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Abstract: The extracellular matrix (ECM) is the non-cellular component in the cardiac microenvironment,
and serves essential structural and regulatory roles in establishing and maintaining tissue architecture
and cellular function. The patterns of molecular and biochemical ECM alterations in developing
and adult hearts depend on the underlying injury type. In addition to exploring how the ECM
regulates heart structure and function in heart development and repair, this review conducts an
inclusive discussion of recent developments in the role, function, and epigenetic guidelines of the
ECM. Moreover, it contributes to the development of new therapeutics for cardiovascular disease.
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1. Introduction

The extracellular matrix (ECM) is made up of many proteins that hold together and direct cell
adhesion and migration, as well as regulate cellular growth, metabolism and differentiation signals,
and cell functions, in healthy and pathological conditions [1–7]. Cells that lose contact with the
ECM via integrins have a higher chance of undergoing apoptosis (programmed cell death) than
anchored cells. Cell adhesions intervene in effective bidirectional communications among cells and the
extracellular network. ECM–cell interaction and ECM-mediated cell–cell communication play crucial
roles in modulating cell adhesion, motility, survival, proliferation, differentiation, and maturation [8,9].
Utilizing integrins and non-integrin receptors (e.g., dystroglycan, sulfatides discoidin domain receptors,
CD44, epidermal growth factor receptor, and P-selectin glycoprotein ligand-1) [10,11], cells can detect
the physical and biochemical properties of the extracellular framework. The ECM is a highly dynamic
structure present in all tissues, and maintains the structure and function of the organ, mediating the
development and remodeling of the organ.

The ECM is outlined because of the cell-free elements secreted by cells that consist of
macromolecules like scleroprotein, collagens, proteoglycan, hyaluronan, non-collagenous glycoproteins,
and proteinases [12,13]. In the cardiac microenvironment, non-myocyte cell types populate the cardiac
interstitium [14]. The heart surface is covered by epicardium, a derivative of mesothelial cells.
It is termed proepicardium, for its function in giving rise to epicardium and epicardium-derived
cells [15]. The cells migrate to the myocardial wall and differentiate into fibroblasts, endothelial cells,
and smooth muscle cells [15]. These cells produce and release most matrix proteins, and the cell–ECM
communication has an essential role in the programming and development of heart function (Figure 1).
Among them, fibroblasts are the major cell type contributing to the ECM synthesis, in order to maintain
the myocardial tissue architecture and mediate cell signaling through growth factor interactions and
integrins [16]. Human mesenchymal stromal cells can release ECM proteins such as fibronectin (FN)
and collagens into the space around cells to promote cell spreading [17]. Endothelial cells are also
crucial in vascularization, cardiac function, and/or remodeling by producing ECM proteins such as
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collagens, laminin, elastin, fibulins, proteoglycans, matrix metalloproteinases (MMPs), tenascin-C
(TNC), and thrombospodins (TSPs) [18]. In addition, immune cells in the cardiac microenvironment can
also produce ECM proteins such as MMPs to modulate the immune response in the heart, contributing
to the regulation of cardiomyocyte survival [19]. Therefore, cell-derived ECM and related signaling
play an essential role in regulating cardiovascular function from early development to postpartum life,
aging, and possibly disease.
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which might lead to severe defects or even death of the developing embryo (Table 1). In the middle 
development, the mechanism of dorsal closure could also be a sophisticated method, involving 
associate degree orchestration of cell–matrix interaction between smooth muscle cells, epithelial 
tissue cells, and the ECM [20]. A recent study demonstrated that nucleus–cytoskeleton–ECM 
connections triggered coordinated cardioblast movements, and controlled cardioblast number in 
Drosophila [21]. 
  

Figure 1. Extracellular matrix (ECM) components and their role in the cardiac microenvironment
during heart development and repair. In the cardiac microenvironment, supporting cells, including
mesenchymal stromal cells, fibroblasts, endothelial cells, and immune cells, produce the main ECM
proteins. These ECM components promote cardiomyocyte differentiation, maturation, and survival,
and the interaction between cardiomyocytes and supporting cells, contributing to heart development
and repair.

In this review, we will focus on the role of the ECM in the regulation of cardiac development
and repair. In addition, we will also discuss the underlying mechanisms of epigenetic regulation of
ECM in the heart, and the potential clinical implications of ECM based therapeutic approaches for
cardiovascular disease.

2. The Role of ECM in Heart Development

The ECM provides essential organic components for embryogenesis and tissue maturation.
The ECM is conditional; the slightest changes in its physiological state result in ruinous consequences,
which might lead to severe defects or even death of the developing embryo (Table 1). In the middle
development, the mechanism of dorsal closure could also be a sophisticated method, involving
associate degree orchestration of cell–matrix interaction between smooth muscle cells, epithelial tissue
cells, and the ECM [20]. A recent study demonstrated that nucleus–cytoskeleton–ECM connections
triggered coordinated cardioblast movements, and controlled cardioblast number in Drosophila [21].
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Table 1. ECM loss-of-function phenotypes in mammalian development.

ECM Isoform/Type Receptor Phenotype References

Fibronectin Integrin β1
Early embryonic lethality. Defects

in mesodermal, neural tube,
and cardiovascular development

[22–24]

Laminin α4
Integrin β1,

dystroglycan,
and proteoglycans

Defects in microvessel maturation,
synaptic maturation [25–27]

β1
Integrin β1,

dystroglycan,
and sulfatides

Embryonic lethality. Defects in
extraembryonic tissue

development, implantation,
gastrulation

[28]

γ1
Integrin β1,

dystroglycan,
and sulfatides

Embryonic lethality. Defects in
endoderm differentiation, axonal
sorting and myelination, neurite
growth and neuronal migration,

extraembryonic
tissues development

[29–33]

Collagen ColI

Integrins, discoidin
domain receptors 1 and 2

Embryonic lethality. Defects in
circulatory system [34]

ColIII
Post-natal death. Defects in
cardiovascular system and

brain development
[35,36]

ColIV

Embryonic lethality. Defects in
basement membrane integrity and

capillary structures and
renal development

[37,38]

ColV

Early embryonic lethality. Defects
in fibril formation, and ventricular
myocardial morphogenesis and

heart valve development

[39–41]

ColXI

Defects in skeletal morphogenesis,
and ventricular myocardial
morphogenesis and heart

valve development

[41,42]

ColXIV

Defects in fiber and fibril assembly
in tendons, and growth and

structural integrity of
the myocardium

[43,44]

ColXV

Defects in skeletal muscle and
cardiovascular development,

and axonal segregation
and myelination

[45,46]

Elastin

Galectin-3, integrins, and
elastin receptor complex
comprising the elastin

binding protein,
the protective

protein/cathepsin A and
the membrane-bound

neuramidase-1

Post-natal death. Defects in
cardiovascular morphogenesis

and development
[47–49]

Fibrillin FBN1 Integrins
Post-natal death. Defects in

cardiovascular development and
integrated tendon formation

[50,51]

Fibulin Fibulin-1
Integrins

Perinatal lethal. Defects in
vascular, lung and

kidney development
[52,53]

Fibulin-4
Defects in elastogenesis in lungs

and vasculature,
and cardiovascular development

[54–56]

Fibulin-5 Defects in elastogenesis in the
skin, lung and vasculature [57,58]



Int. J. Mol. Sci. 2020, 21, 8610 4 of 20

Table 1. Cont.

ECM Isoform/Type Receptor Phenotype References

Tenascin TNC Integrins
Defects in neural development,

alveolarization and
microvascular maturation

[59–61]

Versican

CD44, integrins,
epidermal growth factor
receptor, and P-selectin
glycoprotein ligand-1

Embryonic lethality. Defects in
heart and neural development [62–64]

Thrombospondin TSP-4 Integrins Increased production of ECM
and enlarged heart [65]

Inherent cardiovascular disease is the leading non-infectious rationalization for death in children.
It is becoming apparent that many internal organ abnormalities once thought to possess complex
etiologies occur because of mutations in biological process management genes [66]. These mutations
are manifested at birth as grievous internal organ malformations, or later as subtler internal organ
abnormalities. Understanding the role of ECM in internal organ development has vital implications
not only for an understanding inherent upset, but also for the chance of internal organ repair through
genetic reprogramming of non-cardiac cells to a cardiogenic role strategic location.

The ECM gene expression profiles of embryonic and adult mouse cardiac fibroblasts revealed that
higher levels of FN1, collagen genes, TNC, Postn (periostin), and Hapln1 (hyaluronan and proteoglycan
link protein 1) were expressed in embryonic than adult hearts [67]. Importantly, embryonic cardiac
fibroblasts promote cardiomyocyte proliferation through fibronectin and collagen, involvingβ1 integrin
signaling, leading to myocardial growth and ventricular compaction during cardiogenesis [67]. In an
environment rich in abnormal cells and growth factors, activated fibroblasts can produce matrix proteins,
proteases and their inhibitors, and regulate matrix metabolism. Due to the pathological maturity,
“stress shielding” of fibroblasts through the cross-linked matrix, and macromolecule withdrawal,
may lead to quiescence and eventually apoptosis.

Fibulin belongs to a family of five extracellular glycoproteins and mediates the formation
of proteoglycan aggregates, elastic fibers, fibronectin microfibrils, basement membrane networks,
and supramolecular structures. The expression patterns of biological processes indicate that many
fibrins are expressed at epithelial-mesenchymal transition sites during the entire embryogenesis, and the
vascular system is related to one of these transition sites [68]. Fibulins 1 and 2 are highly expressed
during cardiac valvuloseptal formation. Fibulin 1 is expressed by primordial vascular smooth muscle
cells associated with the ventral endothelium of dorsal aortae and developing aortic-arch vessels [52].
In addition, fibulin 2 is expressed by coronary endothelial cells that originate from epicardial cells [69].
Interestingly, fibulin-1 deficiency, but not fibulin 2 deficiency, induced a perinatally lethal phenotype
with a defective endothelial basement membrane of small vessels in mice [70]; this may be due to the
functional compensation of fibulin 1.

Few studies have investigated the role of TSPs in cardiac development. Increased expression of
TSP-1 in the second trimester was demonstrated to cause defects in the cardiovascular system and
even embryonic lethality [71]. Conversely, the lack of TSP-4 led to increased ECM production and
developmental heart enlargement [65]. As such, it is important to study the modular structures and
binding interactions, and the temporal, spatial, and quantitative expression differences of various ECM
proteins and their collaborations in cardiovascular health and diseases.

3. ECM in the Programming of Cardiovascular Repair

The adult heart has limited recovery and repair potential, and the loss of myocardial cells due
to injury may end in heart disease and death. The cellular biological progression and restraining
mechanisms associated with heart development and advancement can repair damaged adult hearts
through the “stiring” pathway, which can determine the bioactivity during the entire embryogenesis.
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Incitement of the differentiation and proliferation of cardiomyocytes, by initiating the mitotic signaling
pathway engaged with embryonic heart growth, points to a correlative methodology for heart recovery
and repair [72]. Cardiac damage includes arterial sclerosis, myocardial infarction (MI), and ischemic
and non-ischemic heart injury, which induces repair by the embryonic cell. Cells reply to the ECM by
transforming their microenvironment, which becomes dysregulated in tube-shaped structural diseases,
such as high blood pressure, restenosis, and arterial sclerosis [73].

After MI, the ECM dynamic alteration and remodeling propels inflammation and repair [74,75].
The first generation of bioactive matrix fragments activates an unhealthy signal. An extremely
plastic tentative matrix formation facilitates blood corpuscle infiltration and activates infarction
myofibroblasts [76]. The deposition of matrix cellular macromolecules modulates growth factor signal
transduction, and promotes the spatial and temporal regulation of the repair [77]. Temporal scales
vary from conformational changes in control of the particle channel gap, to fibrillation over seconds,
and end in death. Spatial scales vary from metric linear unit pore sizes in membrane channels and gap
junctions, to the meter length scale of the whole cardiovascular system throughout a living patient.
Overwhelming changes in the ECM composition are conducive to the pathologic process of cardiac
remodeling (Figure 2).
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Figure 2. The ECM in the programming of cardiovascular repair and disease. Cardiovascular
pathological factors induce abnormal synthesis and release of ECM proteins and ECM signaling,
implicated in the process of matrix metalloproteinase (MMP) activation, matrikines production,
proliferation, and inflammatory response; this results in cardiovascular remodeling, fibrosis,
hypertrophy, and thus heart failure.

3.1. Matrix Metalloproteinases Activation

Myocardial ischemia causes quick enactment of matrix metalloproteinases (MMPs), and the
ensuing aging of framework pieces. MMP actuation has been identified in the heart interstitium as
precisely as ten minutes after coronary impediment, preceding any proof of irreversible cardiomyocyte
injury, and might be driven by ischemia-interceded ROS emissions [78–80]. Many MMPs correlate
repeatedly with cardiomyocytes, endothelial cells, fibroblasts, as well as inflammatory leukocytes
that penetrate the ischemic myocardium. Up-regulated collagenases (MMP-1, MMP-8, and MMP-13),
gelatinases (MMP-2 and MMP-9), stromelysins (MMP-3), and membrane-type MMP14 have been found
in the infarcted and post-MI remodeling myocardium [81–86]. Importantly, MMPs play an essential role
in myocardial infarction. MMPs induce the production of cytokines, chemokines, and developmental
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factors through proteolysis, or destroy glycosaminoglycan restriction sites, interfering with the progress
of chemokines fixing on the surface of endothelial cells, and enhance chemokines binding to leukocytes
to control inflammation. In addition, MMPs can corrupt structural proteins, such as myosin, titin,
and α-actinin, in cardiomyocytes. The grid autonomous activity of MMPs is generally of great
significance in ischemic injury, and redesign after infarction remains obscure.

CD147 is a highly glycosylated transmembrane protein of the immunoglobulin superfamily, and the
main MMP inducer. It is up-regulated in acute coronary syndrome and heart failure, and regulates
MMP expression and ECM remodeling [87–89]. The up-regulation of CD147 and MMPs is closely
related to inflammatory processes in cancer development [90,91]. Resident lung progenitor cells/stem
cells that differentiate into myofibroblasts lead to lung fibrosis, a complication of coronavirus disease
2019 patients (COVID-19). The conceivable direct and indirect viral invasion of progenitor/stem cells
through CD147 or ACE2 could give rise to reducing stem cell reserves, and hastening lung repair
and regeneration [92]. It may thus be reasonable to speculate that COVID-19/CD147 may modulate
MMP activity in cardiac injury and remodeling, and CD147/MMP could be a potential target for the
treatment of COVID-19-related cardiovascular diseases.

3.2. Matrikines Lifespan

In harmed and renovating tissues, protease-interceded discontinuity of ECM proteins brings
about the age of matrikines. Matrikines-specific receptors are involved in the process of ECM renewal,
cellular proliferation, cellular migration, chemotaxis, and mitogenesis in association with inflammation,
immune responses, organ development, wound repair, angiogenesis, atherosclerosis, tumor progression,
and metastasis [93–98]. Elastin pieces and collagen-determined peptides are the best-studied matrikines,
and are embroiled in the enactment of resistant cells and fibroblasts [98]. The matrikine acetylated
Pro–Gly–Pro (PGP) induced vascular endothelial cell production of endothelin-1 by activating
endothelial CXC chemokine receptor 2, leading to vascular inflammation and myocardial injury [99].
PGP requires the actuation of a multi-step course that includes prolyl endopeptidase, MMP8, and MMP9
to degrade collagens [100]. The proteolysis of laminins by MMP2 and MMP14 demonstrated robust
neutrophil chemoattractant characteristics [101].

Even though the fast actuation of MMPs in the infarct is related to grid discontinuity, the role
of these sections as bioactive pro-inflammatory matrikines has not been characterized. C-1158/59
collagen fragment was highly generated at day 7 post-MI. Significantly, exogenous delivery of p1158/59
peptide, mimicking the collagen fragment, could promote angiogenesis, and inhibit left ventricular (LV)
remodeling and LV dysfunction [102]. In the ischemic myocardial microenvironment, a high molecular
weight hyaluronic acid (HA) fragment induced expression of chemokines CCL2 (C-C motif chemokine
ligand 2) and CXCL5 (C-X-C motif chemokine ligand 5) to promote M2 type macrophage polarization
and neutrophil removal; this contributes to the suppression of the chronic inflammatory response and
improves myocardial remodeling and myocardial function reconstruction [103]. Conversely, endostatin,
a 20-kDa part of collagen XVIII, applies vigorous angiostatic activities and animates fibroblast
expansion [104]. MMP9-intervened cleavage of collagen IV also creates pieces with angiostatic
properties, such as tumstatin [105]. Matrikines may likewise balance fibroblast and vascular cell
phenotypes. Endogenous matrikines’ job in the guiding of fibrogenic and angiogenic reactions
following myocardial localized necrosis remains ineffectively comprehended. It will be interesting
to determine whether pro-angiogenic matrikines can inhibit tissue necrosis induced by insufficient
angiogenesis and chronic inflammation.
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3.3. Regulation of Inflammatory Response

As mentioned above, matrikines-specific ECM protein fragments can enhance the inflammatory
response by activating the innate immune response and mediating regulation of inflammatory cell
apoptosis [106]. During pregnancy, immune cells penetrate and stay within the heart muscle, and function
by modulating cardiac innate immune response throughout the entire life. Under cardiovascular
pathologic conditions (e.g., myocardial infarct, infection, and infiltrative cardiac disease), many immune
cells can be recruited to the myocardium to eliminate dying tissue, scavenge pathogens, and promote
healing. Under some pathological conditions such as COVID-19 infection, immune cells cause irreversible
harm, a tributary to heart failure [107].

Macrophages throughout repair express a secreted conjugated protein called osteopontin. It is
concerned with cell adhesion and migration. There is a high expression of osteopontin template
RNA and macromolecule in macrophages during the death of connective tissue throughout MI.
The osteopontin is downregulated dramatically as a healing payoff, despite the macrophages. In vitro,
fibrinogen animates cytokine emission by macrophages via TLR4 actuation [108]. During cardiac
ischemia-reperfusion injury, fibrin D-dimers increased in plasm [109]. Inhibition of fibrin fragments with
the peptide Bβ15–42T diminished infarct size and lessened leukocyte penetration through VE-cadherin
in the heart, which was further confirmed in fibrin knockout mice [109]. However, the impacts of
the peptide in a clinical preliminary trial were substantially less significant. Peptide organization in
patients with ST-rise MI did not influence the infarct size through attractive reverberation imaging,
nor decreased serum troponin I level [110].

End-stage non-ischemic heart failure patients have increased LV fibrosis, directly associated with
T cell infiltration [111]. Recent studies clarified that T cells, especially T-helper cells and regulatory
T cells, are essential regulators of the inflammatory and reparative responses, by providing signals
for macrophages or fibroblasts [112–114], and improve cardiac regeneration after MI [112,115,116].
Either adoptive regulatory T cells transfer or the superagonistic antibody against CD28, a co-stimulator
for T-cell activation and survival, diminished fibrosis and pro-inflammatory cytokine production,
and improved cardiac function [117]. Thrombospondin-1, an essential matricellular protein, binding to
CD47, induced T cell apoptosis and reduced T cell activation, resulting in limiting inflammation [106].
Recently, a potential new strategy engaged a membrane glycoprotein fibroblast activation protein
(FAP), targeted to chimeric antigen receptor (CAR) T cells, and engineered to precisely ablate activated
fibroblasts (myofibroblasts), which reduced the fibrotic burden in cardiac injury [118]. Due to the
critical role of ECM and T cells in cardiac remodeling, the mechanisms underlying ECM–T cell
interaction-mediated cardiac protection await necessary further elucidation.

3.4. ECM in the Proliferative Period of Healing

Dynamic changes in the ECM structure may add to reparative cell reactions during the proliferative
period of a cardiovascular fix. Freeing of matrix parts by phagocytes may enact mitigating signals,
smothering the enlistment of pro-inflammatory leukocytes. The lysis of the plasma-determined
temporary framework, and conferred a grid arrangement, including cell proteoglycans, hyaluronan,
fibronectin, and broad scope matricellular macromolecules that transduce development factor signs to
reparative cells [119]. The dynamic regulation of ECM in the proliferation stage provides essential
signals for converting fibroblasts into myofibroblasts. It may activate the angiogenesis pathways
necessary for the development of new blood vessels along these pathways, thereby providing dynamic
metabolic damage with oxygen and supplements.

Cardiac fibroblasts are major cellular effectors of internal organ repair; interactions with ECM
proteins modulate their makeup and performance. They provide structural support for the attachment
of internal organ cells throughout the development process, and specific growth factors and cytokines
regulate the proliferation of embryonic cardiomyocytes. In postpartum life, internal organ fibroblasts
play a vital role in the injury response [120]. The up-regulation of stromal cell macromolecules promotes
signal transduction mediated by proteins and cytokines; this is due to the development of scars, lattice
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cross-connections, reduced stromal cell protein clearance, and reduced macromolecular signals, caused
by deactivation and cell elimination of reparative localized necrosis fibroblasts.

Fibrosis is characterized by the accumulation of albumin and excessive ECM parts. This process
has been compared to abnormal wound healing and abnormal heart remodeling/function. The main
stage of wound healing involves ECM protein formation. Fibroblasts reside in the matrix and proliferate
following the activation of leukocytes, which migrate to the wound and are maintained by the ECM.
This corresponds with the presence of myofibroblasts, which are specialized and rationally formed
cells. ECM signals and mechanical tension principally stimulate myofibroblast differentiation [121].
Clinical studies demonstrated that excessive myocardial collagen cross-linking was associated with
myocardial fibrosis, and increased hospitalization risk for heart failure patients with hypertensive
heart disease [122–124]. Collagens, the main ECM structural protein in the adult heart, and their
signaling play an essential role in the fibroblast differentiation and proliferation during cardiac
repair and remodeling. Type I and III collagens were demonstrated to affect fibroblast proliferation,
while type VI collagen potently induced myofibroblast differentiation [125]. Another study showed
that collagen I enhanced the differentiation and proliferation of myofibroblasts, through lowering α2β1
integrin expression and subsequently suppressing protein phosphatase type 2A activity and increasing
protein kinase B activity [126]. Interestingly, a more recent study demonstrated that the pro-fibrotic
factor, angiotensin II, induced collagen receptor cross-talk between discoidin domain receptor 2
and integrin-β1 in cardiac fibroblasts, leading to increased collagen I production and myocardial
fibrosis [127]. ECM glycosaminoglycan HA and its receptor CD44 are involved in myofibroblastic
activation [128]. TNC plays a control role in regulating embryonic development, wound repair,
and regeneration, and tumor progression and metastasis. In cardiac development, TNC can provoke
the initial differentiation of cardiomyocytes or coronary artery/angiogenesis. Although TNC is not
expressed in healthy adult myocardium, it has been demonstrated that myocardial injury stimulates
TNC expression. Consequently, TNC modulates the attachment of cardiomyocytes to connective
tissue, augments myofibroblast migration and differentiation, and increases matrix metalloproteinases
production, leading to tissue remodeling and healing [129–131].

In every cellular and extracellular event of physiology and pathology, ECM is the active player in
ECM–ECM communication, cell–ECM communication, and cell–cell communication. As cells respond
to injury and inflammatory stimuli, targeting part of the ECM is expected, to avoid pathological
development and guide wound healing.

4. Epigenetic Regulation of ECM in Heart

Emerging research areas in the ECM field include epigenetic control of gene expression of ECM
proteins, or indirectly, by modulating the expression of genes that regulate the synthesis or the
degradation of ECM molecules in development and disease onset. Epigenetic changes characterized by
RNA and DNA methylation, non-coding RNAs-intervened quality guidelines, and histone adjustments,
have been seen in cardiovascular dysfunction and heart recovery (Figure 3), yet the components
are indistinct. Knowledge of these aspects will deepen our understanding of ECM regulatory
roles in cardiac health and disease, and inform new pharmacological agents targeting ECM-related
cardiovascular diseases.
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mediate ECM gene expression, contributing to cytoskeletal architecture, remodeling, and functional
response in heart development. Abnormal epigenetic modification may disrupt ECM homeostasis,
leading to cardiovascular pathogenesis.

4.1. RNA and DNA Methylation

RNA modification was first discovered in the 1970s; however, it has newly been considered an
epigenetic modification regulating the RNA processing and metabolism related to biogenesis [132,133].
Of which, the m6A modification, which is methylation of the adenosine base at the nitrogen-6
position, was the first identified, and is the most common mRNA methylation in eukaryotes [134–136].
Understanding of the role of m6A RNA methylation in cardiovascular development and disease is only
emerging [137–139]. A recent m6A RNA methylome study revealed m6A RNA methylation changes
across hypomethylated and hypermethylated transcripts (e.g., hypermethylated collagen coding genes),
and linked to processes of structural plasticity, such as regulation of smooth cell proliferation and
metabolic function, as well as ECM organization in human end-stage heart failure [139]. However,
how active RNA demethylation is targeted to regulate specific ECM genes during cardiac development
and maturation and disease remains largely unknown. Although it is a starting point, it is significant
and clinically relevant to further determine m6A’s effects on ECM RNAs in cardiac remodeling-related
cardiovascular diseases.

Cardiovascular development and disease are affected by abnormal methylation of CpG islands and
medications that repress DNA methyltransferases. Several studies have associated DNA methylation
with cardiac development, using both the animal model and in vitro culture systems [140,141]. In a
zebrafish model, the tet2/3 mutant failed to demethylate genes associated with ECM organization in the
endocardium and myocardium, leading to defects in the ECM for cardiogenesis [142]. Hypermethylated
MMP2 was identified and demonstrated to be associated with an increased risk of aortic aneurysm [143].
More recently, in dilated cardiomyopathy, hypomethylations of MMP-2 and connective tissue growth
factor (CTGF) were identified as contributing to heart failure [144].
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RNA or DNA methylation patterns cause alterations in the ECM gene expression; this may
correlate with the increased susceptibility to cardiovascular stress. The reason for this is that they
could influence ECM expression and remodeling, which may have an impact on disease development.
Such methylation signatures warrant further investigation of RNA and DNA methylation regulated
ECM during cardiac health and disease and could be used to discover novel diagnostic and therapeutic
targets for cardiovascular disease.

4.2. Histone Acetylation

Histone acetylation is linked to unusual phenotypes of heart development, cardiovascular hypertrophy,
heart improvement, and contractility. Histone H3K27 acetylation-programmed developmental genes have
been identified in both embryonic hearts and the postnatal heart, but not 8-wk-old hearts [145].
Interestingly, overexpression of the developmental gene insulin-like growth factor 2 mRNA binding
protein 3 could promote cardiac regeneration, and reduce fibrosis and ventricular dilation in
nonregenerative hearts following cardiac MI injury [145]. Together, this provides evidence that
epigenetic modification in development may be a potential therapeutic target for cardiovascular
disease. Due to the significant role of ECM in heart development, it is likely that histone acetylation of
ECM contributes to this dynamic process, and merits being investigated. A recent study of histone
acetylome in comparison to remodeled non-failing patient hearts and healthy donor hearts identified
essential gene-encoded proteins based on all genes involved in ECM-related processes, including
TGFB1, fibrillin-1 (FBN)1, microfibril associated protein (MFAP) 2, fibulin 5, MFAP4, a group of MMPs,
and a cluster of collagen encoding genes. This study also revealed that the most enriched biological
functions in genes close to the hyperacetylated regions were linked to extensive ECM regulation and
cell-binding [146]. The role of histone acetylation of ECM in heart remodeling-related cardiovascular
disease remains to be further studied.

4.3. MicroRNA and Long Non-Coding RNA

MicroRNA (miR) treatments have been proposed for cardiovascular recovery and the
multiplication of undifferentiated organisms into cardiomyocytes. miR-17 transgenic mice showed
retarded growth rates of the heart, liver, spleen, and whole-body due to the repression of fibronectin
and fibronectin type III domain, containing 3A [147]. MiR-138 in the zebrafish heart was demonstrated
to suppress versican, a chondroitin sulfate proteoglycan prominent in the heart and vascular system,
which contributes to separating atrial and ventricular chambers [148]. MiR-26a, miR-133, and miR-30
have been found to downregulate CTGF expression, contributing to a decrease in expression of collagen
type I and suppression of cardiac fibrosis [149,150]. Markedly, in human infarcted cardiac samples,
the down-regulation of miR-29 correlated with the up-regulation of collagen genes (COL1A1, COL1A2,
COL3A1) and FBN1 in the infarcted region [151]. Furthermore, an miR-29 mimic down-regulated
these collagen mRNA expressions, and suppressed cardiac fibrosis and remodeling [151]. These data
support future research in this clinically relevant and promising area.

Long non-coding RNA (lncRNAs) have appeared to take part in pretty much every milestone
of cardiovascular breakdown pathogenesis, including ischemic injury, heart hypertrophy, and heart
fibrosis. Moreover, the control of lncRNAs whitewashes the movement of cardiovascular breakdown
by constricting ischemic heart injury, cardiovascular hypertrophy, and cardiovascular fibrosis, as well
as encouraging heart recovery and therapeutic angiogenesis [152]. In left ventricular myocardial
samples of patients with ischemic cardiomyopathy, cardiac fibroblast-enriched lncRNAs (n379599,
n379519, n384648, n380433, and n410105) were identified. Furthermore, knockdown of these lncRNAs
enhanced the expression of COL8A1, COL3A1, and FBN1, which provides evidence that lncRNAs
play an essential role in regulating the ECM expression involved in pathological hypertrophy and
cardiac remodeling [153].

Together, epigenetic modifications have been shown to play direct and indirect roles in regulating
ECM expression, critical mediators in cardiovascular development and remodeling, and implicated
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in hypertrophy, fibrosis, and heart failure. More studies are needed to elucidate the mechanisms
of epigenetic regulation of specific ECM genes, to contribute to developing therapeutic approaches,
targeted by reprogramming these modifications.

5. Conclusions

The ECM is a crucial element of the heart. Regulation of ECM structural integrity influences the
viscus structure and performance. The strict regulation of temporal and spatial expression, and the
proteolytic processing of ECM elements by extracellular proteases are crucial for the development of
traditional internal organs. ECM pathological transformation is commonly related to viscus pathology
alternative adverse outcomes, while the physiological turnover of ECM is beneficial for the process of
tissue regeneration and repair.

Imperfect development in the womb is related to the tendency for cardiovascular disease in
adulthood, an idea named “developmental origins of health and disease”. More and more evidence
supports the association of epigenetic guidelines with the underlying mechanism. Epigenetic systems,
for example, RNA and DNA methylation, histone adjustments, and non-coding RNAs, give a degree
of quality guidelines without modifying DNA arrangements. These changes are moderately steady
signals, offering possible knowledge into the instrument’s fundamental formative starting points of
wellbeing and ailment. Therefore, it is imperative to understand the underlying mechanisms of ECM
regulation that control cardiovascular development. Understanding the developmental mechanisms
of ECM regulation could contribute to developing therapeutic strategies for cardiovascular disease.
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