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Abstract
The study of infectious diseases holds significant scientific and societal importance, yet current research on the mechanisms of disease 
emergence and prediction methods still face challenging issues. This research uses the landscape and flux theoretical framework to 
reveal the non-equilibrium dynamics of adaptive infectious diseases and uncover its underlying physical mechanism. This allows the 
quantification of dynamics, characterizing the system with two basins of attraction determined by gradient and rotational flux forces. 
Quantification of entropy production rates provides insights into the system deviating from equilibrium and associated dissipative 
costs. The study identifies early warning indicators for the critical transition, emphasizing the advantage of observing time 
irreversibility from time series over theoretical entropy production and flux. The presence of rotational flux leads to an irreversible 
pathway between disease states. Through global sensitivity analysis, we identified the key factors influencing infectious diseases. In 
summary, this research offers valuable insights into infectious disease dynamics and presents a practical approach for predicting the 
onset of critical transition, addressing existing research gaps.
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Significance Statement

Understanding the mechanism of infectious diseases is crucial for human health, yet challenging. We revealed the underlying phys-
ical mechanism of adaptive infectious diseases using landscape and flux theory, providing a dynamical and thermodynamic origin for 
epidemic emergence. We proposed a predictive method based on average flux, entropy production rate and time irreversibility. Our 
study also demonstrated that early warning signals from time irreversibility often precede the conventional critical slowing down and 
flickering frequency, and can be extracted directly from the observable time series analysis, providing practical predictions. We fur-
ther revealed key elements influencing adaptive infectious diseases from global sensitive analyses of barrier height, crucial for the 
understanding and control of diseases transmission.
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Introduction
In recent years, there is a pressing need for in-depth research on 
the outbreak of infectious diseases and their transmission mech-

anisms within human communities, which has become a crucial 

topic in the scientific community (1–5). People have carried out 

significant studies on virus transmission and developed mathem-

atical models of virus transmission (6–8). Based on the complex 

network theory, several a few virus propagation models in net-

works have been proposed (9–12). Mathematical models have 

played an important role in understanding the virus propagation 

and its impact on disease control (13). These models simulate the 

interconnectedness of individuals within a network structure, 
helping to reveal how diseases rapidly propagate in populations 

(14–17). Utilizing complex network theory, a powerful tool for 

simulating various behaviors as computer viruses and human in-

fectious diseases (16, 18, 19), nodes in the network represent indi-

viduals or systems, while edges denote the connections between 

them. Studying the network’s topology, patterns of node connec-

tions, and the mechanisms of information propagation provides 

insights into the dynamic spread of viruses or diseases within 

the network (20, 21). These approaches not only enable the simu-

lation of the paths and speed of disease transmission but also 
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facilitate the assessment of the effectiveness of different preven-
tion and control strategies within the network. Through simula-
tions on complex networks, one can comprehensively 
understand and predict patterns of disease spread, offering es-
sential scientific foundations for devising effective countermeas-
ures (22–25).

In the study of infectious disease, it is imperative to review the de-
velopmental history of infectious disease models, which have played 
a pivotal role in our understanding of the dynamics of disease trans-
mission. Tracing back to 1,766, the first treatise exploring the dy-
namic models of epidemics was authored in the pursuit of 
understanding the spread of smallpox (26). By the early 20th century, 
mathematical models addressing the dynamic transmission of mal-
aria were introduced (27). Subsequently, classical models as the 
Susceptible-Infectious-Recovered model proposed by Kermack and 
McKendrick (28) and complex network models emerged (20, 29). In 
recent decades, various epidemic models have been developed 
based on the Kermack-McKendrick model, including Susceptible- 
Infectious-Susceptible models, Susceptible-Infectious-Recovered 
model (30), and Susceptible-Exposed-Infectious-Recovered models 
with or without time delays (31, 32).

In the field of mathematical modeling of infectious diseases, 
there are generally several approaches: statistical models, deter-
ministic models (33, 34), stochastic models (35, 36), and network 
models (9, 37, 38), among others. Statistical models are commonly 
employed in epidemiological and public health research, but they 
require a large amount of data samples (39). Deterministic mod-
els, on the other hand, utilize forms such as differential equations 
and difference equations. They assume that the sizes of suscep-
tible and infected populations are continuous functions of time, 
describing the dynamic relationship between the rates of change 
and population size. Compared to statistical models, these models 
are less dependent on data and are suitable for prediction (40). 
People can directly benefit from the theory of dynamical systems 
and well-developed, readily available numerical methods. 
However, a disadvantage is that the structural constraints of these 
models often prevent them from accurately reflecting the infectiv-
ity profiles present in real-life scenarios (41). Stochastic models re-
gard disease transmission as a random process and are typically 
applicable for managing small-scale populations, such as small 
communities or individual hospitals, or scenarios where infected 
individuals are highly active with numerous contacts (42, 43). 
However, due to the lack of mathematical tools, the mathematical 
analysis of stochastic models is more challenging, and model ana-
lysis relies mainly on extensive observations through numerical 
simulations. Network models can capture the complexity of hu-
man contact interactions, but they are typically static and may 
not accurately predict the dynamics of disease in dynamic net-
works (44). Deterministic epidemic models are mathematical 
models that describe the spread of epidemics through differential 
equations. Among them, the compartmental approach is a com-
monly used modeling technique, which divides the population 
into different compartments (or groups or states) and describes 
the transitions between them. These compartments represent 
different health or infection states in the population, such as 
susceptible individuals, infected individuals, and recovered individ-
uals. Common compartmental models include the Susceptible- 
Infected-Susceptible (SIS) model, Susceptible-Infected-Recovered 
(SIR) model, Susceptible-Infected-Recovered-Susceptible (SIRS) 
model, etc. These models can be adjusted and expanded based 
on specific epidemiological characteristics and transmission 
mechanisms to better adapt to different epidemic situations and 
research needs. The SIS, SIR, and subsequent SIRS models 

categorize the host population into different infection classes. 
These classes interact with each other, and the actual spread of 
the virus in the population is carried out not linearly forward but 
with feedback, and this forms a network-like structure, also 
known as a transition diagram (39).

Compartmental models provide a theoretical framework for 
studying the spread of viruses or diseases, significantly enhancing 
our understanding of dynamic disease transmission in popula-
tions. These models serve as pivotal starting points in the field 
of infectious disease modeling, laying the foundation for subse-
quent research (30–32, 45, 46). In the SIS disease transmission 
model, individuals can only exist in two states: susceptible (S) 
and infected (I). A susceptible individual can become infected by 
an infected individual, recover from the infection, and return to 
the susceptible state, making them susceptible to reinfection. 
The SIR model introduces an additional state: recovered (R). 
Susceptible individuals can be infected by infected individuals, 
switching to the infected state. However, infected individuals 
can recover from the infection and become immune individuals, 
no longer susceptible to reinfection. The SIRS model builds upon 
the SIR model by incorporating the possibility of recovered 
individuals losing their immunity and becoming susceptible 
again. These renowned models have significantly aided in under-
standing disease transmission by depicting the transitions be-
tween susceptible, infected, and recovered individuals and their 
interactions. Despite their simplicity, they have demonstrated 
the capability to forecast outbreaks of childhood diseases (47).

While the classification and interactions among these model 
individuals reveal the complex dynamics of disease transmission, 
they often do not take into account the self-isolation of the host 
itself, and the self-protective behavior of the individual can sig-
nificantly reduce the spread of disease, for example, in past 
Ebola Virus Disease (EVD) epidemics, behavior change has been 
the primary method to bring epidemics under control (48), in areas 
where Acquired Immune Deficiency Syndrome (AIDS) is endemic, 
the demand for condoms rises (49). Measles outbreaks are linked 
to the demand for rubella vaccines (50), the impact of individual 
precautions on epidemic transmission (51). When dealing with 
the constantly changing relational dynamics within real net-
works, this point becomes particularly evident. The local dynam-
ics of the nodes within the network play a crucial role in 
influencing the changes in the network topology (52, 53). The com-
plex interplay between the topology of adaptive networks and dy-
namical nodes may generate intricate global behaviors under 
simple local rules, a behavior already evident in various fields 
such as biology, genomics, and game theory (54). Recent research 
has made significant strides in investigating how people influence 
the spread of infectious diseases by studying link disruptions and 
rewiring (45). The incorporation of adaptive rewiring into network 
models has been demonstrated to facilitate the development of 
epidemiological models that accurately capture real-world scen-
arios, such as the coexistence of endemic and disease-free 
bistable states (46). Consequently, this augments our comprehen-
sion of the role of network rewiring in epidemic simulations, 
thereby furnishing valuable insights to inform more efficacious 
prevention and control strategies, for instance, in practice, indi-
viduals should take corresponding measures (55) to avoid contact 
with infected individuals to curb the occurrence of epidemics.

Despite significant advancements in infectious disease model-
ing (45, 46, 56), there are still challenges in theoretical predictions 
and the understanding of the physical mechanisms underlying in-
fectious diseases. In recent years, emerging landscape and flux 
theory has been considered a promising approach to overcome 

2 | PNAS Nexus, 2024, Vol. 3, No. 7



these challenges. Traditional infectious disease modeling primar-
ily focuses on individual-level elements such as infection rates 
and immune status (13, 57). In contrast, landscape and flux theory 
places greater emphasis on the global perspective and underlying 
physical mechanisms (58–60). This shift towards a more global 
perspective is seen as a potential solution to the limitations faced 
by traditional models. The landscape and flux theory offers a hol-
istic approach that considers the global dynamics of infectious 
diseases by incorporating insights from both the landscape and 
the fundamental physical processes at the lower levels. This para-
digm shift holds the promise of providing a more comprehensive 
understanding of infectious disease dynamics and improving 
the accuracy of theoretical predictions.

In this study, we will reveal the dynamics and thermodynamic 
origins of saddle-node bifurcations (phase transitions) in infec-
tious diseases based on an adaptive infectious disease network 
(46) from the perspective of non-equilibrium landscapes and 
flux theory (58, 59). We plan to reveal the role of potential land-
scapes as a global Lyapunov function, aiming for a more accurate 
quantification of the overall stability of the network system. 
Specifically, our focus will be on the dynamics and thermodynam-
ic characteristics of infectious disease systems undergoing 
saddle-node bifurcations between endemic and disease-free 
states. We will employ the analysis of average flux, entropy pro-
duction rate, and time irreversibility quantified by the differences 
in the cross-correlations of system states in the forward and back-
ward time to effectively characterize and predict the occurrence 
and disappearance of endemic and disease-free states. This as-
pect has been relatively neglected in previous studies of adaptive 
network epidemiology (45, 46).

Additionally, we use the concept of flickering frequency (61) in-
troduced before as an additional dynamic feature to enhance the 
comprehensive prediction of saddle-node bifurcations. Studies 
have indicated that flickering frequency may undergo changes 
as the system approaches to a critical point, potentially serving 
as an early indicator. By observing changes in flickering fre-
quency, we can further anticipate critical transitions that the sys-
tem might undergo, providing more ample time for preventive 
measures. Meanwhile, we will explore critical slowing down and 
time irreversibility, both serving as effective predictive indicators. 
They can together cooperate with flickering frequency offer a 
more comprehensive and reliable predictive framework. By inte-
grating these dynamic and thermodynamic features, our aim is 
to provide a deeper insight into the dynamic mechanisms under-
lying the emergence of infectious diseases, enhancing the under-
standing of the dynamics of infectious disease transmission. 
Furthermore, this research contributes more comprehensively 
to the fields of study and applications related to public health 
and epidemiology.

Adaptive network SIRS infectious disease 
model
The network models of epidemics aim to simulate the spread of 
diseases in the real world, and their development relies on ad-
vancements in mathematics and physics (56). Moreover, because 
these models can be tested based on real data, they provide cru-
cial feedback on physical principles. For a more realistic epidemic 
model, it is imperative to consider how individuals and popula-
tions adjust their behavior as they acquire more information. 
For example, during the COVID-19 pandemic, with the rapid dis-
semination of disease threat information through media, govern-
ment policies, and interpersonal interactions, people have taken 

measures such as reducing contact with infected individuals or 
getting vaccinated to mitigate the risk of infection (55).

Recent studies have been focused on the interplay between dy-
namic social networks and the spread of infectious diseases. The 
adaptive network model considers the dynamic adjustment of 
network structure during disease transmission (45). Attention 
has turned to how interpersonal interactions influence the re-
structuring of connections within the populations. This network 
restructuring is seen as a socially driven response to disease 
spread, which in turn influences disease dynamics. Such model-
ing has led to the emergence of new dynamic instabilities and 
multiple attractor states. Gross et al. studied the SIS model with 
adaptive networks (45), where rewiring potentially leads to sus-
tained transmission and a disease-free bistable state. Leah 
B. Shaw and Ira B. Schwartz generalized the SIS model of adaptive 
networks to the SIRS model of adaptive networks (46).

The mean-field methodology to describe the SIRS adaptive in-
fectious disease network nodes and links in terms of probabilities, 
leads a set of mutually coupled ordinary differential equations 
(46). As shown in Fig. 1A, consider the spread of an infectious dis-
ease along a network with N nodes, K links, and connections 
among the nodes that do not allow multilinking or self- 
connecting. The nodes evolve according to the SIRS pattern, as 
shown in Fig. 1B. Considering that real-world network topologies 
can dynamically adjust according to the dynamic state of nodes, 
for example, humans tend to avoid being infected by avoiding 
contact with infected people. The links in this adaptive model dy-
namically rewire according to the infection status of the nodes to 
adapt to the spread of infection, and this rewiring can have a 
strong impact on the dynamics of the disease, thus tending to sup-
press the outbreak (56). Specifically, as illustrated in Fig. 1C, when 
there is contact between non-infected and infected individuals in 
the network, social pressure (to avoid infection) drives the 
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Fig. 1. A) Schematic diagram of simulated infectious disease 
transmission. There are three types of nodes in the whole network, which 
represent susceptible persons(S), infected persons(I), and recovered 
persons(R). B) Epidemic dynamics under the SIRS model. Susceptible 
individual S can be infected by infected individual I at rate p to become 
infected individual I, infected individual I can recover as immune 
recovered individual R at rate r, and recovered individual R may also lose 
immunity and re-become susceptible individual S at rate q. C) Adaptive 
network dynamics. During disease transmission, when a non-infected 
individual(S or R) comes into contact with an infected individual (SI link or 
RI link), the non-infected individuals S and R perform adaptive 
disconnection and rewiring (rewiring to the non-infected node S or R) at 
the rate w. (D) Three point term. Three-point links affect the evolution of 
links in the network.
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dynamic rewiring of connections between nodes. This rewiring re-
sults from individuals adjusting their contact patterns to prevent 
the spread of disease. Therefore, the network, by changing the 
connection pattern, rewires nodes originally linked to infected in-
dividuals to other susceptible nodes, thus slows down the spread 
of infection. This process leads to a continuous evolution of the 
network structure, significantly influencing the mechanism of 
epidemic transmission. In addition, the model also takes into ac-
count the influence of three-point links in the network on the link 
evolution shown in Fig. 1D.

In this model, the dynamic state and topological structure of 
the network can both be described using mean-field quantities. 
In this network, only the probabilities of each node’s state and 
the probabilities of all links are considered without taking into 
account the evolution of all nodes. The probability of each 
node being in a certain state in the network is influenced by 
the spreading dynamics of SIRS (Fig. 1B) and the rewiring dynam-
ics (Fig. 1C). Specifically, in this SIRS propagation model, nodes 
can be in states of susceptible people (S), infected people (I), or 
recovered people (R), and any links or nodes that can affect the 
node’s state or the network’s connectivity during propagation 
or transmission can influence the node’s current state. The tem-
poral evolution of node states follows Eqs. 1–3, and the temporal 
evolution of links complies with Eqs. 4–Eqs. 9. Here, Pi represents 
the probability of a node being in state i, and Pij represents the 
probability that a randomly selected link will connect states i 
and j. On the one hand, to account for the mutual influence be-
tween nodes and links, and on the other hand, for the sake of 
closure in the system, the model employs a moment closure ap-
proximation method for treating three-node motifs Pikj 

(Pikj ≈ PikPkj/Pk) (19, 62). Specifically, the probability of a three- 
node motif Pikj is approximated as the product of the probability 
of ik links Pik and the probability that a given node k has kj links 
Pkj/Pk, where i, j, and k can be susceptible (S), recovered (R), or in-
fected (I). In Table 1, we give a specific explanation of each vari-
able in the mean-field equation. Table 2 provides explanations 
and specific values for other parameters in the equations which 
are sourced from research paper (46).

One can combine the SIRS spreading dynamics with the rewir-
ing dynamics to get the mean-field equations and provide a 

specific explanation for each term in the equations. Specifically 
speaking, the dynamics and topology of the adaptive network 
can be quantified using mean-field measures, such as the density 
of S-type nodes or the occurrence probability of SI links within 
the network, which are described in terms of probabilities. In 
an SIRS network, nodes are classified into three types: suscep-
tible (S), infectious (I), and recovered (R), while links can be cate-
gorized into different types: SS, SI, SR, II, IR, and RR. As the 
epidemic progresses, these various types of nodes and links 
undergo evolution within the network, which is governed by a 
set of differential equations. The density or probability of any 
particular node or link within the network changes dynamically 
due to the SIRS propagation mechanism and rewiring dynamics.

In the evolution equation for node S, on average, its density or 
probability in the network is only influenced by nodes in the R 
state and SI links. This is because the recovery node R reverts to 
susceptible node S at a rate of q, leading to an increase in the prob-
ability or density of susceptibility. Meanwhile, the impact of SI 
links on node S is that susceptible node S gets infected along SI 
links at a rate of p, transforming into infectious node I, thereby re-
ducing the probability of susceptibility for node S.

In the evolution equation for node I, on average, only SI-type 
links and nodes of type I will affect the evolution of node I. This is 
because susceptible node S gets infected along SI links at a rate p, 
leading to the emergence of infectious node I and an increased prob-
ability of infection. Meanwhile, infectious node I recovers at a recov-
ery rate r to become node R, reducing the probability of infection.

The evolution equation for node R indicates that, on average, 
only the transitions from infectious node I and the state change 
of node R itself affect the evolution of node R. This is because in-
fectious node I switches to recovery node R at a rate of r, increas-
ing the probability of recovery. Meanwhile, recovery node R itself 
switches to susceptible node S at a rate of q, decreasing the prob-
ability of being in the recovery state.

Here one can get the evolution equation for links in this model. 
It is important to note that because mean-field quantities are used 
to establish the differential equations and the study focuses on 
the states of nodes and links, one must consider the interaction 
between these nodes and links. Otherwise, the system would 
not be closed. This interaction between nodes and links is re-
flected in all three terms in the network (see Fig. 1D).

For the evolution equation of SS-type links (Eq. 4), on average, 
only the evolution of SR and SI-type links, as well as the three- 
point motif SSI, affect the evolution of SS-type links. This is be-
cause recovered nodes R in SR links switch to susceptible nodes 
S at a rate of q, thereby increasing the probability of SS links. 
When susceptible nodes S form SI links with infected nodes, in or-
der to avoid infection, S nodes disconnect from I nodes and rewire 
to S nodes at a rate of w (as illustrated in Fig. 1C(1), where PS

PS+PR 
rep-

resents the proportion of susceptible nodes among non-infected 

Table 2. The parameters and values.

Symbol Interpretation Value

q The resusceptibility rate 6.4 × 10−3

K Number of links 1 × 105

N Number of nodes 1 × 104

r The recovery rate for an infected node 2 × 10−3

w rewiring rate 4 × 10−2

p The infection rate

Table 1. The variables in the mean-field equation.

Symbol Interpretation

PS The probability of a node to be in state susceptible
PI The probability of a node to be in state infected
PR The probability of a node to be in state recovered
PII The probability that a randomly selected link connects a node in state infected to a node in state infected
PIS The probability that a randomly selected link connects a node in state infected to a node in state susceptible
PIR The probability that a randomly selected link connects a node in state infected to a node in state recovered
PSS The probability that a randomly selected link connects a node in state susceptible to a node in state susceptible
PSR The probability that a randomly selected link connects a node in state susceptible to a node in state recovered
PRR The probability that a randomly selected link connects a node in state recovered to a node in state recovered
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nodes), thus increasing the probability of SS links. Additionally, 
considering the interactions between links and nodes, where 
K/N represents the average number of links around each node 
(average degree). As shown in Fig. 1D(1), when SS links form a 
three-point motif with neighboring I nodes, any S node in the SS 
pair gets infected at a rate of p, leading to a reduction in SS links.

In the link evolution Eq. 5 for the SI type, on average, only IR, SI 
links and ISI, SSI three-point motifs affect the evolution of SI links. 
In contrast to the third term in Eq. 4, when SS links form a three- 
node motif with neighboring I nodes resulting in a decrease in SS 
links and, consequently, an increase in SI links, the first term sig-
nifies the formation of SS links at a certain rate. In this process, 
any susceptible node S gets infected at a rate of p, leading to the 
formation of SI links (Fig. 1D(1)). The second term indicates that 
recovery nodes R within SR links revert to susceptible nodes S at 
a rate q, increasing the probability of SI links. The third term rep-
resents a recovery rate r for infectious node I within SI links to be-
come a recovery node R, decreasing the probability of SI links. The 
fourth term indicates that susceptible node S, to avoid infection, 
has a rewiring probability w, reducing the probability of SI links. 
The fifth term signifies that susceptible node S gets infected at a 
rate p within SI links, decreasing the probability of SI links. The 
sixth term considers the interaction between SI links and neigh-
boring I nodes, as illustrated in Fig. 1D(2). When SI links form a 
three-node motif ISI with neighboring I nodes, susceptible node 
S gets infected at a rate of p, reducing the probability of SI links. 
Simultaneously, this leads to an increase in the probability of II 
links, resulting in the second term in Eq. 6.

ṖS = qPR − p
K
N

PSI (1) 

ṖI = p
K
N

PSI − rPI (2) 

ṖR = rPI − qPR (3) 

ṖSS = qPSR + w
PS

PS + PR
PSI − 2p

K
N

PSSPSI

PS
(4) 

ṖSI = 2p
K
N

PSSPSI

PS
+ qPIR − rPSI − wPSI − p PSI +

K
N

P2
SI

PS

 

(5) 

ṖII = p PSI +
K
N

P2
SI

PS

 

− 2rPII (6) 

ṖSR = rPSI + w
PR

PS + PR
PSI + 2qPRR − qPSR

− p
K
N

PSIPSR

PS
+ w

PS

PS + PR
PIR

(7) 

ṖIR = 2rPII + p
K
N

PSIPSR

PS
− qPIR − rPIR − wPIR (8) 

ṖRR = rPIR − 2qPRR + w
PR

PS + PR
PIR (9) 

In the link evolution Eq. 6 of II, the first term considers infectious 
node S within SI links getting infected at a rate p, leading to the for-
mation of II links. The third term considers infectious node I with-
in II links with a recovery rate r, becoming recovery nodes R, 
decreasing the probability of II links.

In the link evolution Eq. 7 of SR, the first term indicates that in-
fectious nodes I within SI links have a recovery rate r, switching to 
recovery nodes R, increasing the probability of SR links. The se-
cond term represents that susceptible nodes S within SI links, to 
avoid infection, disconnect and rewire to recovery nodes R at a 
rate w (as illustrated in Fig. 1C(1), where PR

PS+PR 
represents the pro-

portion of recovery nodes among non-infected nodes), increasing 
the probability of SR links. The third term signifies that two recov-
ery nodes R within RR links switch to susceptible nodes S at a rate 
q, increasing the probability of SR links. The fourth term indicates 
that recovery nodes R within SR links switch to susceptible infec-
tious nodes S at a rate q, decreasing the probability of SR links. The 
fifth term considers the interaction between SR links and sur-
rounding infectious nodes I, forming a three-node motif ISR 
(Fig. 1D (3)). In this motif, susceptible nodes S get infected at a 
rate of p, decreasing the probability of SR links and, conversely, in-
creasing the probability of IR links (the second term in Eq. 8). The 
sixth term represents that recovery nodes R within IR links, to 
avoid infection, rewire to susceptible nodes S (as shown in 
Fig. 1C (2)), resulting in the formation of SR links and increasing 
their probability. ( PS

PS+PR 
represents the proportion of susceptible 

nodes among non-infected nodes.)
In the link evolution Eq. 8 of IR, the first term represents II 

links with two infectious nodes I, having a recovery rate r, be-
coming recovery nodes R, increasing the probability of IR links. 
The second term considers SR links within a three-node motif 
ISR, where susceptible node S gets infected by infectious node 
I, increasing the probability of IR links (Fig. 1D (3)). The third 
term represents recovery nodes R within IR links with a rate q, 
becoming susceptible nodes I, decreasing the probability of IR 
links. The fourth term represents infectious node I within IR 
links with a recovery rate r, becoming recovery nodes R, de-
creasing the probability of IR links. The fifth term represents re-
covery nodes R within IR links, rewiring to avoid being infected 
by infectious nodes I, decreasing the probability of IR links 
(Fig. 1C (2)).

In the link evolution Eq. 9 of RR, the first term represents infec-
tious node I within IR links with a recovery rate r, becoming a re-
covery node R, increasing the probability of RR links. The second 
term represents two recovery nodes R within RR links, with a 
rate q, becoming susceptible nodes S, decreasing the probability 
of RR links. The third term represents recovery nodes R within 
IR links, to avoid infection by infectious nodes I (as shown in 
Fig. 1C (2)), rewiring to become recovery nodes R, increasing the 
probability of RR links. ( PR

PS+PR 
represents the proportion of 

recovery nodes among non-infected nodes.)
One of the key findings of this study is that the model exhibits 

bistable behavior compared to static networks without rewiring, 
indicating the presence of two stable states: disease-free equilib-
rium and epidemic equilibrium. This is compared to static net-
work models without the introduction of rewiring (Fig. 1 (a) in 
research paper (46)), which typically give a single attractor state 
of endemic in a wide range of infection rates. However, after the 
introduction of rewiring, two stable states emerged obviously, 
the endemic state and the disease-free state. The main reason 
for the appearance of bistable states is the interplay between 
the dynamic rewiring characteristics and the topology of adaptive 
networks. The adaptive rewiring facilitates the isolation of in-
fected individuals, significantly increasing the epidemic thresh-
old. However, in doing so, the rewiring introduces a mixing of 
connections within the population, leading to the formation of a 
highly connected susceptible cluster characterized by a larger 
variance in the degree distribution, thus resulting in a lower 
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epidemic threshold. Consequently, the local effect of rewiring 
tends to suppress the epidemic, whereas the topological effect 
promotes its occurrence (45). This is because, with an increase 
in the rewiring rate, the network’s topology changes, leading to 
the formation of highly non-infected clusters within the network, 
making it easier to promote the disease transmission. In this scen-
ario, rewiring does not completely separate the infected from the 
non-infected, rather, it structures the network into two loosely 
connected clusters of non-infected and infected individuals. 
Although connections between clusters are continuously re-
moved by rewiring, new links are generated by the transmission 
dynamics of nodes within these two clusters, namely susceptible, 
infected, and recovered (SIRS) dynamics. Thus, in the case of 
adaptive rewiring and epidemic dynamics, a dynamic equilibrium 
state emerges in the network, where both the structure of the net-
work and the states of its nodes remain stable to a certain extent, 
and the number of connections within and between clusters, as 
well as the number or proportion of non-infected and infected in-
dividuals, remains constant, making bistability possible under ap-
propriate rewiring rates.

In  Fig. 1C(1), when a group of healthy or susceptible individuals 
becomes aware of an infected person around them, they adjust 
their behavior to avoid contact with the disease. For example, 
more frequent hand-washing, wearing a mask when infected, 
and self-isolation are all examples of adaptive behaviors in the 
presence of disease, and in networks represented by populations, 
rewiring largely reflects how people respond to the situation (56), 
so rewiring promotes isolation of infected individuals, the effect of 
which tends to suppress the outbreak. This is compared to a stable 
local endemic state without the introduction of rewiring and the 
emergence of a new disease-free state (45).

The introduction of rewiring influences both the network struc-
ture and epidemic dynamics, resulting in a bistable region with 
coexisting endemic and disease-free states. A distinct bistable 
state is observed within a certain range of infection rate values p 
this bistable behavior offers a new perspective for understanding 
the dynamic processes of epidemics, emphasizing the complexity 
and diversity of dynamic adaptive networks in epidemiology (45, 
63). From a non-equilibrium perspective, the study also explores 
the behavior of power-law scaling in fluctuations near bifurcation 
points. While revealing the bistable behavior, researchers also 
highlighted the challenges one faces in modeling epidemic trans-
mission behavior in dynamic networks. However, in non- 
equilibrium processes, the physical mechanisms behind the 
dual stability of disease-free and endemic states remain not fully 
elucidated. There is still a lack of comprehensive understanding of 
the deeper dynamics and thermodynamic mechanisms involved 
in these non-equilibrium processes.

Methods
Landscape and flux theory
Since Isaac Newton formulated the Newtonian equation for dy-
namics mẍ = F, there has been a keen interest in solving differen-
tial equations. Once the initial conditions of the equation are 
known, the dynamics of the system at any future time are deter-
mined. Typically, deterministic equations ẋ = F(x) are employed 
for studying the complex nonlinear dynamics of a network. In 
this context, the meaning of F varies depending on the specific re-
search subject. For instance, in the context of chemical reactions 
where x represents a concentration vector and F(x) is the vector of 
reaction rate flows, this equation can be regarded as a degenerate 
form of Newton’s equations under overdamping conditions.

While deterministic equations offer detailed insights into the 
system’s evolution, their descriptions are often implicit in many 
cases. The dynamics of a system are inevitably influenced by 
both internal and external factors, typically in a non-negligible 
manner (64–68). Taking this effect into account, the general net-
work dynamics should be a stochastic process, and researchers 
commonly use Langevin equations describing Brownian motion 
to characterize the dynamical process (58, 59, 66, 68), i.e. 
ẋ = F(x) + η, where F(x) represents the deterministic driving force, 
η is the noise with a Gaussian distribution satisfying the autocor-
relation function 〈η(x, t)η(x, 0)〉 = Dδ(t), and D is the diffusion coef-
ficient, reflecting the magnitude and uniformity of fluctuations. 
The diffusion coefficient can be defined as the strength of the 
autocorrelation function of the stochastic force at different times, 
and thus representing the strength of the noise or fluctuations. In 
general, the diffusion coefficient is a tensor or matrix. However, in 
our study, only isotropic and homogeneous Gaussian white noise 
is considered, and it is set as a constant.

Building upon this foundation, we shift our focus from deter-
ministic trajectories to the statistical behavior of these trajector-
ies. Through long-term stochastic dynamic simulations, we 
obtain the steady-state probability distribution of the variable x. 
The evolution of the probability distribution in the state space fol-
lows the Fokker–Planck equation (66, 69) ∇ · J + ∂P

∂t = 0, where P is 
probability function. At steady state, by defining U = lnPss, we 
can derive the non-equilibrium potential function U, which is 
similar to the Boltzmann distribution in an equilibrium system. 
Once we ascertain the steady-state probability distribution and 
the non-equilibrium potential function, we can derive the 
thermodynamic characteristics, stability, robustness, and more 
for the entire infectious disease network or system. The flux is de-
fined J = FP − ∇·DP. The divergence of the flux is zero at steady 
state. Furthermore, since the divergence of flux is zero ∇ · Jss = 0, 
there are two possibilities: the first is flux being zero Jss = 0, indi-
cating no net flux, and the system is in equilibrium satisfying de-
tailed balance. The second is flux being non-zero and 
representable as a rotational field, indicating the system is in a 
non-equilibrium state violating detailed balance.

The overall driving force of the system can be decomposed 
into a gradient force and a rotational force: F = −D · ∇U + ∇ ·D + 
Jss
Pss (58, 59, 70, 71). We know that when there is only an electric 
field, electrons move in a manner following the electric potential 
gradient (electric field). This describes the dynamics of an equi-
librium system with detailed balance, while the net flux is zero. 
However, when the net flux is non-zero, the detailed balance is 
broken, and the system is in nonequilibrium. This is the case 
when the electric and magnetic fields act together, electrons 
undergo spiral motion under the combined effects of the electric 
and magnetic fields. The dynamical evolutions resulting from 
the decomposition of the driving force are very similar to the 
motion of charged particles under electric and magnetic fields 
(58–60).

Non-equilibrium thermodynamic mechanics
The rate of entropy production is closely related to dissipation 
(72). In statistical mechanics, entropy is defined as:

S = − ∫ P(x, t) ln P(x, t)dx, 

and the rate of change of entropy with respect to time can be ob-
tained by taking the derivative with respect to time:

Ṡ= ∫ (J · D−1 · J)/Pdx− ∫ (J ·D−1 · (F − ∇ ·D))dx 
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(40, 71, 72). The first term in the equation is defined as entropy pro-
duction rate (EPR), and the second term is defined as thermal dis-
sipation (HDR). In a steady state, the rate of entropy production 
equals the rate of thermal dissipation. Non-equilibrium systems 
are open systems that continuously exchange energy and infor-
mation with the environment, among other factors. The unique 
properties of dissipative non-equilibrium systems are closely re-
lated to dissipation and entropy production rates in the steady 
state of non-equilibrium systems (73).

Flickering frequency
The average dynamical time required for the system to transi-
tion from one stable state to another reflects the difficulty of dif-
ferent state transitions. When the barrier height is relatively 
low, it is anticipated that the mean first-passage time (MFPT) 
from the epidemic state to the non-epidemic state will decrease, 
and correspondingly, its reciprocal frequency will sharply in-
crease. This indicates that frequency can serve as a crucial indi-
cator for impending warning signals. We term the frequency 
near the dynamical phase transition point as the flickering fre-
quency, which has been shown to act as an early predictive indi-
cator (61).

Time reversal symmetry breaking
Correlation functions can be utilized to assess the degree of de-
tailed balance breakdown or the level of time irreversibility in a 
system (74–78). Here, we have computed the average difference 
between forward and backward cross-correlations, defined as:

ΔCC =

�����������������������������
1
tf
∫tf

0 (CXY(τ) − CYX(τ))2 dτ



Here, CXY(τ) represents the forward cross-correlation function in 

time, defined as:CXY(τ) = 〈X(0)Y(τ)〉 =


XiYjPss
i Pij(τ). CYX(τ) is the 

backward cross-correlation function in time, where X and Y re-
present the time series of two random variables, and τ denotes 
the lag time between the two series. Pij is the probability from state 

i to state j at time τ. The quantity ΔCC provides directional infor-
mation about non-equilibrium flux (74). By analyzing the asym-
metry of relevant functions, we can comprehend the dynamic 
characteristics of non-equilibrium networks and potentially 
make predictions about critical points. The breakdown of detailed 
balance in time dynamics is further evaluated through the com-
puted measures of cross-correlation. As a system approaches a 
critical point, the increasing asymmetry in temporal correlations 
suggests a deviation from process reversibility. The broken of 
time-reversal symmetry corresponds to the net flux, thereby sup-
porting the idea that the system is approaching a critical 
transition.

Critical slowing down
Physics provides a comprehensive perspective on the evolution 
of infectious disease models (21). For instance, traditional de-
terministic compartmental models of infectious diseases (32, 
33), employing systems of ordinary differential equations, le-
verage techniques from nonlinear dynamical systems theory. 
Similarly, stochastic models of specific infectious diseases 
(35, 36) draw upon methods from statistical physics. In the field 
of statistical physics, critical slowing down is a conceptual 
framework that elucidates the prominent fluctuation behavior 
experienced by a system as it approaches the critical point for a 
continuous transition just before switching from one phase to 

another. These fluctuations manifest not only in an increased 
amplitude but also in prolonged durations of fluctuations, de-
celeration in the recovery rate from disturbances, and a dimin-
ished capability to revert to the previous phase (79, 80). The 
concept of critical slowing down holds paramount significance 
in statistical physics, as it aids in identifying specific indicators 
of a system approaching the critical transition point, thereby 
providing early warning signals for an impending phase transi-
tion (80). A comprehensive understanding of phase transition 
behaviors and the natures of systems in the vicinity of critical 
points is crucial for in-depth research.

Scheffer and colleagues, in their research, observed the occur-
rence of critical slowing down as a system gradually approaches a 
bifurcation point. This behavior gave rise to three potential pre-
cursor signals, namely, a deceleration in the recovery from distur-
bances, an increase in autocorrelation coefficients, and an 
augmentation of variance (81). The identification and analysis of 
these signals contribute to a more nuanced comprehension of 
the system’s behavior near critical points, making it crucial for 
the study of phase transition behaviors and their occurrences 
(82–84).

Results and discussion
Landscape and flux in epidemic models under 
adaptive networks
Noise is a part of the complexity of biological systems and can 
exert effects across different biological scales. For instance, 
noise in biological gene expression may disrupt cellular signal-
ing, circadian rhythms, and developmental processes (85, 86). 
Similarly, infectious diseases are unavoidably influenced by 
various stochastic factors during the course of their pathogen-
esis. For example, in studies of cholera, it has been found that 
significant noise interference may lead to disease extinction 
(35). Therefore, models considering the impact of stochastic fac-
tors on infectious diseases would be more practical. Previous 
studies have indicated that bistability can emerge in epidemic 
models of adaptive network rewiring (46). However, the thermo-
dynamic and dynamic mechanisms underlying this bifurcation 
and the predictive methods remain challenging. Building upon 
the mean-field equations (46, 63), we developed a stochastic dy-
namical model incorporating isotropic Gaussian white noise. 
The diffusion coefficient, previously denoted by D, is now repre-
sented by D and is a constant. We obtained the steady-state 
probability distribution function through stochastic dynamical 
simulations and subsequently derived the potential function 
U. Once the potential function was obtained, a deeper under-
standing of the network’s global description and stability meas-
ure was achieved, including stable states, phase transitions, and 
other critical features. For visualization purposes, summation 
and averaging over other dimensions were performed to select 
two state variables, creating a representation of the network’s 
potential landscape. In Fig. 2, three-dimensional visualizations 
of the landscape under different state variables are presented. 
The system’s driving force can be decomposed into the potential 
landscape gradient and the corresponding rotational flux. The 
gradient force stabilizes the network at a stable attractor, while 
the rotational force drives the system away from the stable 
attractor.

In the practice, it is difficult to determine whether the infec-
tion rate of a specific disease is a constant or not, because the ac-
tual disease has to go through various stages in the process of 
transmission, from emergence and transmission to the 
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awareness by people of the changes. We believe that infection 
rate is generally not constant. For simplicity, one sets the infec-
tion rate as being constant for the simplification of modeling. 
Figure 3 displays the three-dimensional potential landscape U 
as a function of recovery node probability and susceptibility 
link probability, illustrating the global features of the infectious 
disease network. At very low infection rate, disease-free state 
dominates with a stable basin of attraction. Upon an increase 
in the infection rate, the stable endemic state emerges. As the in-
fection rate continues to rise, the system switches from the 
disease-free state to the endemic state. Eventually, the endemic 
state becomes dominant, and the disease-free state disappears.

Thermodynamic and dynamical origins of 
non-equilibrium phase transitions
In this study, we developed non-equilibrium thermodynamics and 
applied it to an adaptive epidemic network. Non-equilibrium open 
systems continuously interact with the external environment, in-
volving exchanges of energy, information, and matter, leading to 
dissipation (58, 59).

Rotational flux can serve as a non-equilibrium feature of inter-
actions between the internal and external components of a sys-
tem coupled to its environment (58–60, 70). The emergence of 
net flux disrupts the equilibrium state, and changes in the flux dir-
ectly influence the topology of the entire landscape, thereby pro-
viding a dynamic source for non-equilibrium phase transitions or 
bifurcations (75, 87). As shown in Fig. 4, we calculated entropy pro-
duction, thermal dissipation, and flux in a non-equilibrium adap-
tive epidemic network under different infection rates in a 
steady-state scenario. Evidently, the equivalence between the 
rates of entropy production and heat dissipation is noted. Our 
computational results further reveal a distinctive trend wherein 
both entropy production and thermal dissipation exhibit an initial 
increase followed by a subsequent decrease in response to the in-
fection rate, culminating in their peak values at a juncture where 
p approximates 0.00155. At this point, the weights of the epidemic 

state and the disease-free state are nearly equal, corresponding to 
a first-order phase transition point.

As shown in Fig. 4B and Fig. 4C, the entropy production rate and 
heat dissipation rate reach their maximum values at this point, in-
dicating that the system experiences maximal dissipation and the 
highest level of non-equilibrium. This also suggests the potential 
existence of other dynamical phase transition points (bifurcation 
points) on both sides of the thermodynamic phase transition 
point, precisely corresponding to the monostable spinodal transi-
tion points of disease-free and endemic, as illustrated in Fig. 4A.

As described above, under non-equilibrium conditions, we de-
compose the driving force into gradient force and rotational 
flux. Due to the rotational nature of flux, it usually renders the in-
dividual states unstable. Meanwhile, the entropy production rate 
reflects the degree of system thermodynamic dissipation and non- 
equilibrium nature. As illustrated in Fig. 4B, Fig. 4D, and Fig. 3, 
with an increase in the infection rate p, the flux initially remains 
small, resulting in a single stable disease-free state with relatively 
low dissipative and maintenance costs. Upon a further increase in 
the infection rate, the flux intensifies, diminishing the stability of 
the disease-free state, prompting the gradual emergence of the 
endemic state, establishing a bistable coexistence scenario char-
acterized by maximum non-equilibrium and maximum dissipa-
tive costs. With a further increase in the infection rate, the flux 
between the two states decreases, reducing the stability of the bi-
stable basins of disease-free and endemic states. Consequently, 
only a single stable endemic state is formed, accompanied by a 
corresponding decrease in dissipative and maintenance costs. 
This indicates that the flux serves as the dynamical source driving 
non-equilibrium phase transitions, while the entropy production 
rate provides the supply cost, serving as the thermodynamic 
source of non-equilibrium phase transitions.

Therefore, by observing variations in flux and EPR, we can com-
prehend the non-equilibrium nature and stability of the internal 
dynamics of the entire infectious disease network. This under-
standing elucidates how non-equilibrium dynamics propel the 
system through bifurcations, orchestrating transitions from a 

Fig. 2. Three-dimensional landscape projections were selected for different state variables, showing a three-dimensional landscape with two variables 
fixed in a bistable phase. The infection rate p is fixed at 1.58 × 10−3, and the diffusion coefficient is D = 1.7 × 10−6. The coordinates of disease-free state are 
(1,0,0,1,0,0,0,0,0), while The coordinates of the endemic state are (0.18085, 0.62411, 0.19504, 0.26094, 0.07900 ,0.16748, 0.32534, 0.06021, 0.10703). Contour 
plots of the landscape are also shown at the bottom of the figure, where black arrows at the bottom represent gradient forces −D∇U, and red arrows 
represent rotational driving force flux Jss

Pss.
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disease-free state to an endemic state. These insights contribute 
to understanding the intricate phase transitions inherent in com-
plex systems such as infectious diseases, providing a broader per-
spective on the dynamic behavior and interactions within these 
intricate systems.

The advantage of EPR over lyapunov function potential is on 
the nonequilibrium. Since the flux provides the nonequilibrium 
driving force is rotational, it does not favor to localize in the 
specific place in state space. While the landscape gradient 
tends to attract the system to the stable basin, the flux being ro-
tational tends to destabilize it. Thus increasing the flux can 
cause the instability or phase transition. For the saddle node bi-
furcation, near bifurcation, a stable basin of attraction can be-
come flat , and thus the associated response or relaxation time 
becomes long. However, since EPR is directly related to the flux, 
it provides the thermodynamics origin of critical transitions. 
While flux or EPR can provide an warning signals earlier than 
that given by the landscape due to their cause for the 
instability.

Theoretically, flux and EPR can serve as early warning signals. 
For instance, in Fig. 3, different infection rates p correspond to dis-
tinct landscapes, along with their respective flux and EPR values. 

In practical terms, forecasting critical points involves monitoring 
the trends of flux and EPR as infection rates vary. For example, in 
the context of the saddle-node bifurcation examined in this study, 
both flux and EPR exhibit a peak with changes in the infection rate 
p shown in Fig. 4. This allows for the anticipatory identification 
that near this peak, bifurcation from bistable to monostable states 
emerges and the endemic state becomes dominant. Thus, in prac-
tice, observation of the trends in flux and EPR offers a feasible 
method for predicting critical points.

Barrier height and the mean first passage time
In epidemic models of adaptive SIS and SIRS networks, a rich dy-
namics can be observed (45, 46). However, traditional nonlinear 
dynamics mainly focus on local stability analysis near endemic 
or disease-free equilibrium points, overlooking the analysis of 
the dynamical processes themselves. Within the framework of 
landscape and flux theory, the local endemic and disease-free at-
tractor basins are integrated, providing a global description of the 
dynamics. This global approach to dynamic description has been 
successfully applied in studying the overall properties and stabil-
ity of complex systems. For instance, it has been used to quantify 

Fig. 3. Three-dimensional visual landscape projections on the recovery node recovery node and susceptibility link probability and susceptibility link 
probability under different infection rates p. The figures are annotated with attractors corresponding to the endemic state and the disease-free state, and 
specific values of different infection rates are provided at the bottom of each subplot. In all of these subplots, the diffusion coefficient is D = 1.7 × 10−6.
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the global stability, kinetic speed, and dominant paths of state 
switching in ecological systems (88), human brain sleep cycles 
(89), and the mechanisms of cancer tumor occurrence (90).

The landscape quantifies the global stability of the net-
work, and the barrier height between potential basins reflects 
the difficulty of transitions between epidemic and disease- 
free states (58, 59). A higher barrier height indicates a more 
harder transition between the two states. We define the bar-
rier height as the potential energy difference between the 
landscape saddle point and the landscape minimum: 
ΔU = Usaddle − Umin. As the infection rate p increases, switching 
from the disease-free state to the endemic state, the barrier 
height of the disease-free state gradually decreases, as illus-
trated in Fig. 3 and Fig. 5A, rendering the disease-free state in-
creasingly unstable. Correspondingly, the time required for 
the transition from the disease-free state to the endemic state 
(Fig. 5B) gradually decreases. Conversely, during the transi-
tion from the endemic state to the disease-free state with a 
decrease in the infection rate p, evident in both Fig. 3 and 
Fig. 5D, the barrier height of the endemic state decreases 
gradually, indicating a decrease in the stability of the endemic 
state. Consequently, the time required for the transition from 
the endemic state to the disease-free state (Fig. 5E) decreases. 
Additionally, as shown in Fig. 5C and Fig. 5F, we observe an al-
most linear relationship between the barrier height and the 
logarithm of the mean first passage time. This observation 
suggests that higher barrier heights contribute to a more sta-
ble coexistence of the disease-free and endemic steady states, 
making the transition between them more difficult with in-
creased passage time (TMFPT ∼ eΔU is approximately valid).

The above results demonstrate that as the infection rate p 
increases, the stability of the endemic attractor state in-
creases, while the stability of the disease attractor state de-
creases. This explains why increasing the infection rate 
promotes the spread of the disease. Therefore, it is crucial 
for individuals to take corresponding measures to reduce the 
infection rate in daily life, emphasizing personal protection 
and so forth (91, 92).

Early warning in non-equilibrium dynamics
Predicting future risks of infectious diseases is an interdisciplinary 
endeavor, requiring collaborative efforts from epidemiologists, bi-
ologists, demographers, statisticians, computer scientists, and 
other experts (93). Timely prediction of disease outbreaks and 
understanding the dynamics of disease spread are crucial for for-
mulating effective control and mitigation strategies. Over the 
years, various methods and models have been developed to fore-
cast the spread of infectious diseases. These include classical 
compartmental modeling approaches (94), bibliometric methods 
(95), machine learning method (96), and deep learning models 
combined with big data analysis (97). Researchers can consider 
the pros and cons of the above methods to choose the appropriate 
approach for predicting disease trends. However, predictive meth-
ods for infectious disease dynamics modeled by nonlinear ODEs 
still pose challenges. Here, we employ three measures:flickering 
frequencies, critical slowing down, and time irreversibility to fore-
cast bifurcation in a nonlinear dynamics-based infectious disease 
dynamical system.

We conducted calculations for the flickering frequency, critical 
slowing down, and cross-correlation describing time-reversal 

symmetry breaking, aiming to test the predictive capability of 

our theoretical framework for critical points. Readers can find 

more technical details in the supplementary material and all 

computations are available on https://github.com/lq1235/ 

Infectious-disease. In Fig. 6, we present the computed results for 

these three physical quantities, serving as early warning signals 

that effectively anticipate the arrival of a critical point. These ana-

lytical findings robustly support our theory, emphasizing the 

changing trends of these physical quantities as the system ap-

proaches a critical state. This underscores their significance for 

further research and practical applications, providing crucial 

guidance for in-depth investigations.
To begin with, let us discuss starting from the disease-free 

state. From Fig. 6A–6C, it can be observed that as the infection 
rate increases and approaches the vicinity of the endemic state 
transition point, the flickering frequency, critical slowing-down 
relaxation time τ, and ΔCC exhibit noticeable increments. This in-
dicates that these three parameters could serve as precursory sig-
nals for the onset of disease-free and endemic states. When the 
infection rate parameter p changes, the landscape’s barrier height 
determines the difficulty of state transitions, thus determining 
the flickering frequency. It is understandable that, with variations 
in the control parameter p, when the barrier height is low around 
the transition point, the frequency sharply rises. In Fig. 3, it is evi-
dent that approaching the transition point, the disease-free state 
exhibits an increasingly flattened trend. This alteration results 
from the heightened elasticity of the disease-free state, indicating 
a slowing recovery rate. Correspondingly, from Fig. 6D–6F, assum-
ing the state initially resides in an endemic state, as the infection 
rate diminishes toward the proximity of the transition point 
(p = 0.00135), the endemic state gradually flattens, resulting in a 
significantly increased relaxation time τ due to the slower recov-
ery rate. Hence, critical slowing-down offers early predictions 
for infectious disease outbreaks and disappearances.

The crosscorrelation functions are closely associated with 
symmetry when describing the dynamical aspects of a system. 
In reversible equilibrium dynamics, crosscorrelation functions 
demonstrate symmetry, reflecting the system’s time reversibility. 
However, in irreversible equilibrium dynamics, symmetry is bro-
ken, signifying the system’s temporal irreversibility. This broken 
symmetry in dynamical systems likely mirrors the time 
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irreversibility of the system, implying a directional and irrevers-
ible characteristic in the system’s evolution. This irreversibility, 
linked to phase transitions, serves as a dynamical source for these 
transitions. Notably, as illustrated in Fig. 6C, Fig. 6F, and Fig. 4D, 
the abrupt change in the average difference of crosscorrelation 
functions forward and backward in time near the critical point 
corresponds to the variation in system flux. This suggests that 
flux changes can be captured through alterations in time irrever-
sibility of the crosscorrelation functions, offering insights into dy-
namical phase transitions, early warnings, and alterations in 
steady-state landscapes. Therefore, the symmetry or breaking 
thereof in correlation functions not only reflects the dynamical 
nature of a system but also serves as a means to interpret causal 
relationships in system state changes, providing a predictive tool 
for system phase transitions.

In Fig. 7, we conducted a comparative analysis of three pro-
posed indicators for predicting critical points. It is noteworthy 
that our metric, the average difference of cross-correlation be-
tween functions forward and backward, often predicts the arrival 
of the critical point earlier than critical slowing down. This is at-
tributed to the former being influenced by the change in flux, 
while the latter is induced by the critical deceleration as the sys-
tem approaches the critical point. Our research suggests that, in 
general, the cross-correlation approach associated with the time 
irreversibility of non-equilibrium systems can often provide 
more effective warning signals than critical slowing down, while 
the flickering frequency serves as a later predictive indicator.

In practical applications, certain physical quantities like en-
tropy production rate, flux, and heat dissipation rate are often dif-
ficult to directly observe or extract in experiments. However, we 
can readily access time series data of system state variables, 
which offer insights into irreversibility, flickering frequency, and 
critical slowing down phenomena. These time series data serve 
as a more feasible avenue for experimental observation and valid-
ation of our prediction methods, accounting for specific measure-
ment sequences and experimental errors. The validation process 
is intricately linked to the problem domain under study, spanning 

fields such as ecology, evolution, and climate science. Our ongoing 
efforts focus on empirically applying our theoretical framework 
within these domains. In practice, it is more feasible to directly ob-
serve the evolutionary time series of state variables within disease 
network systems. By monitoring these variables, including meas-
ures like critical slowing down from autocorrelation functions, 
flickering frequency from counting the state switching, and time 
irreversibility from the crosscorrelation functions of the observ-
ables in the time series, we can better predict disease dynamics. 
This approach ensures that our predictions are grounded in ob-
servable time series and applicable to real-world scenarios.

Optimal path of non-equilibrium dynamics
The transmission and emergence of infectious diseases consti-
tute a non-equilibrium process, where the transition pathways 
between endemic and disease-free states in the presence of driv-
ing forces are irreversible. According to the variational principle, 
the optimal main path should satisfy the condition that the ac-
tion reaches an extremum, i.e. δS = 0. In Fig. 8A, we quantified 
the minimum action in length space, obtaining the optimal 
path (71, 98).

SHJ= ∫xf

xi

�������������
Eeff + V(x)

D



−
1

2D
Fldl.

Here, Eeff is the effective Hamiltonian. V(x) is potential. D is an 
isotropic diffusion coefficient. Fl represents the force function. 
In the context of detailed balance, Fl manifests as a purely gradi-
ent force. However, deviations from detailed balance introduce a 
rotational component to this force. Considering the effect of ro-
tational forces, we observe that the dynamical path between 
the disease-free attractor and the endemic attractor is no longer 
a gradient path, nor is it a path passing through a landscape sad-
dle point. Instead, when neglecting rotational forces, we find that 
the dynamical path between the disease-free attractor and the 
endemic attractor is reversible, in stark contrast to the irrevers-
ible paths in the presence of non-equilibrium rotational forces.
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In non-equilibrium infectious disease networks, the impact 
of driving forces is influenced not only by the gradient of the po-
tential landscape but also by non-equilibrium rotational forces. 
This results in the description of the dynamical process of non- 
equilibrium infectious disease networks as a spiral motion, 
distinct from the equilibrium state. Therefore, the presence of 
non-equilibrium rotational forces disrupts the gradient rule of 
dynamical paths, leading the paths to deviate from simple steep-
est descent trajectories. Instead, dynamical paths exhibit a spiral 
motion along the gradient direction, demonstrating unconven-
tional dynamical characteristics in non-equilibrium systems. In 
the absence of rotational forces, reversibility of paths is preserved, 
however, once non-equilibrium rotational forces are considered, 
the dynamical paths of the system become irreversible, in stark 
contrast to the situation when rotational forces are ignored. The 
introduction of non-equilibrium rotational forces results in a rich-
er and more complex dynamical behavior in the system.

Global sensitivity analysis
Various environmental factors play a crucial role in virus trans-
mission (91). For instance, measures such as maintaining social 
distancing during pandemics (99) and disinfecting public areas 
can significantly reduce transmission rates, thereby curbing the 
spread of the virus. In adaptive networks, these individual pro-
tective behaviors are reflected in the dynamic rewiring of the net-
work, particularly when non-infected individuals come into 
contact with infected ones, leading to network link rewiring (46).

To assess the relative importance of key parameters in an 
adaptive infectious disease network, we conducted a global sensi-
tivity analysis on the barrier height. As mentioned earlier, the 
height of the barrier reflects the stability of different infectious 
disease states. If a state has a higher barrier, the system is less sus-
ceptible to external disturbances or less prone to state transitions. 
Figure 8B displays the variations in barrier height resulting from 
changes in different parameters. It is noteworthy that variations 
in the rewiring rate (w) lead to more significant changes in the bar-
rier height for the disease-free state compared to the barrier 
height for the endemic state. This observation indicates that 

adjusting the parameter w is more likely to increase the barrier 
for the disease-free state, increasing its stability compared to 
the endemic state. Consequently, the system is more inclined to 
maintain a disease-free state and inhibit transitions to the endem-
ic state. Therefore, a higher rewiring rate may be more effective in 
preventing infection and suppressing the spread of the disease. 
This is because rewiring implies that non-infected individuals (S, 
R) have less chance of contact with infected individuals (I) and 
maintain a certain level of isolation, thereby protecting them-
selves from infection. For example, the isolation of infected indi-
viduals (99–103) and the wearing of masks by individuals are 
manifestations of rewiring. Therefore, through the analysis of 
barrier height and its stability, we can easily understand why re-
wiring in infectious disease networks is more effective in 
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promoting the emergence of the disease-free state while prevent-
ing the spread and diffusion of the disease.

Furthermore, our observations reveal a significant impact of 
the infection rate p and the average node degree δ = K/N on the 
barrier height. Our computational analyses demonstrate that 
increasing the infection rate p is more adept at decreasing the bar-
rier height for the disease-free state, while concurrently exhibit-
ing a heightened effect on increasing the barrier height for the 
endemic state. Simultaneously, an increase in the average num-
ber of links(δ) surrounding each node results in a decrease of the 
barrier height for the disease-free state and an increase of the bar-
rier height for the endemic state. Similar to the previous analysis 
on rewiring, we see that higher infection rates p and a greater 
number of links surrounding each node (δ = K/N) increase the sta-
bility of the endemic state while concurrently decrease the stabil-
ity of the disease-free state. Conversely, lower infection rates 
p and a fewer number of links surrounding each node (δ = K/N) 
decrease the stability of the endemic state while simultaneously 
increase the stability of the disease-free state. This observation 
aligns seamlessly with our empirical understanding, as higher 
infection rates accelerate the spread of the disease within the 
population, thereby propelling the progression of an epidemic. 
Conversely, lower infection rates (92) inhibit the spread of the dis-
ease within the population, thereby thwarting an epidemic. 
Additionally, a higher number of links around nodes implies an in-
creasing number of contacts around individuals (higher K/N), sig-
nificantly elevating the risk of individuals contracting the disease. 
In contrast, a lower number of links around each node implies 
fewer contacts among individuals (lower K/N), thereby reducing 
the risk of disease spread. This is consistent with the preventive 
measures outlined in the literature (55). Therefore, we should 
take measures such as vaccination or other relevant interventions 
to reduce the rate of infection of the disease (p) and minimize in-
dividual clusters (δ or w) in order to curb the spread and spread of 
the epidemic.

Conclusion
In this study, we employ the framework of landscape and flux the-
ory in non-equilibrium statistical physics to investigate the stochas-
tic dynamics based on an adaptive SIRS network. This approach 
allows for a quantitative and comprehensive elucidation of the 

underlying physical processes governing the non-equilibrium dy-
namics of infectious diseases. We provide a theoretical analysis of 
thermodynamics and dynamics for the prediction of epidemics. 
Such analyses are generally absent in typical deterministic com-
partmental epidemic models, such as the SIS models (45) and SIR 
models (104, 105), based on ordinary differential equations.

The spread of infectious diseases is described as two basins of 
attraction, and the dynamics of the infectious disease network 
system are determined by both gradient force and rotational 
flux force. Entropy production provides thermodynamic sources 
for supporting the infectious disease network, while flux provides 
dynamical sources.

In addition, our study also indicates that critical slowing-down, 
time irreversibility, and flickering frequency can serve as early 
warning indicators for predicting critical transitions, with time ir-
reversibility being more easily observed directly from experiments 
compared to entropy production and flux. The presence of rota-
tional flux as a non-equilibrium driving force results in an irre-
versible dominant pathway between infectious disease states.

Global sensitivity analysis of barrier height reveals that during 
epidemic spread, behaviors such as isolating from infected indi-
viduals, maintaining social distancing (w), or taking measures to 
reduce the infection rate (p) and minimize individual gatherings 
(lowering δ) all play a crucial role in curtailing the transmission 
of epidemics (55, 91, 92).

In summary, our simulation results are based on the adaptive 
SIRS model with the empirical parameters estimated from the 
previous studies (46). Using the actual experimental data, the 
model can be calibrated and validated to further improve the pre-
diction accuracy and practicability of the model. Combining with 
experimental observations can bring the model closer to reality, 
thereby enhancing its ability to predict and manage disease 
outbreaks, and we are working on this. Our study reveal the dy-
namics of infectious disease spread and prediction from a non- 
equilibrium perspective, providing valuable insights into the com-
plex nature of infectious diseases. Our study also provides a quan-
titative and physical description of the dynamics of infectious 
diseases and offers a practical approach for predicting critical 
transitions (bifurcation or non-equilibrium phase transition) of in-
fectious disease. The proposed landscape and flux theoretical 
framework is generally applicable and can be extended to diverse 
fields such as medicine and biology.
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