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ABSTRACT

Objective: The study aimed to develop simplified diagnostic models for identifying girls with central precocious

puberty (CPP), without the expensive and cumbersome gonadotropin-releasing hormone (GnRH) stimulation

test, which is the gold standard for CPP diagnosis.

Materials and methods: Female patients who had secondary sexual characteristics before 8 years old and had

taken a GnRH analog (GnRHa) stimulation test at a medical center in Guangzhou, China were enrolled. Data

from clinical visiting, laboratory tests, and medical image examinations were collected. We first extracted fea-

tures from unstructured data such as clinical reports and medical images. Then, models based on each single-

source data or multisource data were developed with Extreme Gradient Boosting (XGBoost) classifier to classify

patients as CPP or non-CPP.

Results: The best performance achieved an area under the curve (AUC) of 0.88 and Youden index of 0.64 in the

model based on multisource data. The performance of single-source models based on data from basal labora-

tory tests and the feature importance of each variable showed that the basal hormone test had the highest diag-

nostic value for a CPP diagnosis.

Conclusion: We developed three simplified models that use easily accessed clinical data before the GnRH stim-

ulation test to identify girls who are at high risk of CPP. These models are tailored to the needs of patients in dif-

ferent clinical settings. Machine learning technologies and multisource data fusion can help to make a better di-

agnosis than traditional methods.
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INTRODUCTION

Central precocious puberty (CPP) is a disease caused by premature

activation of the hypothalamic-pituitary-gonadal (HPG) axis with

clinical pubertal symptoms among girls under 8 years old and boys

under 9 years of age. With the continuous improvement of living

standards and the aggravation of environmental pollution, children

are more exposed to endocrine disruptors, causing an increase in the

incidence and prevalence of CPP.1,2 For example, in Korea, the over-

all incidence among girls increased 4.7 times from 89.4 to 415.3 per

100 000 during the period from 2008 to 2014.3 CPP has the poten-

tial to compromise adult height and even cause social psychological

disturbances. Moreover, girls with CPP have an increased risk of

breast or cervical cancer.4 Therefore, early diagnosis and treatment

are essential to girls with improper secondary sexual development.
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Besides CPP, there is another type of precocious puberty (PP)

called peripheral PP or non-CPP, which has similar clinical charac-

teristics such as breast or uterus development with CPP, but without

HPG axis activation. Non-CPP has a low risk of height compromise

and its pubertal symptoms can subside spontaneously. It is difficult

to distinguish between the two diseases, unless using the gold stan-

dard for CPP, that is, the gonadotropin-releasing hormone (GnRH)

or GnRH analog (GnRHa) stimulation test. This is an expensive and

time-consuming test that requires multiple blood samples during the

whole process resulting in much patient suffering. In nontertiary or

community hospitals with limited resources, this cumbersome test is

not available. Hence, depending on access to the GnRH stimulation

test, the diagnosis and treatment of CPP may be delayed. Several

previous studies have tried to determine one adequate blood sam-

pling time to simplify the stimulation test.5–7 The adequate sampling

time identified across studies differed greatly. Other studies targeted

investigating factors such as basal sex hormone levels,8 pelvic ultra-

sound,9–11 or dental maturity12 that may relate to CPP diagnosis.

However, the cutoff values of these factors ranged widely.

Our previous study utilized data from 1757 girls who were diag-

nosed with precocious puberty and had undergone the GnRHa stim-

ulation test before the age of 9 years.13 We built models based on

machine learning algorithms to identify patients with CPP. The

results showed the significance of basal serum luteinizing hormone

(LH), follicle-stimulation hormone (FSH), and insulin-like growth

factor 1 (IGF-1) in differentiating CPP and non-CPP. Using a combi-

nation of basal hormone tests, secondary sexual characteristics, and

data from examination reports, the model achieved a sensitivity of

77.94%, a specificity of 87.66% and an area under the curve (AUC)

of 0.90 based on 436 patients.

Studies from other fields have indicated that multisource data

may perform better than single-source data.14–16 In the multimedia

field, features for one modality (eg, video) can be better learned by

the models if multiple modalities (eg, audio, video, and text) being

learned together.17 In medical image analysis, different views of the

same part can provide comprehensive information to make a deci-

sion. In clinics, patients usually need to take laboratory tests or med-

ical image examinations, in addition to physical examinations.

These similar approaches across fields prompted us to consider fus-

ing patient data from different sources (clinical, laboratory, exami-

nation, etc.) to make a better diagnosis of CPP. Recently, machine

learning and deep learning technologies have been widely used in di-

agnostic models and medical image analysis. They support informa-

tion fusion based on multisource data.

In this article, our first objective was to explore the diagnostic

value of data from different sources for CPP diagnosis. Then, we in-

vestigated whether adding data from other sources would improve

the performance of the prediction models. Finally, models with

good performance were selected to simplify the CPP diagnosis flow

and were tailored to the needs of different clinical settings.

METHODS

Participants
In this study, girls with secondary sexual characteristics onset under

the age of 8 were enrolled from the Pediatric Endocrinology Depart-

ment of Guangzhou Women and Children’s Medical Center. Indi-

viduals with genetic disorders, tumors, lesions, McCune-Albright

syndrome, neurofibromatosis, ovarian cysts, or other diseases and

those taking hormone medications were excluded from this study.

All patients underwent the GnRHa stimulation test. Girls meeting

the following eligibility criteria were diagnosed with CPP: (1) peak

LH concentration � 10 IU/L or peak LH concentration � 5 IU/L

combined with a ratio of peak LH to FSH value � 0.6 and (2) onset

of secondary sexual characteristics under the age of 8 years. Girls

who did not fulfill all the above-mentioned criteria were diagnosed

with GnRH-independent precocious puberty, which was referred as

non-CPP in this study. These diagnostic criteria for CPP assessment

are widely used in China18 and many other countries.19 In the cur-

rent traditional CPP diagnosis pathway (Figure 1 and Supplemen-

tary Material), patients with secondary sexual development before

8 years old first undergo a physical examination, which is recorded

in electronic medical records (EMRs). Then, laboratory testing

(LAB), bone age (BA) X-ray imaging, and pelvic ultrasonography

(US) are suggested. After all these tests and examinations, the

GnRHa stimulation test is used to make a gold standard diagnosis.

In this study, the data obtained using these different approaches

from the same patient were considered as data from different sour-

ces. We had in total of four data sources here: EMR, LAB, BA, and

US.

Ethics
This study was approved by the institutional review board of

Guangzhou Women and Children’s Medical Center and conducted

in accordance with the ethical guidelines of the Declaration of Hel-

sinki of the World Medical Association. The requirement to obtain

informed consent was waived because of the retrospective nature of

the study. The data used in this study were anonymous, and no iden-

tifiable personal data of the patients were available for the analysis.

Statistical analysis
The population characteristics are presented using the mean and

standard deviation (SD) for quantitative data and number (%) for

categorical data. Comparisons between two groups were performed

LAY SUMMARY

• The basal hormone test had the highest diagnostic value for a Central Precocious Puberty (CPP) diagnosis.
• Image features extracted directly from bone age X-ray images perform better in diagnosis than the subjective bone age

value from examination reports.
• Multisource and heterogeneous data fusion could increase model performance in medical diagnosis.
• Three different models with good performance were selected to simplify the CPP diagnosis flow and were tailored to the

needs of different clinical settings.
• Machine learning could assist in CPP diagnosis without cumbersome laboratory tests.
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using chi-square or Fisher’s exact tests. The statistical analysis was

performed using SPSS 22.0.

Data preprocessing
BA X-ray imaging is important in defining the advancement of bone

maturity, which is directly associated with puberty. Here, we

learned from BA value prediction through a deep learning method

based on X-ray images. Features that are used to predict BA value

have the potential to represent skeletal maturity. Thus, high-

dimensional imaging data can be transformed into extracted 117 di-

mensional features using the DeepTW3 model.20 In this study, fea-

tures from the BA source existed in two forms: BA advancement

from examination reports and image features extracted from X-ray

images. Here, we used BA ratio and BA images to represent the fea-

tures from BA reports and BA images, respectively.

For unstructured data such as medical records from the EMR

source and examination reports from the BA and US sources, varia-

bles and their corresponding values were firstly extracted through

regex matching. Then a manual checkout was performed to verify

its effectiveness. Extracted features mainly contain information asso-

ciated with secondary sexual development, such as ovarian volumes

and Tanner stage for breast and pubic hair. We eliminated data with

a missing rate over 60%. The missing rates of remaining data range

from 0.62% to 50.12%. Missing values for continuous variables

were filled with mean values of samples in the corresponding age

group. For discrete variables such as development degree, missing

values were empirically imputed with the least stage.

Model development
To investigate the diagnostic value of each single-source data and to

validate whether multisource, heterogeneous data can improve

model performance in CPP diagnosis, we designed models using

each single-source data and different data combinations. Here, we

used feature-level data fusion, which concatenated features from dif-

ferent sources directly. As tree-based ensemble classifiers in machine

learning are easy to interpret, we used Extreme Gradient Boosting

(XGBoost) classifier21 as the basic classifier to develop CPP diagnos-

tic models. XGBoost is a tree boosting and effective algorithm. It

works by first minimizing errors of existing decision tree models and

then training a sequence of models.

To evaluate the performance of all the models in the same test

set, we randomly selected 20% of the patients who had data from

all four sources as the independent test set, and the remaining

patients were used as the training set to train different models. In the

training stage, an inner k-fold crossvalidation (k¼10) was used for

parameter tuning and model construction. In detail, the training set

was randomly partitioned into 10 subsets of equal size, nine for

training and the other one for validation. Grid search was used to

tune the model hyperparameters. Sensitivity, specificity, AUC, and

Youden index were used to assess model performance on the test

set. Youden index is an index defined as the overall correct classifi-

cation rate at the optimal cutoff point minus one, [sensitivity þ spe-

cificity � 1]. The sensitivity and specificity computed here were

rates with the optimal cutoff point based on the receiver operating

characteristics (ROC) curve. Comparisons between models with the

same AUC and Youden index were considered. The overall flow

chart of the model development is shown in Figure 2. It included

three main procedures: data preprocessing, data fusion, and model

construction.

In the gradient boosting model XGBoost, feature importance is

given by the selection frequency as a tree node. In the 10-fold cross-

validation, each feature had feature importance each time, and the

final feature importance for each one was computed as an average

of all the values. In the model trained with the comprehensive data,

feature importance for each variable was analyzed. All modeling

analyses were performed in Python 3.5 using packages such as

Scikit-learn, Pandas and Numpy.

RESULTS

Characteristics
From a total of 2523 patients who had undergone the GnRHa stim-

ulation test, 1153 patients were diagnosed with CPP and 1370 with

non-CPP. The numbers of patients in each group based on data

source were 2523 (LAB), 1655 (EMR), 1612 (BA), and 2007 (US).

Among them, 900 patients had all the data from the four heteroge-

neous data sources. The characteristics of patients grouped by data

sources are presented in Table 1.

The mean ages of the CPP and non-CPP girls were 7.05 6 1.13

years and 7.47 6 1.09 years, respectively, which were significantly

different (P< .001). With the exception of prolactin, the concentra-

tions of the other laboratory variables, such as basal LH, FSH, and

IGF-1, were significantly higher in the CPP group than those in the

non-CPP group (P< .001). The girls diagnosed with CPP had higher

Patients who visit the Pediatric 
Endocrinology Department

Physical examination
(EMR)

X-ray 
of left hand 
(BA)

Laboratory test for 
sexual hormones

(LAB)

Pelvic 
ultrasonography

(US)

Precocious 
puberty

GnRH(a) 
stimulation test

CPP non-CPP

Basal 1 2 43

Multiple blood samplings

Stimulated hormone test

30 min 30 min 30 min 30 min

Injection of GnRH(a)

Figure 1. Current overall diagnosis flow for CPP. Different colors represent

different data sources. EMR: electronic medical record. LAB: laboratory. US:

ultrasound. BA: bone age.
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height, weight, and BMI and more advanced breast development

than those with non-CPP. Both BA value and age ratio (bone age ad-

vancement degree, the ratio of bone age to chronological age) were

significantly more advanced in the CPP group (P< .001). All the

variables extracted from the pelvic ultrasonography report showed

that the ovary and uterine development of CPP girls were more ad-

vanced than those of non-CPP girls.

Model performance
We developed a total of 23 models with different data source combi-

nations and validated all the models on the same independent test

set consisting of 180 patients with comprehensive data. Sensitivity,

specificity, AUC, and Youden index were computed for each model.

The performance of five models based on single-source data and

three models based on multiple data sources are presented in Table 2.

The performances of all the models are shown in Figure 3. Detailed

information about all the performances and relative comparisons

are listed in Supplementary Table S2 (see Supplementary Material).

Among the models using single-source data, the model based on

LAB data achieved the best performance with an AUC of 0.85 and

Youden index of 0.61 on the test data set. The model trained merely

by BA data (BA ratio or BA image) achieved high sensitivity but low

specificity. Performance increased for most of the models when LAB

data were added. The model using data from the LAB and EMR

sources achieved an AUC of 0.86 and Youden index of 0.65. Models

based on data combinations without LAB showed worse perfor-

mance than the models based on only LAB data or data combina-

tions including LAB. As expected, among all the models, the model

trained with all four data sources performed best, with an AUC of

0.88 and Youden index of 0.64.

Learning curves
Since the sample size in each single-source model’s training set

ranged from 720 to 2343, to investigate whether the performance

would be affected by sample size, we plotted learning curves for

each single-source dataset (Figure 4). The horizontal axis represents

the sample size, and the vertical axis represents the model perfor-

mance that varied with the sample size. The black dots represent the

performance achieved at the maximum size of the training set with

comprehensive data (n¼720). From the learning curves, as the sam-

2012.1 — 2019.10
Female patients who visited the 

pediatric endocrinology department 
with secondary sexual characteristics 

under 8 years old

Patients that had taken  
GnRHa stimulation test 

(n=2523)

Individuals excluded
- Genetic disorders, tumors, lesions or other 
diseases.
- McCune-Albright syndrome, 
neurofibromatosis, ovarian cysts. 
- Hormone medication.

Electronic medical 
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(n=1655)

Laboratory test
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(n=2523)

Bone age 
x-ray report
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(n=1612)

Pelvic 
ultrasonography 

report US 
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 Advanced 
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Age, duration, 
height, weight, 

BMI, breast stage, 
core, vulva, pubes, 
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XGBoost classifier with
 10-fold 
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LH, FSH, E2, 
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IGFBP-3, PRL, 
TTE
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Regex matching
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Patients with data from all sources 
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117-d 
extracted 
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Figure 2. Flow chart for CPP diagnostic model development. Different colors represent different data sources.
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ple size in the training set became larger and extended to its maxi-

mum size, higher AUC and Youden index values were obtained. It is

also clear that the sample size for the multisource models (n¼720)

is large enough to achieve a pretty good performance, although not

the best performance.

Feature importance
To assess each variable’s contribution to the model that achieved the

best performance based on multi-source data (LABþEMRþBA

imageþUS), feature importance was computed for all 138 variables.

The importance of the top 20 variables is plotted in Figure 5. Basal

LH contributed the most to the prediction, followed by uterus vol-

ume and height. Age, weight, basal FSH, and IGF-1 from the EMR

and LAB sources also had relatively high importance. In addition to

the above variables, the variables with the prefix “Img-” shown in

Figure 5 were features extracted from BA images, which represented

the maturity of the epiphysis.

DISCUSSION

In this study, we built models based on different data source combi-

nations to determine appropriate strategies for CPP diagnosis. The

best performance was achieved with the model based on comprehen-

sive data of four sources including LAB, EMR, BA image, and US,

with an AUC of 0.88 and Youden index of 0.64. A significant

strength of our study is the utilization of all the heterogeneous infor-

mation before the stimulation test, including data from medical

reports and images, to construct the models. Our findings indicated

that models using machine learning and deep learning algorithms

for CPP diagnosis reveal a trend that may be able to replace the

Table 1. Characteristics of patients enrolled in this study

Characteristics Non-CPP CPP P-value

Laboratory parameters (n¼ 2523) 1370 1153

LH (IU/L) 0.11 (0.17) 0.78 (1.12) <.001

FSH (IU/L) 1.83 (1.23) 2.94 (1.64) <.001

GH (ng/mL) 3.18 (2.96) 4.13 (4.01) <.001

IGF-1 (ng/mL) 232.25 (65.73) 295.19 (90.74) <.001

IGFBP-3 (lg/mL) 4.69 (0.69) 4.85 (0.64) <.001

E2 (pmol/L) 106.03 (59.17) 120.79 (56.03) <.001

PRL (ng/mL) 9.42 (7.05) 8.765 (5.02) .007

TTE (nmol/L) 0.80 (0.38) 0.90 (0.47) <.001

Clinical parameters (n¼ 1655) 881 794

Age (years) 7.05 (1.13) 7.47 (1.09) <.001

Duration (months) 8.15 (10.86) 9.95 (10.44) <.001

Height (cm) 126.11 (8.60) 129.95 (8.83) <.001

Weight (kg) 26.04 (5.35) 28.33 (5.38) <.001

BMI (kg/m2) 16.22 (2.01) 16.66 (1.96) <.001

Breast, tanner stage <.001

1 72 (60.50) 47 (39.50)

2 418 (67.97) 197 (32.03)

3 347 (46.33) 402 (53.67)

4 43 (23.12) 143 (76.88)

5 1 (16.67) 5 (83.33)

Core .027

Yes 724 (51.42) 684 (48.58)

No 157 (58.80) 110 (41.20)

Vulva, tanner stage .009

1 833 (53.57) 722 (46.43)

2 44 (41.90) 61 (58.10)

3 4 (26.67) 11 (73.33)

Pubes, tanner stage .002

1 837 (51.99) 773 (48.01)

2 43 (71.67) 17 (28.33)

3 1 (20.00) 4 (80.00)

Pigmentation .137

Yes 57 (60.00) 38 (40.00)

No 824 (52.15) 756 (47.85)

Bone age information (n¼ 1612) 897 715

BA value (years) 8.70 (1.61) 9.72 (1.49) <.001

Age ratio 1.25 (0.20) 1.32 (0.29) <.001

Pelvic ultrasonography (n¼ 2007) 1048 923

Left ovarian volume (mL) 2.04 (1.34) 2.46 (1.56) <.001

Right ovarian volume (mL) 1.94 (1.32) 2.26 (1.17) <.001

Uterine volume (mL) 1.57 (1.33) 2.69 (1.90) <.001

LH: luteinizing hormone; IGF-1: insulin-like growth factor-1; FSH: follicle-stimulation hormone; PRL: prolactin; GH: growth hormone; E2: estradiol; BMI:

body mass index; TTE: testosterone; BA: bone age.
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GnRH stimulation test and identify girls with CPP in a timely

manner.

Generally, multisource data fusion in the medical field aims at

the fusion of single modal data such as the combination of labora-

tory results and demographic characteristics. Nowadays, medical

image examination usually becomes a routine auxiliary procedure

for diagnosis. Features extracted from images by deep learning

technologies may contain more information than examination

reports written by radiologists. However, one challenge for multi-

source and heterogeneous data fusion in clinics is how to effec-

tively utilize different data types from different data sources.

Here, we tried to fuse multisource and heterogeneous data on the

feature level. The data we used were produced during a whole di-

agnostic process and were supposed to contain more information

than any single-source data. The success was demonstrated by

comparisons between single-source and multisource models. Stud-

ies in other fields have also indicated that multimodal information

can provide complementary information to improve model perfor-

mance.14,22

From the importance ranking of the top 20 features, basal LH

presented high diagnostic value, followed by uterine volume. Satha-

sivam et al23 compared the ovarian and uterine volumes from pelvic

ultrasonography with the basal and stimulated LH to assess girls

with suspected precocious puberty. The study found that basal LH

and stimulated LH significantly correlated with ovarian and uterine

volumes. Our study indicated that pelvic ultrasonography alone can-

not differentiate girls with CPP from non-CPP well (sensitivity of

66.23%). But once combining with the LAB data, the model showed

a greatly improved Youden index from 0.42 to 0.63.

Compared to our previous study which obtained an AUC of

0.90, the models in this study only yielded an AUC as high as 0.88.

However, the AUC in the previous study was an average value of

10-fold crossvalidation using data of 436 patients, while the perfor-

mance in this study was tested on an independent test set of 180

patients. Here, we also trained the best XGBoost model on the

whole set of 900 patients through 10-fold crossvalidation, and got

an average AUC of 0.93. This indicates that multisource data fusion

does help to improve CPP diagnosis.

Figure 3. AUC and Youden index ranking among 23 models. The left panel represents the AUC of the models based on different data source combinations, and

the right panel represents the Youden index. LAB: laboratory; EMR: electronic medical records; BA: bone age; US: ultrasonography.

Table 2. Model performance of models using different data source combinations

Data sources Sensitivity Specificity AUC Youden index

LAB EMR BA US

BA ratio BA image

� 76.62 84.62 0.85 0.61

� 53.25 79.81 0.72 0.33

� 81.82 38.46 0.62 0.20

� 88.31 47.12 0.71 0.35

� 66.23 75.96 0.76 0.42

� � � 67.53 82.69 0.80 0.50

� � 81.82 82.69 0.86 0.65

� � � � 85.71 77.88 0.88 0.64

The first five lines show performance of models with single-source data. The last three lines show performance of selected models.

LAB: laboratory; EMR: electronic medical records; BA: bone age; US: ultrasonography.
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The application of image analysis based on deep learning techni-

ques and machine learning algorithms is innovative in CPP diagnosis

and eliminates the subjectivity of BA value assessment. BA X-ray

images have recently been used in BA value assessment with deep learn-

ing models.24,25 In this study, we extracted features from BA images us-

ing a deep learning model. These features represented skeletal maturity.

Of the top 20 most important features, 60% are the features with the

prefix “Img-,” that is, those image features that are unexplainable and

not previously discovered. This reveals that artificial intelligence may

explore important features that human beings may leave out.

Among the models developed in this study, we selected three

simplified models tailored for patients in different hospitals (see Sup-

plementary Figure S1). Thus, endocrinologists can focus on appro-

priate variables with high diagnostic value, especially for resource-

limited settings, to get a fast and accurate decision. For example, in

a tertiary children’s hospital or general hospital with equipments to

perform sexual hormone tests, a model constructed by data from all

four sources can achieve good performance (Supplementary Figure

S1(B)). Before performing the examinations, focusing on informa-

tion related to secondary sexual development and basal serum hor-

mone test can also contribute to making a preliminary decision

(Supplementary Figure S1(A)). In nontertiary hospitals with the sex-

ual hormone test unavailable, using a model built by data from the

EMR, BA image, and US sources will provide a preliminary result to

screen CPP (Supplementary Figure S1(C)). Instead of considering the

overall factors and the GnRH stimulation test, focusing on the opti-

mal feature set with fewer factors without a stimulation test is effi-

cient and convenient for physicians and patients.

A

B

Figure 4. Learning curves for models based on different single-source data. The black dot represents the performance at the maximum size (n¼720) of the train-

ing set with comprehensive data. The horizontal axis represents the sample size, and the vertical axis represents the model performance that varied with the sam-

ple size. LAB: laboratory; EMR: electronic medical records; BA: bone age; US: ultrasonography.
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To use as much training data as possible to improve the model

performance, we considered the relationship between sample size

and model performance. This analysis suggested that with more

training data, the performance of each data source improved. The

collection of more patients with comprehensive data from multiple

data sources will result in a more precise diagnosis for girls with sus-

pected CPP. Although the three models did not reach 100% sensitiv-

ity or specificity as the stimulation test did, we envision it as a guide

or supplementary tool in CPP screening.

Our study has several limitations. First, as we considered utilizing

multisource data to build models, the eligible sample size decreased,

which is inevitable in retrospective studies. From the learning curves

based on data size, a larger sample size will make single-source data

work better, and the same is true with the multisource data. Second,

there may exist a time interval between the earlier data collection and

the data collection from the GnRHa stimulation test. Sometimes, the

interval between a BA examination and the stimulation test could be a

few months. A patient with BA value assessed a few months ago may

have had an accelerated bone growth by the time she has a positive re-

sponse in the stimulation test. These changes may have had more or

less influence on model performance. It would be better to have a

patient’s comprehensive set of data at the same time, or at least with

the shorter time interval possible. Third, all the results were achieved

on the independent data set comprised of 180 patients with data from

all the four sources. This provides evidence for model generalizability;

however, further the evaluation between facilities at separate locations

or a prospective study would provide stronger support of model gen-

eralization.

CONCLUSION

In conclusion, we developed machine learning models using easily

accessed clinical data without the inconvenient stimulation test to

identify girls who are at high risk for CPP among patients with pre-

cocious puberty. Three simplified diagnostic methods are tailored to

the needs of patients in different clinical settings. The diagnostic

value of basal laboratory parameters is of high significance in CPP

diagnosis. The models with multisource and heterogeneous data per-

formed better than the models with single-source data.
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