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INTRODUCTION 
 

Multiple intracranial aneurysms (MIAs) are 

encountered in approximately 20.1% of patients 

harboring unruptured IAs [1]. When a patient with 

unruptured MIAs is detected, determining which of the 

aneurysm is most likely to rupture is critical for 

determining the treatment strategy. For patients with 
both aneurysmal subarachnoid hemorrhage (aSAH) and 

MIAs, correct identification of the ruptured IA is also 

critical for planning treatment. After the IAST 

(International Subarachnoid Aneurysm Trial) research 

outcomes were reported, endovascular treatment has 

become the treatment choice for most ruptured IAs [2]. 

Therefore, rupture discrimination of MIAs is 

increasingly important because unlike in microsurgery, 

one cannot visually confirm the rupture in endovascular 

treatment.  

 

Morphological parameters such as size [3–5], aspect 

ratio (AR) [6–9], size ratio (SR) [10–12], irregular 

shape [6–8], and flow angles [13, 14] have been 
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ABSTRACT 
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into the derivation and validation cohorts. Radiomics morphological features were automatically extracted 
from digital subtraction angiography and selected by the least absolute shrinkage and selection operator 
algorithm to develop a radiomics signature. A radiomics signature-based nomogram was developed by 
incorporating the signature and traditional morphological features. The performance of calibration, 
discrimination, and clinical usefulness of the nomogram was assessed. Ten radiomics morphological features 
were selected to build the radiomics signature model, which showed better discrimination with an area under 
the curve (AUC) equal to 0.814 and 0.835 in the derivation and validation cohorts compared with 0.747 and 
0.666 in the traditional model, which only include traditional morphological features. When radiomics 
signature and traditional morphological features were combined, the AUC increased to 0.842 and 0.849 in the 
derivation and validation cohorts, thus showing better performance in assessing aneurysm rupture risk. This 
novel model could be useful for decision-making and risk stratification for patients with IAs. 
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suggested to be significant risk factors for IA rupture. 

However, studies on these morphological characteristics 

have reported conflicting results. This can be explained 

by the fact that these parameters are usually manually 

measured using different imaging techniques and 

measurement methodologies, and could differ among 

evaluators. In this study, we introduced objective and 

quantitative morphological features extracted from 

radiomics. 

 

As an emerging branch of artificial intelligence, 

radiomics has been used to automatically extract a large 

number of objective and quantitative imaging features 

to select those most significantly associated clinical, 

pathological, molecular, and genetic characteristics so 

as to improve the diagnostic and prognostic accuracy 

and the evaluation of therapeutic efficacy [15–17]. 

There are only a few reports related to the application of 

radiomics-extracted morphological features in the 

detection of IAs and the stability of assessing small IAs 

[18, 19]. To the best of our knowledge, there are no 

reports illustrating whether a morphology-based 

radiomics signature will enable the superior assessment 

of the risks of IA rupture. 

 

In this study, a subgroup of the patients from 3 centers 

with MIAs who developed aSAH were analyzed to 

characterize radiomics-extracted and traditional 

morphological features of the ruptured IA relative to 

other concomitant unruptured IAs. This was done to 

avoid confounding patient-specific characteristics [6, 7, 

20]. We then developed and validated a combined 

nomogram that incorporates both the radiomics 

signature and traditional morphological features for the 

assessment of the individual risk of IA rupture in 

patients with MIAs. 

 

MATERIALS AND METHODS 
 

Ethical statement 

 

This study was approved by the institutional research 

ethics boards of each center and conducted in 

accordance with the ethical standards and according to 

the 1964 Declaration of Helsinki.  

 

Study population 

 

We retrospectively collected images and medical 

records from a consecutive series of patients with both 

aSAH and MIA treated at 3 hospitals in China (Beijing 

Tiantan Hospital, Beijing Hospital, and Peking 

University International Hospital) from January 2016 to 

December 2018. The inclusion criteria were as follows: 

patients with the diagnosis of aSAH and having at least 

two saccular IAs; patients with 3D-DSA diagnosed by 

Siemens Artis Zee System (Siemens Healthcare, 

Erlangen, Germany); sufficient image quality for 

segmentation; and patients with available clinical 

information. The ruptured IA was confirmed through 

microscopic visual assessment for patients with 

craniotomy treatment or through a definitive 

hemorrhage pattern on CT for patients who underwent 

endovascular or no treatment [21] (Figure 1). Patients in 

whom the ruptured IA could not be confirmed and those 

with other cerebrovascular diseases were excluded. 

Patients with aneurysm that has un-clear neck from the 

parent vessel were also excluded. All aneurysms

 

 
 

Figure 1. Definitive hemorrhage pattern to confirm the ruptured aneurysm for patients who underwent endovascular or no 
treatment. A 67-year-old woman presented with subarachnoid hemorrhage (A) was found to have left and right internal carotid aneurysms 
(B–D). The ruptured aneurysm is the right internal carotid aneurysm. 
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included were randomly divided into 2 cohorts: the 

derivation cohort (70% of the IAs) and the validation 

cohort (30% of the IAs). 

 

Aneurysm segmentation and radiomics morphological 

features extraction 

 

The DSA image of each IA was reconstructed using an 

open-source software 3D Slicer [22] (version 4.9.0; 

http://www.slicer.org). In this study, the IA was defined 

as the region of interest (ROI). After reconstruction, IAs 

were manually segmented from the parent vessel at the 

neck of the IA [18, 19]. Two researchers (X.T. and 

X.F.) performed aneurysm segmentation. Disparities 

regarding the aneurysm reconstruction and 

segmentation between the researchers were further 

evaluated by 2 senior neurointerventionists each with 15 

years of experience (AH.L. and DM.W.). The extraction 

of radiomics morphological features for each IA was 

completed with PyRadiomics in Python [16, 17, 19, 22–

24], an open-source platform capable of extracting a 

large panel of morphological features from medical 

images. This radiomic quantification platform sets the 

reference standardization for feature definition and 

image processing [22]. In this study, 17 radiomics 

morphological features were extracted (Table 1). 

Detailed information on these features can be found at 

https://pyradiomics.readthedocs.io. A flow chart 

detailing the image processing operations performed in 

the present study is illustrated in Figure 2. 

 

Traditional morphological data acquisition  

 

Traditional morphological features recorded from the 

angiograms included the IA number, location, size, 

neck, weight, inflow angle, outflow angle, branching 

angle, and diameters of the parent and branch vessels 

(Figure 3). Aneurysms with daughter sacs, multiple 

lobes, or other types of wall protrusions were defined as 

irregular. NPR, BPR, AR, SR, and WH ratio were 

calculated (Figure 3). All angiograms of IAs were re-

evaluated and measured by two authors (X.F. and X.T.) 

and confirmed by two senior neurointerventionists 

(AH.L. and DM.W.). 

 

Statistical analysis 

 

The continuous variables of patients’ baseline 

characteristics are presented as mean ± SD, and 

categorical variables are presented as percentages. All 

analyses were performed with IBM SPSS Statistics for 

Windows, version 25.0 (IBM Corp., Armonk, N.Y., USA) 

and R software (R Foundation for Statistical Computing, 
Vienna, Austria.). The major R software packages used in 

this study are listed in Supplementary Table 1. Statistical 

significance was set at p < 0.05.  

Feature selection and morphology-based radiomics 

signature construction 

 

The assessment analysis included 16 traditional 

morphological features and 17 radiomics morphological 

features. Each traditional morphological feature with a 

probability value < 0.20 in the univariate analysis  

was included in the multivariate logistic regression 

analysis. 

 

We used the LASSO algorithm to select the most 

discriminative radiomics morphological features from 

the derivation cohort. A rad-score was constructed for 

each IA from a linear combination of selected features 

that were weighted based on their respective LASSO 

coefficients (including both coefficient <0 and >0). 

The potential association of this morphology-based 

radiomics signature with IA rupture was assessed in 

the derivation and validation cohort by using a Mann-

Whitney U test. Diagnostic validation was also 

performed in the derivation and the validation cohort. 

 

Development of aneurysm rupture assessment models  

 

In this study, we constructed 3 models by the 

multivariate logistic regression analysis: 1) the MRS 

model, which included the radiomics signature and 

traditional morphological features, 2) the MRF model, 

which included the radiomics and traditional 

morphological features, and 3) the MTF model, which 

included traditional morphological features only. VIFs 

(< 2 were considered insignificant) were determined to 

evaluate the collinearity of combinations of final 

variables in models. 

 

Nomogram model selection and performance 

assessment 

 

The performance of the models was tested in the 

derivation and validation cohorts. We used AUCs to 

compare the discriminatory efficacy of the different 

models. Based on these analyses, the optimal model was 

developed into the nomogram. The discrimination 

accuracy and the calibration of the nomogram were 

assessed using AUCs, calibration curves, and the 

Hosmer-Lemeshow test. The Brier score, ranging from 

0 (excellent discriminate ability) to 1 (worst dis-

criminate ability), was used to determine the overall 

performance of each model.  

 

Clinical usefulness 

 

DCA evaluates assessment models and visualizes the 
net benefit derived from the use of a specific assessment 

model. Thus, we conducted DCA to determine the 

clinical usefulness of the nomogram in this study. 

http://www.slicer.org/
https://pyradiomics.readthedocs.io/
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Table 1. Characteristics of the unruptured and ruptured IAs. 

Characteristic, 

mean±SD or Num(%) 

Derivation cohort (n=176)  Validation cohort (n=78)  

Unruptured IA 

(n=113) 

Ruptured IA 

(n=63) 
P 

Unruptured IA 

(n=35) 

Ruptured IA 

(n=43) 
P 

Traditional morphological features 

Size (mm) 3.8±1.4 5.6±2.6 <0.001 4.2±1.8 5.5±2.1 0.007 

Neck (mm) 3.4±1.0 3.8±1.3 0.020 3.6±1.7 3.9±1.2 0.357 

Height (mm) 3.3±1.2 4.9±2.3 <0.001 3.4±1.3 4.8±1.9 <0.001 

Width (mm) 3.4±1.1 4.4±1.8 <0.001 3.7±1.8 4.6±1.7 0.034 

Diameter of parent artery (mm) 3.3±1.0 3.2±0.9 0.383 3.0±1.0 3.2±0.8 0.462 

Branching to parent ratio  1.2±0.3 1.2±0.4 0.387 1.2±0.2 1.4±0.4 0.010 

Neck to parent ratio 1.1±0.5 1.3±0.6 0.035 1.2±0.7 1.3±0.6 0.599 

Aspect ratio 1.0±0.4 1.3±0.6 <0.001 1.1±0.5 1.3±0.6 0.132 

Size ratio 1.0±0.5 1.5±0.8 <0.001 1.3±0.8 1.6±0.7 0.064 

Width-Height ratio 1.1±0.4 1.0±0.4 0.155 1.1±0.3 1.0±0.3 0.353 

Posterior circulation location 16(14.2) 12(19.0) 0.395 6(17.1) 9(20.9) 0.673 

Irregular shape 33(29.2) 34(54.0) 0.001 10(28.6) 23(53.5) 0.027 

Bifurcation aneurysm 35(31.0) 27(42.9) 0.114 11(31.4) 24(55.8) 0.031 

Inflow angle (°) 105.5±24.7 110.8±27.6 0.190 110.3±26.9 109.7±29.1 0.927 

Outflow angle (°) 97.7±26.9 92.9±27.6 0.266 102.6±29.2 96.5±25.8 0.329 

Branching angle (°) 134.6±23.7 130.0±24.2 0.217 124.9±21.2 127.5±26.8 0.635 

Radiomics morphological features 

Elongation 0.802±0.126 0.671±0.133 <0.001 0.811±0.112 0.717±0.118 0.001 

Flatness 0.676±0.116 0.560±0.121 <0.001 0.690±0.113 0.589±0.107 <0.001 

Compactness 1 0.039±0.003 0.036±0.004 <0.001 0.040±0.003 0.038±0.003 <0.001 

Compactness 2 0.544±0.075 0.470±0.104 <0.001 0.571±0.076 0.506±0.078 <0.001 

Sphericity 0.814±0.039 0.773±0.062 <0.001 0.828±0.039 0.794±0.043 0.001 

Surface volume Ratio 2.069±0.580 1.867±0.628 0.033 2.009±0.633 1.743±0.592 0.060 

Spherical disproportion 1.231±0.064 1.303±0.117 <0.001 1.210±0.060 1.263±0.072 0.001 

Minor axis length 3.502±0.909 4.130±1.523 0.001 3.575±1.014 4.292±1.343 0.011 

Least axis length 2.953±0.806 3.467±1.342 0.002 3.055±0.954 3.572±1.316 0.056 

Major axis length 4.478±1.418 6.390±2.586 <0.001 4.539±1.783 6.145±2.183 0.001 

Surface area 61.371±37.292 103.555±82.469 <0.001 65.908±48.541 104.050±71.951 0.009 

Voxel volume  37.540±36.009 80.367±100.824 <0.001 44.097±51.718 82.383±83.145 0.020 

Mesh volume 36.675±35.815 79.223±100.414 <0.001 43.417±51.353 81.385±82.954 0.021 

Maximum 2D diameter column          4.792±1.429 6.233±2.292 <0.001 4.806±1.623 6.257±2.157 0.002 

Maximum 2D diameter row             4.759±1.358 6.245±2.726 <0.001 4.976±1.590 6.194±2.369 0.011 

Maximum 2D diameter slice 4.920±1.482 6.301±2.225 <0.001 4.894±1.532 6.365±2.391 0.002 

Maximum 3D diameter 5.394±1.631 7.843±4.553 <0.001 5.458±1.958 7.371±2.700 0.001 

Radiomics signature       

  Rad-score -1.020±1.118 0.730±2.004 <0.001 -1.123±1.149 0.327±1.245 <0.001 

 

RESULTS 
 

Study population 

 

A total of 254 IAs in 105 patients were included, 

including 148 unruptured IAs and 106 ruptured IAs 

(one patient had two ruptured IAs 12 months apart). 

Among the 105 patients, 75 (71.4%) were women. The 

median age of the patients was 58.5 years (range, 31 - 

85 years). Current smoking and hypertension were 

present in 26 (24.8%) and 64 (61.9%) patients, 

respectively. (Supplementary Table 2) Ruptured IA was 

not the largest IA was found in 32 (30.5%) patients. In 

this study, 176 IAs were randomized into the derivation 

subset, and 78 IAs were randomized into the validation 

subset. Details of IAs in the derivation and validation 

subsets are shown in Table 1.  

 

Features selection and morphology-based radiomics 

signature construction 

 

The comparison of traditional morphological and 

radiomics features between ruptured and unruptured 

aneurysms is summarized in Table 1. The eleven 

traditional morphological features in the derivation 

cohort with p < 0.20 that were analyzed using  
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Figure 2. Flow chart of the study. The aneurysm was reconstructed from DSA images and using 3D slicer. The segmentation was 
performed by threshold and checked layer by layer. Then, the segmented label map and volume files were entered in the Pyradiomics 
package in the Python platform, and 17 radiomics morphological features were extracted for each aneurysm. The least absolute shrinkage 
and selection operator binary logistic were used to select the potential assessment factors and develop a radiomics signature. Along the 
radiomics morphological features, 16 traditional morphological features were combined and entered in the model construction analysis. 
Finally, the optimal model was performed in the nomogram. 
 

 
 

Figure 3. Measurements of the traditional morphological features. (II-A) schematically shows the aneurysm size and diameters of 
parent and branch vessels measurements, with the height (a), width (b), neck width (c), the diameter of the parent vessel (d), diameters of 
the branching vessel (e and f). (II-B) shows the angle measurements. The outflow angle (A) was defined as the angle at which the aneurysm 
flows outward to the distal parent artery in the sidewall aneurysm or to the daughter branch most approaching 180° in the bifurcation 
aneurysm. The inflow angle (B) was defined as the angle from the parent artery into the aneurysm. The main branching angle (C) was defined 
as the angle of the parent artery in the sidewall aneurysm or the angle between the parent artery and the daughter branch most approaching 
180° in bifurcation aneurysm. In addition, several indicators were calculated: aspect ratio (AR) was defined as the ratio of aneurysm height (a) 
to the neck width (c); size ratio (SR) was defined as the ratio of aneurysm height (a) to the parent vessel diameter (d); WH ratio was defined 
as the ratio of aneurysm width (b) to the height (a); branching to parent ratio (BPR) was defined as the ratio of the sum of the diameters of 
the branch vessels (e + f) to the diameter of the parent artery (d) (in case of a sidewall aneurysm, the BPR was set to 1); neck to parent ratio 
(NPR) was defined as the ratio of the aneurysm neck width (c) to the parent artery diameter (d). 



 

www.aging-us.com 13200 AGING 

multivariable logistic regression included: size, neck, 

height, width, AR, SR, irregular shape, neck, branching 

to parent ratio (BPR), neck to parent ratio (NPR), and 

bifurcation.  

 

Ten radiomics morphological features were identified as 

potential indicators, including surface volume ratio, 

spherical disproportion, maximum 3D diameter, 

maximum 2D diameter slice, major axis length, least axis 

length, maximum 2D diameter column, maximum 2D 

diameter row, elongation, and flatness. These ten features 

had coefficients > 0 in the least absolute shrinkage and 

selection operator (LASSO) logistic regression model and 

were included in the radiomics signature score (rad-score) 

calculation formula (Figure 4).  

 

Performance of the morphology-based radiomics 

signature 

 

The rad-scores of the ruptured group were significantly 

higher than that of the unruptured group in both the 

derivation and validation cohorts (p < 0.001, Table 1, 

Figure 5). A significant association between the rad-

score and IA rupture was also found in the IAs at a 

different location (Supplementary Table 3). The 

radiomics signature yielded areas under the curve 

(AUCs) of 0.814 (CI 95%, 0.746-0.881) in the 

derivation cohort and 0.835 (CI 95%, 0.739-0.930) in 

the validation cohort (Figure 6).  

 

Individualized nomogram model development and 

selection 

 

Multivariate logistic regression analysis yielded 3 

rupture discriminations models: 

 

the morphology-based radiomics signature (MRS) 

model, which include radiomics signature and 

traditional morphological features, 

 

odds MRS = [0.90(Radiomics Signature) + 0.79(SR) + 

1.23(BPR) – 2.84]; 

 

the morphology-based radiomics features (MRF) model, 

which include radiomics features and traditional 

morphological features, 

 

 
 

Figure 4. Radiomics signature score (rad-score) calculation. (A) Radiomic features ranked by coefficients of the least absolute 

shrinkage and selection operator (LASSO) binary logistic regression model. The flatness was the most correlated indicator with IA rupture. (B) 
Radiomics signature (rad-score) was constructed from a linear combination of selected features that were weighted based on their respective 
LASSO coefficients. 
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Figure 5. Violin plots of the radiomics signature score (rad-score). There was a significant difference in the rad-score between 
unruptured IA and ruptured IA in the derivation cohort (p < 0.001, III-A), which was then confirmed in the validation cohort (p < 0.001, III-B).

 

 
 

Figure 6. Rad-score for every aneurysm in each in the derivation (A) and validation cohort (B).
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odds MRF = [0.26(Maximum 3D Diameter) +0.88 (SR) - 

5.89(Flatness) + 0.31]; and 

 

the morphology-based traditional features (MTF) 

model, which include only traditional morphological 

features, 

 

odds MTF = [1.66 (AR) + 0.96 (NPR) + 0.73 (Irregular 

shape) – 3.90]; 

 

where odds are the ratios of the probability of ruptured 

status to the probability of unruptured status of an IA. 

 

Independently significant discriminants of the MRS 

model included radiomics signature, SR, and BPR. 

Discriminants of the MRF model included flatness, 

maximum 3D diameter, and SR. Discriminants of the 

MTF model include AR, NPR, and irregular shape 

(Table 2). We found that only SR was incorporated in 

both the MRS model (OR, 3.430; CI 95%, 1.275-4.521) 

and the MRF model (OR, 2.400; CI 95%, 1.226-4.900).  

 

For all three models, the variance inflation factors (VIFs) 

of all the candidate indicators ranged from 1.050–1.307, 

demonstrating that there was no collinearity in any of the 

three models. The MRS model (AUC, 0.842; 95% CIs, 

0.786-0.899) assessed the risk of aneurysm rupture in the 

derivation cohort more accurately than the MTF model 

(AUC, 0.747; 95% CIs, 0.673-0.822) or the MRF model 

(AUC, 0.820; 95% CIs, 0.755-0.885) (Figure 7). In the 

validation cohort, the MRS model (AUC, 0.849, 95% CIs, 

0.752-0.946) also had the largest AUC compared with the 

MTF (AUC, 0.666; 95% CIs, 0.539-0.793) and MRF 

models (AUC, 0.799; 95% CIs, 0.697-0.902). As the 

optimal model, the MRS model was developed as the 

nomogram (Figure 8A). 

 

Nomogram model validation and performance 

assessment 

 

The AUC of 0.842 in the derivation cohort and 0.849 

in the validation cohort showed good discrimination 

by the nomogram. Brier scores of 0.164 and 0.168 

showed good overall performance of the MRS model 

in the derivation and validation cohorts, respectively 

(Table 3). The calibration curve of the nomogram 

demonstrated good agreement between estimating and 

observation results (Figure 8). The Hosmer-Lemeshow 

test of the nomogram in the derivation cohort (p = 

0.782) showed no departure from perfect fit, which 

was confirmed in the validation cohort (p = 1.000).  

 

Clinical usefulness 

 

Compared to the MRF and MTF models, the MRS 

model showed larger net benefits in the decision curve 

analysis (DCA) (Figure 9). The DCA showed that if the 

probability of IA rupture generated by the MRS 

nomogram model is between 0.10–0.80, the use of 

nomogram to assess the IA rupture risk adds more 

benefit than either of the treat-all or the treat-none 

strategies (Figure 9). 

 

DISCUSSION 
 

Our study has important implications for clinical 

practice. To our knowledge, this study was the first  

to attempt to establish a reliable morphology-based 

radiomics signature nomogram to assess the risk of IA 

rupture in MIA patients. This nomogram incorporated 

both radiomics signature and traditional morphological 

features and showed larger benefit gains in assessing the 

risk of IA rupture compared with models based on 

radiomics or traditional morphological features.  

 

Radiomics signature was significantly associated 

with MIA rupture 

 

Previous studies have shown that IA size is the most 

important morphological risk factor for ruptures [3–5, 

25]. However, other studies showed that in 12.5%–33% 

of patients with MIA, the ruptured IA was not the 

largest one [6, 7]. In our study, similarly, this was 

30.5%. An irregular shape has also been reported as one 

of the most important factors for predicting IA rupture 

[6–8]. Some studies defined IA with multiple lobes, 

daughter sacs, or other types of wall protrusions as 

irregular [5–7, 26]. Such descriptions are qualitative and 

rely on the evaluator's experience with an ill-defined 

threshold. A few other studies used morphology indexes 

such as AR [6–9], SR [10–12], and flow angles [13, 14] 

for IA rupture risk assessment. However, these studies 

reported conflicting results. This may be because 

traditional morphological features were manually 

measured using different imaging techniques and 

measurement methodologies, which could differ among 

evaluators. Furthermore, compared with the radiomic 

morphological features automatically obtained based on 

artificial intelligence, traditional morphological features 

that are mainly measured in a 2-dimensional projection 

are not sufficient to judge the overall morphology of the 

IA. All these contradictions emphasize the need for a 

new tool to assess aneurysm rupture risk. 

 

In this study, we introduced radiomics morphological 

features and developed a morphology-based radiomics 

signature nomogram model in patients with aSAH and 

MIA. We used LASSO regression to select potential 

indicators and combined them via a linear equation 

weighted by each indicator's respective coefficients to 

construct the radiomics signature. This method allowed 

us to incorporate individual radiomics morphological  
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Table 2. Multivariate analysis for patient with aSAH and MIAs. 

Model Risk factors Odds ratio (95% CI) P VIF 

MRS 

Model 

Radiomics Signature 2.466(1.756-3.618) 0.003 1.116 

SR 3.430(1.275-4.521) 0.023 1.073 

BPR 3.430(1.275-9.890) 0.018 1.056 

MRF 

Model 

Flatness 0.003(<0.001-0.0600) <0.001 1.044 

Maximum 3D Diameter 1.359(0.109-16.488) 0.010 1.307 

SR 2.400(1.226-4.900) 0.013 1.295 

MTF 

Model 

AR 5.240(2.451-12.099) <0.001 1.149 

NPR 2.621(1.373-5.257) 0.004 1.144 

Irregular shape 2.078(1.036-4.173) 0.039 1.022 

MRS model, morphology-based radiomics signature model; MRF model, morphology-based radiomics 
features model; MTF model, morphology-based traditional features model; SR, size ratio; AR, aspect ratio; 
NPR, neck to parent diameter ratio; VIF, variation inflation factors. 

features into a feature panel in order to do multi-feature 

analyses and it has been used in several recent studies 

[17, 27, 28]. We found that the rad-scores of the 

ruptured group were significantly higher than that of the 

unruptured group in both derivation and validation sets 

(Figures 5, 6). More importantly, our result shows that 

the morphology-based radiomics signature performs 

well in assessing ruptured aneurysms in patients with

 

 
 

Figure 7. The area under the curves (AUCs) shows that the morphology-based radiomics signature model (A) has better discrimination 

compared with the morphology-based radiomics features model (B) and morphology-based radiomics features model (C). Radiomics 
morphological feature selection used the LASSO binary logistic regression model (D). 
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SAH and MIAs, with an AUC of 0.814 in the derivation 

cohort and 0.835 in the validation cohort (Figure 6). 

After grouping by location, the radiomics signature still 

showed a better stratified ability for detecting IAs at 

different locations (Supplementary Table 3). 

Furthermore, the radiomics signature had better 

assessment accuracy than the MTF model based on 

traditional morphological features only (AUC, 0.814 vs. 

0.747). These results confirm that the morphology-

based radiomics signature, as a new indicator 

established by radiomics and machine learning, has 

great values in IA rupture risk assessment. 

 

Development and validation of morphology-based 

radiomics signature nomogram 

 

Several methods, such as clinical risk factor assessments 

and scoring systems, have been used in IA stratification 

in clinical practice [4, 5, 29]. However, the usage of these 

clinical tools in clinical practice remains controversial 

[30–32], especially for patients with MIAs. This study 

intended to establish a relatively accurate, convenient, 

and noninvasive method for assessing IA rupture based 

on radiomics-extracted morphological features. 

Therefore, we established three different models and 

selected the optimal model to develop a nomogram. As a 

result, we found that the MRS model (AUC, 0.842), 

which incorporated radiomics signature and traditional 

morphological features, was more accurate in IA risk 

assessment than the MRF model (AUC, 0.820) and the 

MTF model (AUC, 0.747). The DCA also showed that 

the MRS model was associated with larger net benefits 

than the MRF and MTF models. Our study results with 

those mentioned above indicate that the combination of 

radiomics-extracted and clinical traditional morpho-

logical variables has a complementary and synergistic 

effect in assessing IA rupture in patients  

with MIA. 

 

In this study, we found that all three models had some 

shared and some distinct characters. All models 

included features that reflect the shape of the IA, such

 

 
 

Figure 8. The morphology-based radiomics signature model was developed into nomogram (A). Calibration curves suggest that our 
nomogram performed well in both the derivation (B) and validation (C) cohorts. 
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Table 3. Evaluation of discrimination and calibration abilities of the models. 

 

MRS model MRF model MTF model 

Derivation 

cohort 

Validation 

cohort 
Total cohort 

Derivation 

cohort 

Validation 

cohort 
Total cohort 

Derivation 

cohort 

Validation 

cohort 
Total cohort 

Brier score 0.160 0.137 0.159 0.162 0.174 0.173 0.190 0.227 0.208 

AUC  

(95% CI) 

0.842 

(0.786-0.899) 

0.849 

(0.752-0.946) 

0.840 

(0.790-0.890) 

0.820 

(0.755-0.885) 

0.799 

(0.697-0.902) 

0.816 

(0.764-0.869) 

0.747 

(0.673-0.822) 

0.666 

(0.539-0.793) 

0.729 

(0.667-0.791) 

Hosmer-

Lemeshow 

test  

(p value) 

0.366 1.000 1.000 0.098 0.494 0.950 0.139 0.171 0.954 

AUC, area under the receiver operating characteristic curve; MRS model, morphology-based radiomics signature model; MRF 
model, morphology-based radiomics features model; MTF model, morphology-based traditional features model.  

as radiomics signature in the MRS model, flatness in 

the MRF model, as well as AR and irregular shape in 

the MTF model. An irregular shape has been reported 

as one of the most important factors for predicting IA 

rupture [6–8]. These geometries tend to harbor 

vortices, which may promote the infiltration of 

inflammatory cells [33]. Moreover, the local disturbed 

flow pattern coursed by the irregular shape of IAs 

may be more vulnerable to form thrombus, which 

could aggravate inflammatory cell infiltration and the 

proteolytic degradation of the IA wall [34–36]. In the 

MTF model, AR and irregular shape, as typical 

morphological features, have been widely studied and 

correlated with IA rupture [6–9]. In the MRF model, 

the flatness was a novel morphological radiomics 

index, which shows the relationship between the 

largest and smallest principal components in shape 

[17–19]. Liu et al. identified flatness as the most 

important determinant to predict small IA stability 

[19]. In our study, LASSO binary logistic regression 

analysis showed that flatness was also the most 

correlated indicator for IA rupture (Figure 4). 

Compared to AR, NPR, and irregular shape, flatness 

may be a more objective and reliable way to describe 

the IA morphology. In the MRS model, the radiomics 

signature reflected the overall morphology of the 

aneurysm more comprehensively than a single 

traditional or radiomics morphological feature. 

Interestingly, NPR was included in the MTF model, 

and SR was included in the MRS and MRF model. 

NPR is defined as the ratio of the neck width to the 

parent artery diameter, which is affected by the IA

 

 
 

Figure 9. The decision curve analysis demonstrates the morphology-based radiomics signature model (MRS model) has a larger net benefit 

compared with the morphology-based radiomics features model (MRF model) and morphology-based traditional features model (MTF 
model) for the assessment of aneurysm rupture risk. 
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location and parent vessel. SR was found to be a more 

robust morphometric feature than AR or size, which 

can also be affected by the location and parent vessel 

of the IA [10–12]. In addition, maximum 3D 

diameter, which was included in the MRF model, 

represented the largest diameter of the IA in 3 

dimensions and could be more accurate than 

traditional size measurements relying on manual 

measurement by the naked eye [17–19]. 

 
Previous studies have linked IA rupture and radiomics 

features. Liu et al. attempted to predict aneurysm 

stability with radiomics morphological features. 

However, 13.7% in their case group were growing or 

symptomatic unruptured aneurysm, so it was not 

suitable for identifying IA ruptured in MIA patients 

[19]. In addition to morphological features, more 

radiomic features could be extracted from CT or MR 

imaging. However, this is a technical challenge for IA 

because IA is a cystic vascular disease, unlike other 

substantial lesions such as tumors. In fact, as the gold 

standard for diagnosis and evaluation of IA [37]. 3D 

digital subtraction angiography (3D-DSA) 

reconstruction mainly reflects the morphological 

characteristics of the aneurysm and parent artery, 

which are very important factors affecting the risk of 

aneurysm rupture. Therefore, we only extracted 

morphological-based radiomics features from 3D-

DSA. Further research will be conducted using on 

high-resolution magnetic resonance images to extract 

more imaging features (such as grayscale) other than 

the morphological factors. 

 
Strengths and limitations 

 
Our study was specifically designed to yield accurate 

and reliable results. Radiomics is the mining of 

quantitative and objective image parameters and the 

evaluation of IA morphological characteristics in 

multiple dimensions. We included patients who had 

both ruptured and unruptured IAs. Similarly, three 

previous articles have also studied this subgroup of 

patients [7, 9, 38]. All IAs were exposed to the same 

internal milieu within this study population as patient-

specific parameters and standardized by their own 

internal controls. This makes our model more accurate 

[7, 9, 38]. Furthermore, we used a nomogram to 

develop our IA rupture risk assessment tool. 

Nomograms have been widely accepted as reliable tools 

to determine quantitative risk factors for clinical events.  

 
This study has some limitations. First, our study was 

based on post IA rupture imaging, which may not 
accurately reflect the original morphology of existing IAs. 

This shortcoming may be further magnified by the 

accuracy of the radiomic morphological feature 

extraction. Second, the retrospective design of our study 

may have introduced some bias, and we did not have an 

external validation. The number of cases in the 

verification group was relatively small (76 IAs). 

However, because only 2 or 3 variables were used in each 

model, this sample size was statistically satisfactory. 

Third, this research is based on semi-automatic 

segmentation procession, and manual segmentation of IA 

neck may introduce discrepancy. Fourth, incorporated 

both radiomics signature and traditional morphological 

features, our model does not fully cover the shortcomings 

of manual extraction of parameters, so further research 

needs to consider fully automatic extraction of all 

aneurysm morphological and radiomic parameters. Lastly, 

models in this study did not include factors such as 

hemodynamics [20], genetics [39], and wall enhancement 

[40]. The inclusion of these parameters may improve the 

assessment accuracy of the model but may also increase 

the complexity of the model and limit its clinical 

application [25]. 

 

CONCLUSIONS 
 

To the best of our knowledge, this study was the first 

attempt to establish a reliable morphology-based 

radiomics signature nomogram to assess the risk of IA 

rupture in MIA patients. This nomogram may provide a 

relatively accurate, convenient, and noninvasive method 

for the decision-making and risk stratification for 

patients with MIAs. 

 

Availability of data and material 

 

Some or all data, models, or code generated or used 

during the study are available from the corresponding 

author by request. 

 

Consent for participation and publication 

 

Informed consents for participation and publication 

were obtained from all participants. 

 

ACKNOWLEDGMENTS 
 

We thank Yuesong Pan for the analysis and 

interpretation of data; Yunyun Xiong for advice and 

critical discussion. 
 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of interest. 
 

FUNDING 
 

This work was supported by the Beijing Municipal 

Administration of Hospitals' Ascent Plan 



 

www.aging-us.com 13207 AGING 

(DFL20190501), the Non-profit Central Research 

Institute Fund of Chinese Academy of Medical Sciences 

(No. 2019TX320002), and the Natural Science 

Foundation of China (No. 81771233). 

 

REFERENCES 
 
1. Jabbarli R, Dinger TF, Darkwah Oppong M, Pierscianek 

D, Dammann P, Wrede KH, Kaier K, Köhrmann M, 
Forsting M, Kleinschnitz C, Sure U. Risk Factors for and 
Clinical Consequences of Multiple Intracranial 
Aneurysms: A Systematic Review and Meta-Analysis. 
Stroke. 2018; 49:848–55. 

 https://doi.org/10.1161/STROKEAHA.117.020342 
PMID:29511128 

2. Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, 
Yarnold JA, Sandercock P, and International 
Subarachnoid Aneurysm Trial (ISAT) Collaborative 
Group. International subarachnoid aneurysm trial 
(ISAT) of neurosurgical clipping versus endovascular 
coiling in 2143 patients with ruptured intracranial 
aneurysms: a randomised comparison of effects on 
survival, dependency, seizures, rebleeding, subgroups, 
and aneurysm occlusion. Lancet. 2005; 366:809–17. 

 https://doi.org/10.1016/S0140-6736(05)67214-5 
PMID:16139655 

3. Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, 
Brown RD Jr, Piepgras DG, Forbes GS, Thielen K, 
Nichols D, O’Fallon WM, Peacock J, Jaeger L, Kassell NF, 
et al, and International Study of Unruptured 
Intracranial Aneurysms Investigators. Unruptured 
intracranial aneurysms: natural history, clinical 
outcome, and risks of surgical and endovascular 
treatment. Lancet. 2003; 362:103–10. 

 https://doi.org/10.1016/s0140-6736(03)13860-3 
PMID:12867109 

4. Greving JP, Wermer MJ, Brown RD Jr, Morita A, Juvela 
S, Yonekura M, Ishibashi T, Torner JC, Nakayama T, 
Rinkel GJ, Algra A. Development of the PHASES score 
for prediction of risk of rupture of intracranial 
aneurysms: a pooled analysis of six prospective cohort 
studies. Lancet Neurol. 2014; 13:59–66. 

 https://doi.org/10.1016/S1474-4422(13)70263-1 
PMID:24290159 

5. Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S, 
Hashimoto N, Nakayama T, Sakai M, Teramoto A, 
Tominari S, Yoshimoto T, and UCAS Japan 
Investigators. The natural course of unruptured 
cerebral aneurysms in a Japanese cohort. N Engl J Med. 
2012; 366:2474–82. 

 https://doi.org/10.1056/NEJMoa1113260 
PMID:22738097 

6. Björkman J, Frösen J, Tähtinen O, Backes D, Huttunen 
T, Harju J, Huttunen J, Kurki MI, von Und Zu Fraunberg 

M, Koivisto T, Manninen H, Jääskeläinen JE, Lindgren 
AE. Irregular Shape Identifies Ruptured Intracranial 
Aneurysm in Subarachnoid Hemorrhage Patients With 
Multiple Aneurysms. Stroke. 2017; 48:1986–89. 

 https://doi.org/10.1161/STROKEAHA.117.017147 
PMID:28468927 

7. Backes D, Vergouwen MD, Velthuis BK, van der Schaaf 
IC, Bor AS, Algra A, Rinkel GJ. Difference in aneurysm 
characteristics between ruptured and unruptured 
aneurysms in patients with multiple intracranial 
aneurysms. Stroke. 2014; 45:1299–303. 

 https://doi.org/10.1161/STROKEAHA.113.004421 
PMID:24652309 

8. Beck J, Rohde S, el Beltagy M, Zimmermann M, 
Berkefeld J, Seifert V, Raabe A. Difference in 
configuration of ruptured and unruptured 
intracranial aneurysms determined by biplanar 
digital subtraction angiography. Acta Neurochir 
(Wien). 2003; 145:861–65. 

 https://doi.org/10.1007/s00701-003-0124-0 
PMID:14577007 

9. Nader-Sepahi A, Casimiro M, Sen J, Kitchen ND. Is 
aspect ratio a reliable predictor of intracranial 
aneurysm rupture? Neurosurgery. 2004; 54:1343–47. 

 https://doi.org/10.1227/01.neu.0000124482.03676.8b 
PMID:15157290 

10. Mocco J, Brown RD Jr, Torner JC, Capuano AW, Fargen 
KM, Raghavan ML, Piepgras DG, Meissner I, Huston J 
III, and International Study of Unruptured Intracranial 
Aneurysms Investigators. Aneurysm Morphology and 
Prediction of Rupture: An International Study of 
Unruptured Intracranial Aneurysms Analysis. 
Neurosurgery. 2018; 82:491–96. 

 https://doi.org/10.1093/neuros/nyx226 
PMID:28605486 

11. Ma D, Tremmel M, Paluch RA, Levy EI, Meng H, Mocco 
J. Size ratio for clinical assessment of intracranial 
aneurysm rupture risk. Neurol Res. 2010; 32:482–86. 

 https://doi.org/10.1179/016164109X12581096796558 
PMID:20092677 

12. Rahman M, Smietana J, Hauck E, Hoh B, Hopkins N, 
Siddiqui A, Levy EI, Meng H, Mocco J. Size ratio 
correlates with intracranial aneurysm rupture status: a 
prospective study. Stroke. 2010; 41:916–20. 

 https://doi.org/10.1161/STROKEAHA.109.574244 
PMID:20378866 

13. de Rooij NK, Velthuis BK, Algra A, Rinkel GJ. 
Configuration of the circle of Willis, direction of 
flow, and shape of the aneurysm as risk factors for 
rupture of intracranial aneurysms. J Neurol. 2009; 
256:45–50. 

 https://doi.org/10.1007/s00415-009-0028-x 
PMID:19221852 

https://doi.org/10.1161/STROKEAHA.117.020342
https://pubmed.ncbi.nlm.nih.gov/29511128
https://doi.org/10.1016/S0140-6736(05)67214-5
https://pubmed.ncbi.nlm.nih.gov/16139655
https://doi.org/10.1016/s0140-6736(03)13860-3
https://pubmed.ncbi.nlm.nih.gov/12867109
https://doi.org/10.1016/S1474-4422(13)70263-1
https://pubmed.ncbi.nlm.nih.gov/24290159
https://doi.org/10.1056/NEJMoa1113260
https://pubmed.ncbi.nlm.nih.gov/22738097
https://doi.org/10.1161/STROKEAHA.117.017147
https://pubmed.ncbi.nlm.nih.gov/28468927
https://doi.org/10.1161/STROKEAHA.113.004421
https://pubmed.ncbi.nlm.nih.gov/24652309
https://doi.org/10.1007/s00701-003-0124-0
https://pubmed.ncbi.nlm.nih.gov/14577007
https://doi.org/10.1227/01.neu.0000124482.03676.8b
https://pubmed.ncbi.nlm.nih.gov/15157290
https://doi.org/10.1093/neuros/nyx226
https://pubmed.ncbi.nlm.nih.gov/28605486
https://doi.org/10.1179/016164109X12581096796558
https://pubmed.ncbi.nlm.nih.gov/20092677
https://doi.org/10.1161/STROKEAHA.109.574244
https://pubmed.ncbi.nlm.nih.gov/20378866
https://doi.org/10.1007/s00415-009-0028-x
https://pubmed.ncbi.nlm.nih.gov/19221852


 

www.aging-us.com 13208 AGING 

14. Baharoglu MI, Lauric A, Gao BL, Malek AM. 
Identification of a dichotomy in morphological 
predictors of rupture status between sidewall- and 
bifurcation-type intracranial aneurysms. J Neurosurg. 
2012; 116:871–81. 

 https://doi.org/10.3171/2011.11.JNS11311 
PMID:22242668 

15. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, 
van Stiphout RG, Granton P, Zegers CM, Gillies R, 
Boellard R, Dekker A, Aerts HJ. Radiomics: extracting 
more information from medical images using advanced 
feature analysis. Eur J Cancer. 2012; 48:441–46. 

 https://doi.org/10.1016/j.ejca.2011.11.036 
PMID:22257792 

16. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are 
More than Pictures, They Are Data. Radiology. 2016; 
278:563–77. 

 https://doi.org/10.1148/radiol.2015151169 
PMID:26579733 

17. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, Ma 
ZL, Liu ZY. Development and Validation of a Radiomics 
Nomogram for Preoperative Prediction of Lymph Node 
Metastasis in Colorectal Cancer. J Clin Oncol. 2016; 
34:2157–64. 

 https://doi.org/10.1200/JCO.2015.65.9128 
PMID:27138577 

18. Liu Q, Jiang P, Jiang Y, Ge H, Li S, Jin H, Li Y. Prediction 
of Aneurysm Stability Using a Machine Learning Model 
Based on PyRadiomics-Derived Morphological 
Features. Stroke. 2019; 50:2314–21. 

 https://doi.org/10.1161/STROKEAHA.119.025777 
PMID:31288671 

19. Zhang Y, Ma C, Liang S, Yan P, Liang F, Guo F, Jiang C. 
Morphologic Feature Elongation Can Predict Occlusion 
Status Following Pipeline Embolization of Intracranial 
Aneurysms. World Neurosurg. 2018; 119:e934–40. 

 https://doi.org/10.1016/j.wneu.2018.08.007 
PMID:30103059 

20. Rajabzadeh-Oghaz H, Wang J, Varble N, Sugiyama SI, 
Shimizu A, Jing L, Liu J, Yang X, Siddiqui AH, Davies JM, 
Meng H. Novel Models for Identification of the 
Ruptured Aneurysm in Patients with Subarachnoid 
Hemorrhage with Multiple Aneurysms. AJNR Am J 
Neuroradiol. 2019; 40:1939–46. 

 https://doi.org/10.3174/ajnr.A6259  
PMID:31649161 

21. Orning JL, Shakur SF, Alaraj A, Behbahani M, Charbel 
FT, Aletich VA, Amin-Hanjani S. Accuracy in Identifying 
the Source of Subarachnoid Hemorrhage in the Setting 
of Multiple Intracranial Aneurysms. Neurosurgery. 
2018; 83:62–68. 

 https://doi.org/10.1093/neuros/nyx339 
PMID:28655208 

22. van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, 
Aucoin N, Narayan V, Beets-Tan RG, Fillion-Robin JC, 
Pieper S, Aerts HJ. Computational Radiomics System to 
Decode the Radiographic Phenotype. Cancer Res. 
2017; 77:e104–07. 

 https://doi.org/10.1158/0008-5472.CAN-17-0339 
PMID:29092951 

23. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, 
Grossmann P, Carvalho S, Bussink J, Monshouwer R, 
Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, 
Leemans CR, et al. Decoding tumour phenotype by 
noninvasive imaging using a quantitative radiomics 
approach. Nat Commun. 2014; 5:4006. 

 https://doi.org/10.1038/ncomms5006 PMID:24892406 

24. Haubold J, Demircioglu A, Gratz M, Glas M, Wrede K, 
Sure U, Antoch G, Keyvani K, Nittka M, Kannengiesser 
S, Gulani V, Griswold M, Herrmann K, et al. Non-
invasive tumor decoding and phenotyping of cerebral 
gliomas utilizing multiparametric 18F-FET PET-MRI and 
MR Fingerprinting. Eur J Nucl Med Mol Imaging. 2020; 
47:1435–45. 

 https://doi.org/10.1007/s00259-019-04602-2 
PMID:31811342 

25. Etminan N, Rinkel GJ. Unruptured intracranial 
aneurysms: development, rupture and preventive 
management. Nat Rev Neurol. 2016; 12:699–713. 

 https://doi.org/10.1038/nrneurol.2016.150 
PMID:27808265 

26. Tominari S, Morita A, Ishibashi T, Yamazaki T, Takao H, 
Murayama Y, Sonobe M, Yonekura M, Saito N, 
Shiokawa Y, Date I, Tominaga T, Nozaki K, et al, and 
Unruptured Cerebral Aneurysm Study Japan 
Investigators. Prediction model for 3-year rupture risk 
of unruptured cerebral aneurysms in Japanese 
patients. Ann Neurol. 2015; 77:1050–59. 

 https://doi.org/10.1002/ana.24400  
PMID:25753954 

27. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain 
KS, Hayes DF, Geyer CE Jr, Dees EC, Perez EA, Olson JA 
Jr, Zujewski J, Lively T, Badve SS, et al. Prospective 
Validation of a 21-Gene Expression Assay in Breast 
Cancer. N Engl J Med. 2015; 373:2005–14. 

 https://doi.org/10.1056/NEJMoa1510764 
PMID:26412349 

28. Wang K, Qiao Z, Zhao X, Li X, Wang X, Wu T, Chen Z, 
Fan D, Chen Q, Ai L. Individualized discrimination of 
tumor recurrence from radiation necrosis in glioma 
patients using an integrated radiomics-based model. 
Eur J Nucl Med Mol Imaging. 2020; 47:1400–11. 

 https://doi.org/10.1007/s00259-019-04604-0 
PMID:31773234 

29. Etminan N, Brown RD Jr, Beseoglu K, Juvela S, 
Raymond J, Morita A, Torner JC, Derdeyn CP, Raabe A, 

https://doi.org/10.3171/2011.11.JNS11311
https://pubmed.ncbi.nlm.nih.gov/22242668
https://doi.org/10.1016/j.ejca.2011.11.036
https://pubmed.ncbi.nlm.nih.gov/22257792
https://doi.org/10.1148/radiol.2015151169
https://pubmed.ncbi.nlm.nih.gov/26579733
https://doi.org/10.1200/JCO.2015.65.9128
https://pubmed.ncbi.nlm.nih.gov/27138577
https://doi.org/10.1161/STROKEAHA.119.025777
https://pubmed.ncbi.nlm.nih.gov/31288671
https://doi.org/10.1016/j.wneu.2018.08.007
https://pubmed.ncbi.nlm.nih.gov/30103059
https://doi.org/10.3174/ajnr.A6259
https://pubmed.ncbi.nlm.nih.gov/31649161
https://doi.org/10.1093/neuros/nyx339
https://pubmed.ncbi.nlm.nih.gov/28655208
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://pubmed.ncbi.nlm.nih.gov/29092951
https://doi.org/10.1038/ncomms5006
https://pubmed.ncbi.nlm.nih.gov/24892406
https://doi.org/10.1007/s00259-019-04602-2
https://pubmed.ncbi.nlm.nih.gov/31811342
https://doi.org/10.1038/nrneurol.2016.150
https://pubmed.ncbi.nlm.nih.gov/27808265
https://doi.org/10.1002/ana.24400
https://pubmed.ncbi.nlm.nih.gov/25753954
https://doi.org/10.1056/NEJMoa1510764
https://pubmed.ncbi.nlm.nih.gov/26412349
https://doi.org/10.1007/s00259-019-04604-0
https://pubmed.ncbi.nlm.nih.gov/31773234


 

www.aging-us.com 13209 AGING 

Mocco J, Korja M, Abdulazim A, Amin-Hanjani S, et al. 
The unruptured intracranial aneurysm treatment 
score: a multidisciplinary consensus. Neurology. 2015; 
85:881–89. 

 https://doi.org/10.1212/WNL.0000000000001891 
PMID:26276380 

30. Pagiola I, Mihalea C, Caroff J, Ikka L, Chalumeau V, 
Iacobucci M, Ozanne A, Gallas S, Marques M, Nalli D, 
Carrete H, Caldas JG, Frudit ME, et al. The PHASES 
score: To treat or not to treat? Retrospective 
evaluation of the risk of rupture of intracranial 
aneurysms in patients with aneurysmal 
subarachnoid hemorrhage. J Neuroradiol. 2020; 
47:349–52. 

 https://doi.org/10.1016/j.neurad.2019.06.003 
PMID:31400432 

31. Rutledge C, Jonzzon S, Winkler EA, Raper D, Lawton 
MT, Abla AA. Small Aneurysms with Low PHASES 
Scores Account for Most Subarachnoid Hemorrhage 
Cases. World Neurosurg. 2020; 139:e580–84. 

 https://doi.org/10.1016/j.wneu.2020.04.074 
PMID:32353538 

32. Sturiale CL, Stumpo V, Ricciardi L, Trevisi G, Valente I, 
D’Arrigo S, Latour K, Barbone P, Albanese A. 
Retrospective application of risk scores to ruptured 
intracranial aneurysms: would they have predicted the 
risk of bleeding? Neurosurg Rev. 2020. [Epub ahead of 
print]. 

 https://doi.org/10.1007/s10143-020-01352-w 
PMID:32715359 

33. Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, 
Hopkins LN, Siddiqui AH, Levy EI, Meng H. 
Hemodynamic-morphologic discriminants for 
intracranial aneurysm rupture. Stroke. 2011; 
42:144–52. 

 https://doi.org/10.1161/STROKEAHA.110.592923 
PMID:21106956 

34. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, 
Kuroda R. Structural fragility and inflammatory 
response of ruptured cerebral aneurysms. A 
comparative study between ruptured and unruptured 
cerebral aneurysms. Stroke. 1999; 30:1396–401. 

 https://doi.org/10.1161/01.str.30.7.1396 
PMID:10390313 

35. Meng H, Tutino VM, Xiang J, Siddiqui A. High WSS or 
low WSS? Complex interactions of hemodynamics with 
intracranial aneurysm initiation, growth, and rupture: 
toward a unifying hypothesis. AJNR Am J Neuroradiol. 
2014; 35:1254–62. 

 https://doi.org/10.3174/ajnr.A3558  
PMID:23598838 

36. Frösen J, Tulamo R, Paetau A, Laaksamo E, Korja M, 
Laakso A, Niemelä M, Hernesniemi J. Saccular 
intracranial aneurysm: pathology and mechanisms. 
Acta Neuropathol. 2012; 123:773–86. 

 https://doi.org/10.1007/s00401-011-0939-3 
PMID:22249619 

37. Brown RD Jr, Broderick JP. Unruptured intracranial 
aneurysms: epidemiology, natural history, 
management options, and familial screening. Lancet 
Neurol. 2014; 13:393–404. 

 https://doi.org/10.1016/S1474-4422(14)70015-8 
PMID:24646873 

38. Sadatomo T, Yuki K, Migita K, Taniguchi E, Kodama Y, 
Kurisu K. Morphological differences between ruptured 
and unruptured cases in middle cerebral artery 
aneurysms. Neurosurgery. 2008; 62:602–09. 

 https://doi.org/10.1227/01.NEU.0000311347.35583.0
C PMID:18301349 

39. Alg VS, Sofat R, Houlden H, Werring DJ. Genetic risk 
factors for intracranial aneurysms: a meta-analysis in 
more than 116,000 individuals. Neurology. 2013; 
80:2154–65. 

 https://doi.org/10.1212/WNL.0b013e318295d751 
PMID:23733552 

40. Lv N, Karmonik C, Chen S, Wang X, Fang Y, Huang Q, 
Liu J. Wall Enhancement, Hemodynamics, and 
Morphology in Unruptured Intracranial Aneurysms 
with High Rupture Risk. Transl Stroke Res. 2020; 
11:882–89. 

 https://doi.org/10.1007/s12975-020-00782-4 
PMID:31960286  

https://doi.org/10.1212/WNL.0000000000001891
https://pubmed.ncbi.nlm.nih.gov/26276380
https://doi.org/10.1016/j.neurad.2019.06.003
https://pubmed.ncbi.nlm.nih.gov/31400432
https://doi.org/10.1016/j.wneu.2020.04.074
https://pubmed.ncbi.nlm.nih.gov/32353538
https://doi.org/10.1007/s10143-020-01352-w
https://pubmed.ncbi.nlm.nih.gov/32715359
https://doi.org/10.1161/STROKEAHA.110.592923
https://pubmed.ncbi.nlm.nih.gov/21106956
https://doi.org/10.1161/01.str.30.7.1396
https://pubmed.ncbi.nlm.nih.gov/10390313
https://doi.org/10.3174/ajnr.A3558
https://pubmed.ncbi.nlm.nih.gov/23598838
https://doi.org/10.1007/s00401-011-0939-3
https://pubmed.ncbi.nlm.nih.gov/22249619
https://doi.org/10.1016/S1474-4422(14)70015-8
https://pubmed.ncbi.nlm.nih.gov/24646873
https://doi.org/10.1227/01.NEU.0000311347.35583.0C
https://doi.org/10.1227/01.NEU.0000311347.35583.0C
https://pubmed.ncbi.nlm.nih.gov/18301349
https://doi.org/10.1212/WNL.0b013e318295d751
https://pubmed.ncbi.nlm.nih.gov/23733552
https://doi.org/10.1007/s12975-020-00782-4
https://pubmed.ncbi.nlm.nih.gov/31960286


 

www.aging-us.com 13210 AGING 

SUPPLEMENTARY MATERIALS 
 

 

Supplementary Tables 
 

Supplementary Table 1. Major packages of R software used in this study. 

Functions  R package 

logistic regression analysis glm 

Plot the receiver operating curve (ROC) and measure the area under the ROC (AUC) pROC 

Hosmer and Lemeshow goodness of fit (GOF) test ResourceSelection 

Plot bar diagrams ggplot2 

Plot calibration curves, Brier score and develop nomogram rms 

Decision curve analysis (DCA) rmda 

 

Supplementary Table 2. Demographic and 
clinical features of the whole cohort. 

 Whole cohort 

Age 58.5 (31 - 85) 

Female 75 (71.4%) 

Hypertension 64 (61.9%) 

Hyperlipidemia 12(11.4%) 

Diabetes 11(10.5%) 

Heart disease 13 (12.4) 

Smoking 26 (24.8%) 

Drinking 22 (21.0%) 

 

Supplementary Table 3. Stratified analysis of the association between the morphology-based 
radiomics signature and aneurysm rupture in the whole population. 

Locations 
Radiomics signature 

P - value 
Unruptured aneurysm Ruptured aneurysm 

Internal carotid artery -1.032(1.061) 0.737(2.080) <0.001 

Anterior cerebral artery -1.433(0.807) 0.542 (1.560) <0.001 

Middle cerebral artery -0.979(0.822) 0.451(1.208) <0.001 

Posterior circulation -0.863(1.720) 0.239(1.221) 0.023 

 


