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Abstract. Programmed death 1 (PD-1, 
CD279) and programmed death ligand 1 
(PD-L1, CD274) are involved in generat-
ing tumor-associated immunosuppression 
by suppression of T-cell proliferation and 
interleukin 2 (IL-2) production and im-
mune checkpoint inhibitors targeting these 
molecules are showing compelling activity 
against a variety of human cancers. PD-L1 
expression has shown a positive association 
with response to PD-1 inhibition in non-
central nervous system (CNS) tumors, e.g., 
melanoma or non-small cell lung cancer, 
and is discussed as a potential predictive 
biomarker for patient selection in these tu-
mor types. This review summarizes current 
knowledge and potential clinical implica-
tions of PD-L1 expression in glioblastoma. 
At present, the following conclusions are 
drawn: (a) functional data support a role for 
PD-1/PD-L1 in tumor-associated immuno-
suppression in glioblastoma; (b) the inci-
dence of PD-L1-expressing glioblastomas 
seems to be relatively high in comparison 
to other tumor types, however, the reported 
rates of glioblastomas with PD-L1 protein 
expression vary and range from 61 to 88%; 
(c) there is considerable variability in the 
methodology of PD-L1 assessment in glio-
blastoma across studies with heterogeneity 
in utilized antibodies, tissue sampling strat-
egies, immunohistochemical staining proto-
cols, cut-off definitions, and evaluated stain-
ing patterns; (d) there are conflicting data on 
the prognostic role and so far no data on the 
predictive role of PD-L1 gene and protein 
expression in glioblastoma. In summary, the 
ongoing clinical studies evaluating the activ-
ity of PD-1/PD-L1 inhibitors in glioblastoma 
need to be complemented with well designed 
and stringently executed studies to under-
stand the influence of PD-1/PD-L1 expres-
sion on therapy response or failure and to de-
velop robust means of PD-L1 assessment for 
meaningful biomarker development.

Introduction

As early as 1863, Rudolf Virchow re-
ported inflammatory infiltrates in tumor 
tissues and suggested an important link be-
tween cancer and the immune system [1]. 
Indeed, the interaction of tumor cells and 
immune cells has been confirmed as a ma-
jor determinant of neoplastic disease and the 
ability of cancer cells to evade destruction 
by the immune system is today considered 
a hallmark of cancer [2]. Cancer-associated 
immunosuppression is mediated by various 
molecules and signaling pathways. Among 
these, immune checkpoint molecules includ-
ing the programmed death 1 (PD-1) recep-
tor and its ligands, programmed death ligand 
1 (PD-L1) and programmed death ligand 2 
(PD-L2), have emerged as important factors 
involved in immune evasion by tumor cells 
and monoclonal inhibitors of this signaling 
pathway show impressive therapeutic re-
sponses and favorable safety profiles across 
a variety of human cancers such as mela-
noma, lung cancer, renal cell cancer, bladder 
cancer, and others [3, 4]. A vast number of 
clinical trials in many tumor types are being 
launched and immune modulation by check-
point inhibition is emerging as novel and im-
portant treatment paradigm in oncology.

The discovery of PD-1 and 
PD-L1

PD-1 was discovered in 1992 in an at-
tempt to identify genes that induce pro-
grammed cell death (apoptosis) [5]. Subse-
quently, the ligands PD-L1 and PD-L2 of this 
receptor and their role in the negative regula-
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tion of autoimmune response were identified 
[6, 7, 8]. In 2002, the relevance of PD-1 in 
cancer pathobiology was first observed, as it 
was shown that the blockade of PD-1 signal-
ing restored an effective anti-tumor immune 
response with increased lymphocyte attack 
on myeloma cells [9]. Presence of PD-1-pos-
itive lymphocytes and expression of PD-L1 
and their importance for immune escape of 
tumor cells have since been shown in many 
different cancer types including glioblasto-
ma and other brain tumors (Figure 1) [10, 11, 
12, 13, 14, 15, 16, 17]. The regulatory mech-
anisms of PD-L1 overexpression are poorly 
understood so far, but it has been related to 
activation of signaling cascades such as sig-
nal transducer and activator of transcription 3 
(STAT3), loss of phosphatase and tensin ho-
molog (PTEN) gene, gene rearrangements of 
the PD-L1 gene CD274 or mutations of the 
3’-untranslated region (UTR) of the CD274 
mRNA and other molecular alterations [18, 
19, 20, 21].

Clinical activity of PD-1 and 
PD-L1 inhibitors in non-CNS 
tumors

The PD-1-inhibiting monoclonal anti-
bodies nivolumab and pembrolizumab have 
shown favorable activity and good tolerabil-
ity in clinical trials and have been approved 
for use in metastatic melanoma (nivolumab, 
pembrolizumab) and lung cancer (nivolum-
ab) [4]. Approvals in more indications are 
pending and a multitude of clinical trials in 
many cancer indications are ongoing and 
under development with these, but also with 
other drugs targeting PD-1 and PD-L1. Of 
particular relevance is that responses includ-
ing complete responses to immune check-
point inhibitors are durable in some patients, 
whereas other patients seem not to benefit 
at all. The main toxicities are autoimmune 
events such as enteritis and endocrinopa-
thies.

PD-L1 as a potential biomarker 
in non-CNS tumors

PD-L1 protein as assessed by immuno-
histochemistry has been shown to positively 

correlate with response to PD-1 targeting 
therapy in several studies on melanoma, 
lung cancer, and other tumor entities, thus 
making this parameter a potential predic-
tive biomarker [22, 23, 24, 25]. A pivotal 
trial demonstrated objective responses only 
in PD-L1-expressing tumors treated with the 
anti-PD-1 antibody (36% vs. 0% in PD-L1-
positive and PD-L1-negative tumors, respec-
tively) [24]. However, some studies failed to 
show a predictive value of PD-L1 expression 
and favorable responses have also been ob-
served in considerable fractions of patients 
with PD-L1-negative tumors. Thus, contro-
versial discussions around the feasibility of 
using PD-L1 as a marker for patient selec-
tion continue [26]. Ongoing research is be-
ing conducted to identify which patients with 
PD-L1-negative tumors respond to PD-1/
PD-L1 treatment, and other immune-related 
factors such as tumor-infiltrating immune 
cells or other immune checkpoint molecules 
(e.g., PD-L2, another ligand of PD-1) are ex-
plored as candidate biomarkers. The issue is 
complicated by a lack of commonly accepted 
test methodologies for assessment of PD-L1 
status, as a multitude of antibodies, staining 
protocols, readout methods, and cut-off defi-
nitions are being used in different studies. 
Furthermore, the sampling time point of the 
tissue samples used for PD-L1 expression 
analyses differed between studies, as in some 
studies archive tissue retrieved a consider-
able time before the initiation of the immune 
checkpoint therapy were utilized, while other 
investigations performed biopsies of target 
lesions at study entry [25]. However, the im-
mune microenvironment of a given tumor 
might change over time, across localizations 
and importantly during systemic therapies 
as well as radiotherapy. In addition, studies 
varied with regard to the cell types evaluated 
for PD-L1 expression. Most studies concen-
trated on the membranous PD-L1 expression 
of viable tumor cells, while emerging data 
suggest a potential role of PD-L1 expression 
on circulating or tumor infiltrating immune 
cells such as macrophages or lymphocytes 
[27, 28]. Recently, overall mutational load, 
neoantigen load, and expression of cytolyt-
ic markers in the tumor microenvironment 
were significantly associated with response 
to immune checkpoint inhibitors in melano-
ma and lung cancer [29, 30, 31].
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PD-L1 in glioblastoma: current 
knowledge

Glioblastoma, the most common primary 
brain tumor of adults, is characterized by 
poor survival rates and current therapy en-
compasses neurosurgical resection and adju-
vant radiochemotherapy [32, 33]. Targeted 
agents have failed to show survival benefits 
so far and novel treatment approaches are ur-
gently needed. Glioblastoma has long been 
recognized for its ability to generate an im-
munosuppressive milieu by upregulation of 
factors such as transforming growth factor 
(TGF)-β and indoleamine 2,3 dioxygenase 
(IDO) [19, 34, 35]. PD-1 and PD-L1 have 
also been implicated in immune escape of 
glioblastoma and we summarize here the 
current knowledge on these molecules in 
glioblastoma with a special focus on the po-
tential role as biomarker for clinical patient 
outcome [15, 36, 37].

Figure 1. Cartoon showing the interaction of cytotoxic lymphocytes (T-cell) with 
tumor cells. A: Tumor cells present antigens on major histocompatibility complex 
(MHC) molecules to the T-cell receptor (TCR). T-cell activation is inhibited by an 
interaction of the co-inhibitory receptor programmed death 1 (PD-1; expressed 
on T-cells) with its ligand programmed death ligand 1 (PD-L1; expressed on tu-
mor cells). B: Monoclonal antibodies targeting PD-1 such as nivolumab or pem-
brolizumab or PD-L1 such as atezolizumab block the inhibitory PD-1/PD-L1 in-
teraction and thus facilitate T-cell-mediated tumor cell lysis.

Table 1. Comparison of immunohistochemical methods and results of PD-L1 protein expression analysis and its prognostic role in 
two recent studies [10, 12].

Parameter/study Berghoff et al. [10] Nduom et al. [12]
Study design  Retrospective Retrospective
Sample size  117 99
Assay  Immunohistochemistry Immunohistochemistry
Tissue samples  Full slides Tissue microarray
Antibody  5H1 EPR1161(2)
Staining patterns  Membranous on tumor cells Membranous on tumor cells

 Diffuse/fibrillary in tumor matrix On tumor-infiltrating lymphocytes
Cut-offs None 15.4% of cases Not reported

> 1% Not reported 60.6% of cases
> 5% Not reported 38.3% of cases
> 25% Not reported 17% of cases
> 50% Not reported 50% of cases

Diffuse/fibrillary 1 – 25% 15.4% of cases Not reported
Diffuse/fibrillary 26 – 50% 25.6% of cases Not reported
Diffuse/fibrillary 51 – 75% 33.3% of cases Not reported
Diffuse/fibrillary 76 – 100% 10.3% of cases Not reported

Membranous < 5% 62.4% of cases Not reported
Membranous 5 – 100% 37.6% of cases Not reported

Significant correlation 
of overall survival with 
known prognostic 
parameters

Extent of resection Yes Not reported
Patient age Yes Not reported

Karnofsky performance score Yes Not reported
MGMT promoter methylation status Yes Not reported

Significant correlation 
of PD-L1 protein 
expression with overall 
survival

Diffuse/fibrillary PD-L1 expression 
present vs. not present

No (p = 0.921) Not reported

Membranous PD-L1 expression ≤ 2.77% 
vs. > 2.77% 

Not reported No (p = 0.066)

Membranous PD-L1 expression < 5% vs. 
≥ 5%

No (p = 0.724) Yes (p = 0.0086)
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Pre-clinical and functional data

PD-L1 produced by glioma cell lines 
was reported to affect T-cell activation and 
decrease the production of lymphocytic 
interferon-γ and interleukins (IL) 2 and 10 
[36, 38]. Expression of PD-L1 correlates 
with malignancy and inhibits CD4+ and 
CD8+ T-cells via PD-1 [36]. Furthermore, 
glioma cells increased PD-L1 expression in 
circulating monocytes and tumor-infiltra-
tive macrophages by IL-10 signaling [37]. 
PD-L1 expression has also been reported 
on microglial cells in human glioblastoma 
specimens and microglia have been shown 
to block  T-cells via PD-1/PD-L1 signaling in 
models of (auto-)inflammatory CNS diseas-
es [10, 39]. PD-1 inhibition led to antitumor 
responses and increased survival in several 
studies on animal models of glioma [34, 40, 
41]. Another member of this protein family, 
PD-L3 (B7-H3) may also exert relevant im-
munosuppression in glioma and is involved 
in infiltrative growth [42].

PD-L1 protein expression in 
human tissue samples

The available studies that have addressed 
the rate and extent of PD-L1 protein expres-
sion in glioblastoma are heterogeneous with 
differences in sample size, use of different tis-
sue sampling strategies, use of different anti-
bodies and staining protocols, use of different 
evaluation schemes for staining patterns, and 
use of different cut-offs (Table 1) [10, 12]. 
The considerable methodological differences 
between the studies limit their comparability.

Rate of PD-L1-expressing 
glioblastomas

The reported rates of patients with glio-
blastomas with any PD-L1 protein expres-
sion on tumor cells were 61% (glioblas-
toma, not otherwise specified) in the study 
by Nduom et al. [10, 12] and 88% (newly 
diagnosed glioblastoma) and 72% (recur-
rent glioblastoma) in our study. One of sev-
eral relevant methodological differences 
(Table 1) between these studies is the use of 
full histological slides in our and tissue mi-
croarrays in the study by Nduom et al. [12]. 

Tissue microarrays use smaller (in this case 
1 mm) tumor tissue samples and are thus 
more prone to sampling bias than studies on 
full slides. We observed a patchy pattern of 
PD-L1 expression with positive and nega-
tive tumor areas on full slides. The lower 
percentage of PD-L1-positive glioblastomas 
reported by Nduom et al. [12] may be a result 
of a sampling error, i.e., false negative cases 
in which the tissue sample used for the tis-
sue microarray represented PD-L1-negative 
areas of heterogeneous tumors with PD-L1 
expression in other, not sampled tumor parts. 
Another plausible explanation for differing 
results between the studies is the use of dif-
ferent antibodies and immunostaining pro-
tocols. The results between the two studies 
are therefore numerically different, but not 
necessarily conflicting and jointly show that 
glioblastoma has a higher rate of PD-L1-pos-
itive cases than other tumor types [17].

PD-L1 protein expression patterns

We found membrane-bound PD-L1 ex-
pression on interspersed epithelioid glioblas-
toma cells in 37.6% of newly diagnosed and 
16.7% of recurrent glioblastoma cases (Figure 
2) [10]. In addition, we observed patchy dis-
tribution of diffuse/fibrillary PD-L1 expres-
sion throughout the glioblastoma tissue of 
variable extent in 84.4% of newly diagnosed 
and 72.2% of recurrent glioblastomas. We 
consider the diffuse/fibrillary staining pattern 
to indicate PD-L1 expression on the delicate 
and intermingled tumor cell processes that 
form the pathognomic neurofibrillary matrix 
of diffuse astrocytic gliomas. This particular 
histomorphological feature of glioblastoma 
is distinct from histological appearances of 
other tumor types such as melanoma and car-
cinomas and therefore necessitates develop-
ment of specific evaluation criteria for readout 
of immunohistochemical PD-L1 stainings. 
Nduom et al. [12] considered membrane-
bound PD-L1 staining only and did not report 
on diffuse/fibrillary PD-L1 expression. Using 
a quantitative evaluation method they de-
scribed a median percentage of glioblastomas 
with membrane-bound PD-L1 expression on 
tumor cells of 2.77% (range 0 – 86.6%). Inter-
estingly, they additionally observed PD-L1-
positive tumor-infiltrating lymphocytes in 
some cases, which may be a relevant finding, 
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since  PD-L1 expressing immune cells with 
potential predictive value have been described 
in other cancers, too [27, 28].

Prognostic and predictive role 
of PD-L1

Prognostic role of PD-L1 
gene expression

The same two recent studies have evalu-
ated the association of PD-L1 gene expres-
sion with patient survival in the TCGA da-
taset, with different results (Table 2) [10, 
12]. Berghoff et al. [10] analyzed expression 
levels of the PD-L1 (CD274) gene of 446 pa-
tients using level 2 Agilent microarray gene 
expression data and found no correlation 
with patient outcome. In contrast, Nduom et 
al. [12] used level 3 Illumina RNASeq data 
from 194 patients and observed a signifi-
cant correlation of high PD-L1 expression 
with unfavorable prognosis. The effect was 
independent of patient age on multivariate 
analysis, but none of the two studies tested 
for interactions with the known strong prog-
nostic molecular parameter, O6-methylgua-
nine methyl-transferase gene (MGMT) pro-
moter methylation status. The differences 
between the two analyses in the number of 

investigated patient samples and in gene ex-
pression data likely affect the comparabil-
ity of the results. Of note, poor correlation 
of gene expression levels measured by the 
Agilent microarray and IlluminaRNASeq 
in the TCGA dataset has been documented 
previously [43]. Overall, the prognostic role 
of PD-L1 gene expression remains unclear 
and further studies in independent, optimally 
prospectively collected patient cohorts seem 
warranted. Interestingly, Berghoff et al. ob-
served a correlation of PD-L1 expression 
with molecular glioblastoma subtypes [44] 
with a higher rate of PD-L1 high expres-
sors among mesenchymal glioblastomas and 
lower rates in glioma-CpG island methylator 
phenotype (G-CIMP) and proneural glio-
blastomas [10]. A higher immunogeneicity 
of the mesenchymal glioblastoma subtype 
has been described and it remains to be seen 
whether glioblastomas with this molecular 
signature respond differently to therapeutic 
immune modulation [45, 46].

Prognostic role of PD-L1 
protein levels

There are conflicting reports on the prog-
nostic role of PD-L1 protein levels. Berghoff 
et al. [10] investigated the prognostic impli-

Figure 2. PD-L1 expression patterns in glioblastoma. A: Diffuse/fibrillary tumor parts show diffuse PD-L1 
immunostaining of the tumor matrix. B: Interspersed epithelioid tumor cells show membrane-bound PD-L1 
expression. A and B: Anti-PD-L1 immunostaining using antibody 5H1 as described by Berghoff et al. [10].

Table 2. Comparison of the TCGA analyses of PD-L1 gene expression and is prognostic role in two recent studies [10, 12].

Parameter/study Berghoff et al. [10] Nduom et al. [12]
Sample size 446 194
Assay Agilent microarray Illumina RNASeq
Significant OS 
correlation of PD-L1 
gene expression 

Univariate No (HR = 1.038, 95% CI 0.9553 – 1.368,  
p = 0.144)

Yes (HR = 1.54, 95% CI 1.05 – 2.28,  
p = 0.0231)

Multivariate  
(PD-L1, age)

No (HR = 1.036, 95% CI 0.8702 – 1.232,  
p = 0.694)

Yes (HR = 1.52, 95% CI 1.03 – 2.25,  
p = 0.0343)
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cations of PD-L1 expression in a retrospec-
tive series of 117 adult newly diagnosed glio-
blastoma cases. The established prognostic 
factors patient age, Karnofsky performance 
score, extent of neurosurgical resection and 
MGMT promoter methylation status showed 
the expected separation of prognostic cohorts 
in this series, thus showing the principal va-
lidity of this patient cohort for exploratory 
survival analyses. There was no correlation 
with overall survival times for presence or 
absence of diffuse/fibrillary or membranous 
PD-L1 expression. Of note, PD-L1 expres-
sion on neurons in the infiltrated cortex did 
not show a correlation with patient outcome, 
which is in contrast with a prior small study 
of 17 cases [47, 48].

Nduom et al. [12] performed a retrospec-
tive study on a tissue-micro array containing 
1 mm samples of 99 glioblastoma cases. It 
was not specified whether these were newly 
diagnosed cases and data on other prognos-
tically relevant factors such as extent of re-
section, Karnofsky performance status or 
MGMT promoter methylation status were 
not reported. Using the median of 2.77% 
PD-L1 positive glioblastoma cells they did 
not find a significant correlation with patient 
outcome (p = 0.066). However, using a 5% 
cut-off in a secondary analysis, patients with 
high PD-L1 expression had significantly 
shorter survival times (p = 0.086).

The considerable differences in applied 
methodology between the studies (Table 1) 
and their inherent limitations of retrospective 
and uncontrolled studies leave the prognos-
tic role of PD-L1 protein expression unclear 
and further studies with adequate statistical 
power need to be conducted to resolve this 
open question.

Predictive role of PD-L1 expression

So far, no clinical trials with PD-1 or 
 PD-L1 inhibitors have been completed in 
glioblastoma and no data on the predictive 
role of PD-L1 expression for response to 
these drugs are available [15]. Testing of the 
predictive role of PD-L1 expression in glio-
blastoma samples collected in the ongoing 
trials will need careful consideration of assay 
validation, cut-off definitions and evaluation 
criteria to provide meaningful and clinically 
relevant results.

Summary and perspectives

Emerging clinical studies document 
compelling antineoplastic activity of im-
mune checkpoint inhibitors including those 
targeting PD-1/PD-L1 across several tumor 
types [4]. So far, no efficacy data for these 
drugs in human glioblastoma are available, 
but clinical studies are ongoing and will 
provide results in the near future. However, 
pre-clinical data from in-vitro and in-vivo 
studies and as well as data from human glio-
blastoma samples indicate that the PD-1/
PD-L1 system is actively involved in creat-
ing tumor-associated immunosuppression 
in malignant glioma and make it a rational 
treatment target [13, 15]. The blood-brain/
blood-tumor barrier is expected not to limit 
the influx of activated immune cells into 
the CNS and primary brain tumors and will 
hopefully not significantly compromise the 
activity of immune checkpoint inhibitors in 
gliomas, although proof of this hypothesis is 
lacking at the moment [15, 49]. Importantly, 
the rate of PD-L1-expressing glioblastomas 
seems to be relatively high in comparison 
to other tumor types, although the reported 
incidences of PD-L1-positive, albeit with 
widely varying cell numbers, glioblastomas 
vary and range from 61 to 88% [10]. This 
heterogeneity is likely related to differences 
in methodology of PD-L1 assessment across 
studies and investigations aiming at identifi-
cation and validation of optimal test assays 
should be a priority to ensure meaningful 
biomarker development. Importantly, the 
particular histomorphology of glioblastoma 
with the pathognomonic gliofibrillary ma-
trix, which is distinct from histological fea-
tures of other tumor types such as melanoma 
and carcinomas, necessitates development 
of specific evaluation criteria for readout 
of immunohistochemical PD-L1 stainings. 
The prognostic role of PD-L1 gene or pro-
tein expression is unclear at the moment, as 
few studies have been conducted on this is-
sue and have shown inconsistent results [10]. 
Furthermore, the predictive role of PD-L1 
expression for response to monoclonal anti-
bodies targeting PD-1/PD-L1 in glioblasto-
ma remains to be elaborated in translational 
studies accompanying the ongoing clinical 
trials. Possibly, relevant cues for predictive 
markers will also be derived from other mo-
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lecular characterizations such as overall mu-
tational load, neoantigen load, or expression 
of cytolytic markers in the tumor microenvi-
ronment [29, 30, 31]. This association of a 
potentially immune activating mutational tu-
mor and microenvironment may finally need 
to be included in biomarker assessments.
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