0–10 cm 10–20 cm 20–30 cm 30–40 cm

pH 0.30NS 0.42* 0.34NS 0.52** 0.28NS 0.42* -0.02NS 0.11NS

SOM 0.43* 0.50** 0.56** 0.08NS 0.30NS 0.52** 0.47** -0.07NS

SOC 0.53** 0.53** 0.48** 0.61** 0.43* 0.57** 0.46* 0.39*

TN 0.47** 0.47** 0.40* 0.20NS 0.25NS 0.44* 0.18NS 0.03NS

TP 0.36NS 0.25NS 0.41* 0.34NS 0.32NS 0.33NS 0.37* 0.57**

TPb -0.42* -0.60** -0.53** -0.22NS -0.38* -0.42* -0.32NS -0.31NS

DPb -0.46* -0.61** -0.52** -0.30NS -0.36* -0.49** -0.32NS -0.36NS

TZn 0.51** 0.24NS 0.32NS 0.20NS 0.32NS 0.41* 0.38* 0.32NS

DZn 0.51** 0.16NS 0.17NS 0.18NS 0.29NS 0.28NS 0.26NS 0.19NS

MC 0.42* 0.38* 0.15NS -0.02NS 0.41* 0.54** 0.16NS -0.02NS

SP -0.23NS -0.10NS 0.40* 0.15NS -0.18NS -0.31NS 0.52** 0.02NS

HLD 0.68** 0.41* 0.42* -0.34NS 0.40* 0.43* 0.16NS -0.04NS

SOM, soil organic matter; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; TPb, total Pb; TZn, total Zn; DPb, DTPA-extractable Pb; DZn,

DTPA-extractable Zn; MC, mycorrhizal colonization; SP, spore density; HLD, hyphal length density.

**P < 0.01;

*P < 0.05;

NS, not significant.

https://doi.org/10.1371/journal.pone.0182264.t002
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P = 0.013) when all soil samples were taken into account (S4 Fig). Horckmans et al [46]

revealed that a decline in soil pH could increase HM availability as a result of proton competi-

tion with the metals and reduction in negative binding sites. The results were also in agree-

ment with Liu et al [47] who reported that SOM could reduce HM availability by forming

stable complexes.

AMF status and correlations with soil properties

Arbuscular mycorrhizal fungi (AMF) are the most important soil microorganisms, which can

form universal symbiosis with more than 80% of terrestrial plants [9]. However, both biotic

and abiotic factors have been shown to influence the AMF diversity, mycorrhizal colonization,

hyphal growth and spore production [21, 48]. In the current study, both MC and HLD had sig-

nificantly positive correlations with SOM, SOC and TP at 0–10 cm soil depth (P< 0.05), but

were significantly inhibited by total/DTPA-extractable Pb at 0–10 and 10–20 cm soil depths

(P< 0.05). SP was not correlated with soil properties except for SOM at 20–30 cm depth

(P< 0.01) and was significantly inhibited by total/DTPA-extractable Pb at 20–30 cm soil

depth (P< 0.01). Our finding was consistent with Rillig et al [49] who presented evidence that

AMF could make large, direct contributions to SOM and carbon sink, which highlighted the

importance of AMF in ecological restoration. The results were also consistent with our previ-

ous studies which reported that the MC were significantly lower in HM contaminated soils

[27, 28]. Wu et al [50] indicated that elevated concentrations of As, Pb, Zn, Cd and Cu exerted

harmful effects on MC through inhibiting spore production and fungal spread in abandoned

As/Pb/Zn mines. However, AMF propagules never disappeared completely even in soils con-

taminated by high concentrations of HMs (S2 Fig), suggesting that some species of AMF

might have developed a certain degree of stress adaptation.

GRSP concentration and correlations with soil properties

Glomalin is produced by living hyphae of obligate biotrophic AMF and the concentration

depends on soil properties, climate, fungi involved, the host plants and their productivity [49].

In the present study, T-GRSP and EE-GRSP had significantly positive relationships with SOM,

SOC and TN concentrations when all soil samples were taken into consideration (P< 0.01),

suggesting that GRSP, SOM, SOC and TN concentrations are probably subjected to similar

deposition and decomposition dynamics (S3 Table). The highly significant correlation

between SOM and GRSP, again confirmed that glomalin was a significant component of the

organic matter complex [51]. Our findings were consistent with Rillig et al [52] who demon-

strated that glomalin was a significant component of the soil C and N pools, and accounted

for about 27% of the sources of SOM. However, in the current study, there were significantly

negative correlations between T-GRSP/EE-GRSP and total/DTPA-extractable Pb at 0–10 and

10–20 cm soil depths (S4 Table), indicating that HM exhibited toxic effects on GRSP accumu-

lation. The negative influence of HM on GRSP production could be partly explained by the

phenomenon that the net photosynthetic rate of host was greatly inhibited by HM pollution

(S5 Fig), resulting in low carbon deposit into the rhizosphere soil and thereby retarding the

growth of AMF. In addition, T-GRSP and EE-GRSP concentrations were significantly inhib-

ited by Pb compared to Zn at 0–20 cm soil depth, indicating that Pb had greater toxic effects

on GRSP accumulation than that of Zn at shallow layer of soil (0–20 cm). Supporting our

results, previous study showed that Zn was one of the essential elements for plant and involved

in regulating several stages of plant growth and development [53], while relatively low concen-

tration of Pb could exert adverse effects on plant growth, soil structure and nutrient cycling

[54]. These correspond well with a negative correlation between GRSP and Pb concentration,
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and a positive relationship between GRSP and Zn concentration in rhizosphere soil (S4 Table).

Other studies have likewise found positive, negative or neutral correlations between HM con-

centration and soil T-GRSP/EE-GRSP concentrations [51, 55]. These conflicting findings sug-

gested that the effects of HM on soil GRSP concentration probably depend on other

environmental factors, such as AMF species, host plant species, stage of plant development,

HM speciation and soil properties.

GRSP concentration and correlations with AMF status

There is increasing circumstantial evidence accumulating from decomposition studies indicat-

ing that GRSP is AMF origin [56]. However, the amount of GRSP in a sample may not be

related to the biomass of AMF mycelium, since hyphal turnover is very rapid, while GRSP

turnover is much slower [57]. In the present study, we detected that T-GRSP and EE-GRSP

had significantly positive correlations with MC, SP and HLD when all soil samples were taken

into consideration (Table 2), which was consistent with Wu et al [26] and Rillig et al [58] who

reported that AMF status effectively mediated the metabolism of GRSP. Additionally, GRSP,

produced by AMF, is able to sequester toxic HM [59], revealing the potential use of AMF for

bioremediation of soils contaminated with HMs. Furthermore, MWD had significantly posi-

tive correlations with T-GRSP and EE-GRSP at 0–10, 10–20 and 20–30 cm soil depths, sug-

gesting the important role of AMF in aggregate stability in HM contaminated soils. However,

both T-GRSP and EE-GRSP were significantly inhibited by total/DTPA-extractable Pb at 10–

20 and 20–30 cm soil depths, but no correlations were detected among them and Pb concen-

tration at 30–40 cm soil depth, which could be partly explained by the fact that HMs were

mainly accumulated in the top soil and downward leaching of HM was little [60]. Therefore,

the correlations among Pb and T-GRSP, EE-GRSP were soil depth dependence.

Soil aggregate distribution, stability and correlations with soil properties

at different soil depths

Numerous studies have indicated that aggregates were essential for storing air and water,

microbes, nutrients and organic matter, and the well-aggregated soil is more stable and less

susceptible to erosion [61]. In this study, detailed information about aggregate distribution

and stability in HM contaminated soils and their influence factors at different depths were

analyzed using redundancy analysis (RDA). The length of the red arrows indicates the relative

importance of each environmental factor in explaining variation of aggregate distribution and

stability, while the angles between the arrows and axis indicate the degree to which they are

correlated (Fig 5). At 0–10 cm soil depth, the WSA>2000 μm and MWD had significantly posi-

tive correlations with pH, SOM and SOC, while WSA<53 μm was significantly and negatively

correlated with pH, SOM, SOC, TN, TP (Fig 5a), suggesting that SOM and SOC were benefi-

cial to large aggregate formation. Furthermore, the improvement in aggregate stability could

be partly due to an increase in the proportion of large macroaggregate and decrease in the pro-

portion of silt and clay fraction at 0–10 cm soil depth. WSA>2000 μm and MWD were negatively

correlated with total Pb and DTPA-extractable Pb at 0–30 cm soil depth (Fig 5a, 5b and 5c),

which was consistent with Vodnik et al [51] who reported that HM and SO2 emissions from

the smelter were able to cause a serious degradation of the environment (deforestation, soil

contamination and erosion). However, no correlations were found among WSA>2000 μm,

MWD and total/DTPA-extractable Pb at 30–40 cm soil depth (Fig 5d), which could be partly

explained by that HMs were mainly accumulated in the top soil layer, with little downward

migration [60]. At 20–40 cm soil depth, MWD was positively correlated with either SOM or
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SOC (S5 Table), indicating that SOM and SOC played an important role in soil aggregate sta-

bility even at deep soil layer.

Conclusion

The effects of HM contamination on AMF status, soil properties, aggregate distribution and

stability, and their correlations at different soil depths were comprehensively revealed in the

current study. Total/DTPA-extractable Pb had significant inhibitory effects on MC and HLD

at 0–20 cm soil depth, however, AMF propagules never disappeared completely even in soils

contaminated by high concentrations of Pb. The results showed that excessive PbPb had

Fig 5. Redundancy analysis (RDA) of the correlations among soil aggregate distribution, stability and soil properties at 0–10 (a),

10–20 (b), 20–30 (c) and 30–40 (d) cm soil depths. WSA1, WSA>2000 μm; WSA2, WSA2000-250 μm; WSA3, WSA250-53 μm; WSA4,

WSA<53 μm; SOM, soil organic matter; SOC, soil organic carbon; TN, total nitrogen; TPb, total Pb; TZn, total Zn; DPb, DTPA-extractable Pb;

DZn, DTPA-extractable Zn.

https://doi.org/10.1371/journal.pone.0182264.g005
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harmful impacts on AMF growth, but at the same time, certain species of AMF likely had

developed mechanisms that allow them to survive in HM contaminated soils. T-GRSP,

EE-GRSP, SOM and SOC concentrations were significantly inhibited by Pb compared to Zn at

0–20 cm soil depth, indicating that HM presented hazardous effects on soil properties and that

Pb exhibited greater toxicity than Zn at shallow layer of soil (0–20 cm). In addition, GRSP,

SOM and SOC were beneficial to WSA<2000 μm and MWD, and had significantly positive cor-

relations with MC, HLD at 0–20 cm soil depth. The results indicated that AMF played an

essential role in aggregate distribution and stability in HM polluted soils. The use of AMF as

an additional biotechnological tool to enhance the recovery of HM polluted soils probably pro-

vides an effective way for phytoremediation. However, further studies are required to evaluate

the exact role of plant-AMF combination in aggregate distribution and stability on larger scales

and under more complex environmental conditions.
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