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Abstract

T cell activation and differentiation is a complex process that has evolved beyond the two-signal 

model to a number of varied and opposing inputs that must be interpreted to make a cell fate 

decision. While stimulation through the TCR, costimulatory, and cytokine receptors is required, 

metabolic signaling has emerged not only an activation signal, but one that can influence and 

shape differentiation. Recent findings have revealed unappreciated roles for glucose, fatty acids, 

and salt in the function of many T cell subsets. In this review, we will highlight the latest advances 

in the burgeoning field of immunometabolism, focusing on how the menu of T cell fuels has 

expanded.

Introduction

During his studies of tumor cells, Otto von Warburg hypothesized that a key transformation 

event in the development of cancer was the ability to shift their metabolism to support their 

enhanced proliferation[1]. He observed that, even though tumor cells are in a relatively 

oxygen-rich environment, they preferentially ferment glucose, producing lactate, rather than 

consume oxygen and undergo respiration. This type of metabolism, aerobic glycolysis or the 

“Warburg effect”, is a key characteristic of many cancers[2].

During an immune response, T cells can expand 10–100000 fold during their initial 

expansion, and need fuel and metabolic intermediates to support their proliferation. Thus, 

upon activation, conventional T cells, participate in aerobic glycolysis, just like cancer 

cells[3]. While complete glycolysis, fermenting glucose into lactic acid, is a relatively 

inefficient means of producing ATP, it is considered to be favorable to highly proliferative 

cells, as it frees up intermediates for building new cellular components (membranes, 

proteins, and nucleotides), favoring cell division[4]. In stark contrast, naïve and memory T 
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cells must be able to survive for years, in order to support primary and secondary responses, 

without undergoing any substantial proliferation. During these periods of quiescence, T cells 

have been shown to primarily use mitochondrial metabolism to support their survival, 

utilizing fatty acids, amino acids, and glucose to generate ATP through the TCA cycle and 

oxidative phosphorylation[5].

Thus, T cells must be able to modulate their metabolism in order to switch between these 

two distinct proliferative modalities. However, the metabolic requirements of T cells are 

extraordinarily complex and can vary heavily between individual populations and subsets. 

Recent studies have attempted to dissect the interplay between fuel and function. In this 

review, we will focus on these recent insights into what kind of fuel T cells use and how 

nutrients and nutrient sensors can shape the immune response.

Sugar: memory cells may lack a sweet tooth

Glucose is the predominant (and most studied) fuel source used by somatic cells to generate 

ATP. Initial studies in cancer cell and T cell metabolism focused on the metabolic “switch” 

of Warburg metabolism: what factors, signaling pathways, or transcriptional programs could 

induce this shift away from oxidative metabolism. However, it is becoming increasingly 

clear that the bioenergetic fate of glucose is not the only factor in cellular metabolism, and 

that Warburg metabolism may not be the ideal mechanism for generating strong, durable 

immunity.[6] While T cells dynamically regulate these pathways, and upregulate both 

oxidative phosphorylation and glycolysis during activation, it is the ability for the cells to 

engage glycolysis that is critical for the translation and secretion of some cytokines, 

especially interferon gamma (Ifng).[7]

While the incredible proliferation of an expanding T cell is required to generate an army of 

effector cells, another important goal of that initial activation is the development of potent 

memory. Like most highly proliferative cells, Warburg metabolism spares cellular biomass 

from catabolic metabolism to promote T cell expansion. However, it has not been entirely 

clear how glycolytic programs might help or hinder T cells’ transition into memory phase. A 

recent study suggests that the shift to glycolytic metabolism is associated with terminal 

differentiation and less memory progenitor cells during initial antigen encounter, and that 

enforced glycolysis can inhibit the memory response [8]. Further, inhibition of glycolysis 

using 2-deoxyglucose during activation can augment memory cell generation, suggesting 

that aerobic glycolysis is not necessarily a preferred metabolic modality for T cells. Indeed, 

inhibition of glycolysis can inhibit the activation of mTOR, a critical nutrient sensor 

important in dictating effector versus memory fates[9]. Supporting the idea that glycolytic 

machinery might promote effector T cell differentiation, recent data suggest that 

glyceraldehyde-3-phosphate dehydrogenase (GADPH), an enzyme that has critical activity 

in glycolysis, also has functions as an RNA-binding protein for Ifng[7]. This study showed 

that in T cells, GAPDH could bind to the AU-rich elements of the 3′UTR of Ifng mRNA, 

repressing transcription, revealing a novel way that metabolism can directly modulate 

transcription in T cells[7]. At some point during expansion, a cell needs to shift back into an 

oxidative metabolism in order to preserve and carry out cellular functions outside of 

proliferation. Reliance on a single source of fuel may lead to skewed or abnormal immune 
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response; invariably, catabolic metabolism will be required to generate intermediates, 

second messengers, and high ATP levels in order to carry out diverse cellular functions.

Thus, the control and timing of glucose uptake could have major impact on the generation of 

memory during T cell expansion. The glucose transporter Glut1 is dynamically regulated 

and critical for glucose influx into T cells, at the levels of transcription, post-translational 

modification, and cellular localization[10, 11]. Indeed, recent studies have shown that, not 

only is it the dominant glucose transporter in CD4+ conventional T cells, but that it seems to 

be dispensable for Treg cell function, consistent with previous data suggesting Treg cells do 

not rely on glycolytic programs[12]. This could potentially be due to the fact that Treg cells, 

especially those that are highly suppressive, seek to restrain Akt activation in order to 

maintain their stability and suppressive function[13]. As Akt is important for Glut1 activity 

and trafficking, this may explain why Treg cells have limited glycolysis[11, 14]. However, 

while such metabolic programs may promote the generation and maintenance of T regs, data 

suggests that “effector-like” T regs may indeed employ increased glycolytic programs 

similar to their T conventional effector counterparts[15–17].

In addition, Akt may not be the only way T cells control glucose uptake. Other studies have 

expanded on T cell regulation of glucose transport, including GCN2, a target of the 

indoleamine 2,3-dioxygenase (IDO) pathway, and leptin, an adipokine that plays a central 

role in systemic metabolism[18, 19]. These two signaling pathways can modulate Glut1 and 

Glut3 expression in an Akt-independent manner, suggesting that many distinct pathways 

may be able to modulate the glycolytic machinery. Future studies should seek to determine 

how and when, during the effector phase of the immune response, T cells limit glucose 

uptake to prevent unrestrained glycolysis. Some of these effects may be mediated through 

the adenosine monophosphate activated protein kinase (AMPK). AMPK acts a critical 

sensor of energy charge; when AMP is high in the cell, AMPK can be activated through 

LKB1. AMPK suppresses glycolytic and lypolytic programs, and inhibits mTOR activation 

directly or indirectly through tuberous sclerosis complex (TSC)[20, 21]. Thus, it stands to 

reason that AMPK would be important for suppressing unrestrained glycolysis and thus 

promoting T cell memory. Indeed, using a floxed allele of Ampka1, AMPK has been shown 

to be a critical regulator of T cell memory [22]. Cells deficient in AMPK had a robust 

effector response, but failed to transition to memory. While the mechanism is still unclear, 

these studies suggest that, at some crucial timepoint, glucose uptake and glycolysis must be 

attenuated in order to effectively transition to a long-lived memory phenotype.

Fat: fuel for the slow burn

Lipids represent a bioenergentically rich fuel source for cells; the oxidation of long fatty 

acid chains generates acetyl-CoA for the TCA cycle, resulting in the generation of large 

amounts of ATP[23]. However, in heavily proliferative cells, the utilization of this fuel 

would come at a cost: fats are vital for the generation of cell membranes and second 

messengers. So, the utilization of lipids could serve as an important fuel source during 

periods of long-term T cell quiescence, as needed for naïve and memory cells, but would 

need to be suppressed during T cell expansion[6]. Fatty acids enter cells a number of ways 

to undergo oxidation. This pathway consists of a transporter, Octn2 (Slc22a5), to take up 
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free fatty acids (FFA), coupled to an activation step that couples FFAs to coenzyme A to 

form an acyl-CoA, a carnitine shuttle which translocates the fatty acids into the 

mitochondria through the rate-limiting enzyme carnitine palmitotransferase I (Cpt1a), and 

the breakdown into acetyl-CoA molecules to feed into the TCA cycle inside the 

mitochondria[23].

Previous studies have suggested that memory CD8+ T cells utilize enhanced fatty acid 

oxidation to function[24]. It was assumed that memory cells took up FFA from their 

environment, generating a large amount of ATP to fuel their basal functions during 

quiescent states. However, this had not been proved formally and the source of cellular fatty 

acids remains unclear[25]. Intriguingly, recent work suggests that memory T cells utilize 

cell-intrinsic fatty acids they themselves synthesized from carbohydrate sources[26]. In 

other words, cells utilize glucose to generate fatty acids then feed those fatty acids into the 

beta oxidation cycle to generate ATP. This “futile cycle” seems paradoxical; cells must 

utilize ATP and reducing equivalents in order to generate fatty acids that they will then 

break down for ATP. It has been hypothesized that the futile cycle keeps metabolic 

machinery “primed” during long periods of quiescence, preventing loss of mitochondria. It 

will be important to determine how exactly this futile cycle is initiated, what purpose it 

might serve, and how it might be broken? For instance, other studies have shown that some 

types of CD8+ T cells, especially alloreactive T cells in GVHD, readily take up and oxidize 

exogenous free fatty acids[27]. Thus, a question remains as to whether this futile cycle 

metabolism is important for memory cells specifically or is a more common phenomenon in 

T cell biology. Along these lines, the cellular control and flux of fatty acids has also been 

shown to be important for CD4+ helper T cells, specifically the balance between suppressive 

Treg and IL-17-producing TH17 cells[28]. Acetyl-CoA carboxylase 1 (ACC1), a key 

regulator of fatty acid synthesis, has been shown to both promote TH17 cell generation and 

inhibit Treg cell generation[29]. TH17 cells seem to generate their own fatty acids 

(reminiscent of a futile cycle), while Treg cells take them up from their surrounding 

environment. However, it is unclear from this study whether fatty acids are being oxidized 

for ATP or simply being utilized as biomass. Thus, the importance of these futile cycles for 

fatty acid flux in helper T cells remains to be full understood. Importantly, these findings 

also suggest that other futile cycles may exist for other metabolites.

Choosing from the menu: metabolites dictate T cell fate through nutrient 

sensing

As T cells begin to undergo activation and differentiation, they require metabolically rich 

conditions in order to support their proliferation. Thus, it stands to reason that the ability to 

sense these conditions could provide a crucial survival or differentiation signal. The 

macrolide rapamycin, while a poor antibiotic, was shown in the 1990s to be a potent 

immunosuppressant, whose target protein, mTOR, was revealed to be an evolutionarily 

conserved protein kinase[30, 31]. mTOR was subsequently shown to play a major role in the 

ability of somatic cells to sense nutrients, including glucose, amino acids, energy charge, 

and growth factors, and to use these inputs to make cell fate decisions[32]. In T cells, 

blockade of mTOR with rapamycin, metabolic deprivation, or genetic deletion, results in a 
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tolerogenic state, characterized by T cell anergy[33–35] and regulatory T cell 

differentiation[36–39]. In addition, it is now appreciated that, for CD8+ T cells, mTOR 

activation delivers a signal that promotes effector cell generation and function[9]. 

Alternatively, when mTOR is inhibited with low doses of rapamycin during T cell activation 

in vivo, T cell memory is dramatically improved, both in quality and quantity[9, 40]

Research in recent years has dissected further the role of mTOR signaling in regulating T 

cell differentiation and function[41, 42]. Signaling via mTOR can proceed via two protein 

complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which are 

characterized by distinct scaffolding proteins and downstream substrates[43]. Our group and 

others have demonstrated a selective role for Rheb-mediated mTORC1 activation in 

promoting Th1 and Th17 differentiation and a role for mTORC2 in promoting Th2 

differentiation[44]. Alternatively, the absence of mTOR promotes Treg cell differentiation 

even under conditions that would normally lead to T cell activation[36]. Interestingly, recent 

studies using raptor (a critical scaffolding protein of mTORC1)-deficient T cells suggest a 

role for raptor-mediated mTORC1 activity in controlling all T helper cell differentiation and 

function[17, 45]. Indeed, raptor-deficient T cells demonstrate defects in Th1, Th2, Th17 and 

Treg cell function. The floxed allele of Rptor used in each of these studies results in a more 

profound loss of mTORC1 activity, unlike previous studies utilizing rapamycin or deletion 

of Rheb. This may indicate that distinct functions of mTORC1 exist. Some mTORC1 

activity is necessary for generic cellular functions (translation initiation, escape from 

quiescence, and some metabolic programming), but that heightened mTORC1 is required for 

activating selective differentiation programs. Deconvoluting these two roles for mTORC1 

will be critical to fully understanding how this critical nutrient sensor controls T cell fate.

To this end, a next critical step toward dissecting the role of mTOR in T cell differentiation 

and function is to determine the specific mTORC1 and mTORC2 substrates that promote 

this regulation. One downstream substrate of mTORC2, the serum and glucocorticoid 

regulated kinase (SGK1)[46, 47] has been shown to play a major role in promoting Th2 

differentiation[48]. T cells deficient in SGK1 demonstrate defective Th2 differentiation. 

Furthermore, such cells tend to secrete Th1 cytokines even when skewed under Th2 

conditions. Interestingly, SGK1 has also been implicated in promoting the generation of 

pathogenic Th17 T cell differentiation through its regulation of the IL-23 receptor[49].. 

These studies and another further implicated SGK1 in promoting the ability of T cell to 

respond to salt concentrations.

Other nutrient sensors cross paths with mTOR

Additional work has focused on how biochemical pathways downstream of mTOR sensing 

intersect with programs that regulate metabolism and T cell function[41]. The transcription 

factor Myc is activated in response to TCR stimulation and has a wide variety of cellular 

functions. Myc has been revealed as a critical regulator upstream of glycolysis and 

glutaminolysis[50]. In its absence, T cells fail to engage glycolysis or glutamine metabolism, 

proliferate, or acquire an effector phenotype. Glutaminolysis in T cells is required for the 

synthesis of polyamines, which are important for a wide variety of cellular functions. 

Furthermore, the orphan receptor estrogen-related receptor alpha (ERRα) also appears to be 
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a sensor and transcriptional regulator required for effector T cell transitions[51]. In its 

absence, effector T cells cannot proliferate or modulate their metabolic programming, but 

Treg cells do not require ERRα to function.

Another sensor that has found a new appreciation in T cells is hypoxia-inducible factor 1, or 

HIF1α. As oxygen is essential for oxidative phosphorylation and other cellular functions, it 

is not surprising that a sensor for hypoxia would be important in cellular function. Recently, 

research from several groups have revealed a complex role for HIF1α in T cell 

differentiation and function, both along the Treg/TH17 cell axis as well as in the 

differentiation and migration of CD8+ T cells[52–56]. Interestingly, in spite of its name, 

HIF1a appears to play a critical role in regulating T cell activation and differentiation 

independent of its ability to sense oxygen. Nonetheless, these studies suggest that a T cell’s 

ability to sense an oxygen rich environment may also be critical in making cell fate 

decisions, and that hypoxic environments (such as tumors) may promote the tolerogenic 

differentiation of Treg cells.

Finally, new energy sources have been revealed in T cell biology. While autophagy has been 

previously thought to be a process associated with quality control, cellular aging, or even a 

prelude to cell death, it has become clear recently that autophagy is a vital cellular process 

that is not only required for some cell functions, but also can be a source of fuel[57]. By 

undertaking a genetic approach using T cell-specific deletions of Atg7 or Atg5, key genetic 

regulators of autophagy, two different groups found that, while autophagy is dispensable for 

effector T cell proliferation and function, T cells lacking autophagy could not transition into 

the memory pool and subsequently died by apoptosis[58, 59]. Notably, many forms of 

autophagy are induced upon mTOR inhibition, which has been shown to promote the 

effector-to-memory T cell transition. Future studies will need to address what exactly occurs 

during T cell autophagy, and whether or not autophagy is, indeed, a source of fuel for T cells 

or has some sort of other function in T cell biology.

In summary, metabolism represents critical cellular processes that can have wide-reaching 

effects on T cell biology, not simply a switch thrown to decide the fate of glucose. As our 

appreciation of the role of fuel sources for T cell differentiation and function grows, so too 

must our appreciation of how distinct microenvironments and tissues might modulate 

nutrient availability. Nutrient sensing is comprised of ancient signaling pathways heavily 

conserved from yeast to man. These conserved pathways are emerging as the key 

components of cellular programs which coordinate T cell differentiation and function and 

metabolic needs. Understanding and dissecting the evolution of these pathways will not only 

reveal fundamental insight about T cell biology, but likely identify metabolic targets that 

could be used to modulate the immune response in autoimmunity or cancer.
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HIGHLIGHTS

• T cell can utilize many different sources of fuel

• Enforced metabolism or reliance on one pathway can have deleterious effects on 

T cell function

• Nutrient sensing via mTOR represents a key activation and differentiation signal 

for T cells

• Other nutrient sensors also play critical roles in T cell fate, in collaboration with 

or independent of mTOR
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Figure 1. T cells dramatically shift metabolism when in their effector phase
During T cell expansion, glucose is preferentially fermented into lactic acid, while other 

metabolites are used to generate intermediates required for cellular growth and proliferation 

(left). In periods of quiescence, T cells utilize glucose, amino acids, and fatty acids (intrinsic 

or extrinsic) in order to generate ATP via oxidative phosphorylation (right). While effector 

cells activate oxidative phosphorylation during T cell activation, aerobic glycolysis is 

required for optimal effector cell function and cytokine secretion.
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