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This study expores neural activity underlying creative processes through the investigation
of music improvisation. Fourteen guitar players with a high level of improvisation
skill participated in this experiment. The experimental task involved playing 32-s
alternating blocks of improvisation and scales on guitar. electroencephalography (EEG)
data was measured continuously throughout the experiment. In order to remove
potential artifacts and extract brain-related activity the following signal processing
techniques were employed: bandpass filtering, Artifact Subspace Reconstruction,
and Independent Component Analysis (ICA). For each participant, artifact related
independent components (ICs) were removed from the EEG data and only ICs found
to be from brain activity were retained. Source localization using this brain-related
activity was carried out using sLORETA. Greater activity for improvisation over scale
was found in multiple frequency bands (theta, alpha, and beta) localized primarily in the
medial frontal cortex (MFC), Middle frontal gyrus (MFG), anterior cingulate, polar medial
prefrontal cortex (MPFC), premotor cortex (PMC), pre and postcentral gyrus (PreCG and
PostCG), superior temporal gyrus (STG), inferior parietal lobule (IPL), and the temporal-
parietal junction. Together this collection of brain regions suggests that improvisation was
mediated by processes involved in coordinating planned sequences of movement that
are modulated in response to ongoing environmental context through monitoring and
feedback of sensory states in relation to internal plans and goals. Machine-learning using
Common Spatial Patterns (CSP) for EEG feature extraction attained a mean of over 75%
classification performance for improvisation vs. scale conditions across participants.
These machine-learning results are a step towards the development of a brain-computer
interface that could be used for neurofeedback training to improve creativity.
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INTRODUCTION

The neural processes underlying creativity is a topic of great
interest. There has been considerable research that has yielded
valuable insights into possible neural correlates involved in
creative thinking (Mölle et al., 1999; Jung-Beeman et al., 2004;
Fink and Neubauer, 2006). However, experimental tasks that
are used in this field of research are often very simple and
far removed from real-life experience. They may be indicative
only of basic aspects of creative thinking. Research in this field
also needs to consider the neuroergonomic investigation of
more complex, ‘‘real-life’’ tasks involving creative processing.
Music improvisation is an example of such a complex, ‘‘real-
life’’ creative activity that we will investigate in this study.
Improvisation is the process of generating something novel
and esthetically appealing, spontaneously in real-time, while
evaluating and coordinating ongoing performance in relation to
relevant context (Beaty, 2015).

Functional magnetic resonance imaging (fMRI) studies have
identified a myriad of brain regions active during music
improvisation relative to control conditions. The general
processing characteristics of these regions has given some
insight into their collective role in music improvisation. A
review by Beaty (2015) puts forward that music improvisation
involves task and context-dependent interaction between brain
networks involved with internally directed value mediated
attention/spontaneous cognition [polar medial prefrontal cortex
(MPFC), medial frontal cortex (MFC)] and those involved
with externally directed attention/cognitive control [inferior
frontal gyrus (IFG), premotor cortex (PMC), and dorsolateral
prefrontal cortex (DLPFC)]. Several studies have reported
improvisation related activity in the superior temporal gyrus
(STG), inferior parietal lobule (IPL), temporal-parietal junction
Temporal parietal junction (TPJ), and PMC (Beaty, 2015).
These regions are involved in part with feedback regulation
of perceptual-motor processing and control that is an integral
component of music improvisation.

Consistent with many fMRI studies, electroencephalography
(EEG) and MEG research has found improvisation related
activity in MFC and DLPFC regions in the alpha (8–12 Hz) and
Beta (13–30 Hz) frequency range (Dolan et al., 2013; Boasen
et al., 2018; Stevens and Zabelina, 2019). Although there are a
large number of studies investigating music improvisation using
EEG many of them only employ sensor level analyses, making it
difficult to makemechanistic inferences (Müller et al., 2013;Wan
et al., 2014; Dikaya and Skirtach, 2015; Sanyal et al., 2016; Lopata
et al., 2017; Dolan et al., 2018).

It is our goal to extend past EEG studies of music
improvisation by using advanced methods that permit analysis
at the cortical source level: high-density EEG recording
(64 channel), cortical source localization, advanced artifact
extraction, and machine learning techniques. Unlike fMRI,
where there are considerable constraints in the body position
and possible hand and arm motion made by the participant,
EEG allows for experiments using natural body posture and
movement. EEG may have advantages in conducting research
related to performing music in this respect as well as the

lack of the presence of loud acoustic noise created by
fMRI scanning.

Using an experimental task similar to that implemented
by Limb and Braun (2008) and Berkowitz and Ansari (2008),
guitar musicians performed alternating blocks of improvisation
and scales within a key defined by a tonic context chord
played continuously in the background (see ‘‘Materials and
Methods’’ section). This background context is important
for setting up melodic constraints (Limb and Braun, 2008)
and rhythmic constraints (Berkowitz and Ansari, 2008) for
improvisation. Because of possible artifacts associated with hand,
arm, and body movement while playing music, advanced artifact
correction and extraction techniques are used including artifact
subspace reconstruction ASR (Mullen et al., 2013; Chang et al.,
2018) and independent component analysis (ICA; Delorme
and Makeig, 2004) to separate artifact and brain activity.
Research has shown that ICA can be used to extract brain-
related activity even in challenging recording environments
during walking and/or moving (Artoni et al., 2017; Wagner
et al., 2019) as well as during piloting of airplanes (Callan
et al., 2015, 2018). Previous EEG research concerned with
music improvisation has not used techniques such as ICA
to separate brain activity from physiological and movement-
based artifacts. Most EEG music improvisation studies use only
simple band-pass filtering and amplitude-based trial rejection
as well as subjective visual inspection techniques (Dolan et al.,
2013, 2018; Müller et al., 2013; Wan et al., 2014; Dikaya
and Skirtach, 2015; Adhikari et al., 2016; Sanyal et al., 2016;
Lopata et al., 2017).

Based on previous fMRI and EEG/MEG research it is
predicted that improvisation over scale will be characterized by
increased alpha and beta frequency range power in brain regions
involved with internally mediated cognitive processing (MFC,
polar MPFC), externally directed cognitive control (DLPFC,
IFG), and feedback regulated perceptual-motor planning/control
(STG, IPL, TPJ, PMC). An additional goal of our research is
to determine if individual-specific brain-related activity could
be used to classify whether a musician is playing improvisation
or non-improvised scales using machine-learning techniques,
as a prelude to developing a neurofeedback device capable of
detecting and rewarding improvisatory states.

MATERIALS AND METHODS

Participants
The participants in this study consisted of 14 male adults aged
20–41 years (mean = 25.12, SE = 1.12) who were proficient at
playing the guitar. Thirteen of the participants were right-handed
and one participant was left-handed. The hand used to write
and use tools determined handedness. All participants play right-
handed guitar.

The Osaka University experiment recruitment Twitter
account was used to find potential participants for the
experiment. The participants included in the study were selected
based on their musical experience as reported by questionnaire.
The most important questions for inclusion were experience
and style of improvisation as well as experienced in the
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composition of songs. All participants included had at least
2 years of experience with improvisation using the guitar and
1 year of experience composing songs. Originally there were
18 participants recruited but four participants were eliminated
from the study for various reasons including extremely
noisy EEG data (two participants) and improperly performing
the experimental task (two participants). The experimental
procedures were approved by the NICT Human Subject Review
Committee and were carried out in accordance with the
principles expressed in the WMA Declaration of Helsinki.

Experimental Task and Procedure
In this experiment, we explored brain activity associated with
music improvisation using the guitar. The guitar was selected
over other musical instruments for two primary reasons: (1) the
extensive guitar playing experience of the first author of this
study, and (2) ease of recruiting participants with improvisation
guitar experience. The guitar used in this study was the ST62US
made by Fender Japan. The experiment was conducted in
a sound-attenuated room at the Center for Information and
Neural Networks.

The experimental task used to probe brain activity underlying
musical improvisation was based in part on methods used in
the study by Berkowitz and Ansari (2008) and Limb and Braun
(2008). To account for perceptual and motor components of
playing the guitar that is not uniquely related to improvisation
a control condition was employed in which an ascending major
scale (one octave) was played in accompaniment with audio
presentation (by computer speaker; Alienware 15R3 Laptop PC
using windows 10) of a specific chord. There were three chords
in total: A major, Bb major, and Ebmajor. The order of the chord
presented was random. This chord served as a backgroundmusic
context. Throughout the experiment, a metronome (iPhone
application: practice+ made by Dynamic App Design LLC) was
playing at a speed of 80 BPM (beats-per-minute) of four beat
measures. This control condition we called ‘‘Scale.’’ The notes
of the Scale condition were performed as eighth notes. For the
experimental ‘‘Improv’’ condition participants were asked to
generate unique music in accompaniment with one of the three
specific chords (A major, Bb major, and Eb major; randomly
presented) with the restriction that the notes used were only from

the specific major scale component of the currently presented
chord. The tempo and rhythm of the Improv condition were
flexible allowing for the use of quarter, eighth, eighth note triplets
and 16th notes. The use of the metronome to control the pace
as well as the restrictions of the notes played in the Improv
condition were used to better control for motor and perceptual
components that may differ between conditions and participants
if left unconstrained.

The Scale and Improv conditions were 32 s each and were
separated by 16 s of rest (participants were asked to do nothing
during this period). The specific condition was signified by the
word ‘‘Scale,’’ ‘‘Improv,’’ or ‘‘Rest’’ presented on the computer
screen along with the audio presentation of the specific chord
(A major, Bb major, or Eb major) the participant was to
accompany playing the guitar. Matlab running on Alienware
15R3 Laptop computer was used to present the stimuli and send
triggers of their onset to the EEG device. For one block consisting
of Scale(Improv)-Rest- Improv(Scale)-Rest the same chord was
used (Figure 1).

The order of the conditions in the block was constant
across the experiment for a single participant. The order of
whether Scale or Improv occurred first was counterbalanced
across participants and randomly determined. It was believed
that randomizing the sequence order within a single participant
would cause too many errors of playing the appropriate
condition. Each of the three chords was presented seven times
for a total of 21 occurrences of each condition (Scale and
Improv) throughout the experiment (approximately 35 min).
The participants were introduced to the three context chords
prior to beginning the experiment. Audio and video of the
guitar performance of each participant during the experiment
was recorded using a GoPro Hero 6 camera.

EEG Recording and Analysis
EEG was measured using the Cognionics HD-72 dry-wireless
64 channel EEG system (Cognionics Inc., San Diego, CA, USA).
The sampling rate was 500 Hz with 24-bit analog to digital
conversion. The system utilizes active electrodes as well as
having active shielding covering all of the electrodes in the
headset that are used to minimize external noise pickup and
artifacts. See Callan et al. (2015, 2018) and Mullen et al. (2013)

FIGURE 1 | Experimental task procedure. The “Rest” condition consisted of the participant just sitting still. The “Scale” condition consisted of playing the major
scale ascending to one octave higher. The “Improv” condition consisted of playing improvisation in a specified key that was the same as the “Scale” condition. One
loop through the experiment consisted of playing Scale and Improv the order of which was randomized. The experiment consisted of 21 loops. In this experiment,
three keys were used (Bb, Eb, and A). Each key was played seven times for a total of 21 loops.
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for more technical details regarding the Cognionics HD-72
EEG system used in this experiment. The data were wirelessly
recorded using Cognionics software running on the experimental
computer (Alienware 15R3). Triggers for the onset of the various
conditions were sent wirelessly to the HD-72 and recorded on
the EEG trace. The EEG was continuously recorded throughout
the experiment.

The preprocessing steps given below were used to remove
artifacts and improve signal quality to be able to extract
task-relevant brain activity. Our overall analysis strategy used
data cleaning and ICA to extract brain-related activity from
the artifact, followed by cortical source analysis using LORETA
to describe spatial patterns of activity in different frequency
bands. Our machine learning strategy used frequency-band
common spatial pattern analysis to drive a logistic regression
classifier. An important aspect of our pipeline is that it is
completely automated and requires no subjective evaluation.
Analyses requiring subjective evaluation have a strong potential
for experimenter bias, cannot be replicated, and do not lend
themselves to neuroergonomic applications.

Pre-processing and ICA
Processing of the EEG data was conducted using the EEGLAB
toolbox (Delorme and Makeig, 2004) using a similar pipeline as
given in Bigdely-Shamlo et al. (2015) and Callan et al. (2018),
Pedroni et al. (2019), and those suggested on the EEGLAB wiki1.

• Analysis windows: for each experimental condition (improve
and scale), the data from 4 to 28 s was retained. The first
and last 4 s were left out to eliminate potential boundary
effects of switching conditions. The 16 s rest condition
between experimental trials were also cut out of the data. It
was necessary to cut the rest condition out of the analysis
because many subjects moved their arms, hands, and heads
a lot during the rest condition creating excessive artifacts.
Additionally, there was no way to ensure that participants
were actually doing nothing (resting) rather than mentally
rehearsing playing the guitar during this period. These two
reasons, unfortunately, precluded analysis of the experimental
conditions (improv and scale) relative to rest.
• Two datasets were constructed with bandpass filtering of raw
continuous data from 2 to 30 Hz and 1 to 100 Hz using
a Hamming windowed Sinc FIR filter. The dataset filtered
from 2 to 30 Hz was used for determining the parameters
used for preprocessing as well as the ICA weights. Using the
2–30 Hz dataset resulted in an ICA decomposition revealing
more effective brain sources. The learned ICA weights were
then applied to the 1–100 Hz dataset, which was used for
all subsequent analysis. The use of high pass filtering at
1–2 Hz has been found to work best for ICA (Winkler et al.,
2015). ICLabel used to identify artifact and brain independent
components (ICs) utilizes data filtered from 1 to 100 Hz. This
was the primary reason for selecting this frequency band.
• Automatic channel rejection using the 2–30 Hz filtered
dataset was based on the following: flat channel duration
(>5 s and poor correlation to robust estimate based on

1https://sccn.ucsd.edu/wiki/Makoto’s_preprocessing_pipeline

other channels (0.8; default parameter values were used:
functions for automatic channel rejection were from the Clean
Continuous Data Using ASR plugin). The channels that were
rejected from the 2 to 30 Hz dataset were also rejected from
the other 1 to 100 Hz dataset. It is important to remove
bad channels to improve automatic data cleaning methods
such as artifact subspace reconstruction (see below) as well
as for prevention of spreading of artifacts throughout all
channels during average referencing (Bigdely-Shamlo et al.,
2015). Supplementary Figure S1 provides a topographic plot
of the good (retained) and bad (rejected) channels for each
participant. An analysis of the number of bad channels from
the participants reveals that anterior channels (mean = 1.18;
SE = 0.34; out 14 channels total; first two EEG channel
rows) frontal central channels (mean = 3.07; SE = 0.91;
out of 18 channels total; EEG channel rows 3 and 4) had
relatively few bad channels compared to central parietal
channels (mean = 6.93; SE = 0.94; out of 18 channels;
EEG channel rows 5 and 6) and parietal occipital channels
(mean = 5.57; SE = 0.66; out of 14 channels; EEG channel
rows 7 and 8). The anterior channels have significantly fewer
bad channels (normalizing for number of total channels) than
central parietal channels (paired T = −5.81; p < 0.05) and
parietal occipital channels (paired T = −6.60; p < 0.05).
The frontal central channels also have significantly fewer bad
channels (normalizing for number of total channels) than
central parietal channels (paired T = −5.90; p < 0.05) and
parietal occipital channels (paired T =−7.06; p < 0.05).
• Artifact subspace reconstruction (ASR; see Mullen et al., 2013;
Chang et al., 2018) is a component-based method to remove
transient and large amplitude non-stationary artifacts that
is online and real-time capable. ASR was used to remove
non-stationary high-variance signals from the EEG (standard
deviation cutoff for removal of bursts = 20; Windowed
Criterion = 0.25). For the 2–30 Hz dataset time windows
that were not repaired using the 0.25 Windowed Criterion
by ASR were removed. This was to provide a clean dataset
for ICA training. The percentage of samples removed by ASR
using the above given windowed criterion was 2.23% out of
504,084 samples (SE = 1.05%; the percent for each of the
participants are as follows: 0.22%, 0.41%, 1.21%, 1.11%, 0.15%,
2.77%, 0.32%, 1.88%, 6.67%, 1.11%, 13.99%, 0.51%, 0.71%,
0.12%). It should be noted that ASR allows for cleaning of data
such that trials that may be normally discarded can now be
used for further analysis. This is extremely important when
one considers neuroergonomic applications that operate in
real-time in which all trials must be used.
• Interpolating the rejected channels using a spherical spline
method was conducted for both datasets after ASR cleaning. It
is important to interpolate the missing bad channels that have
been removed before common average referencing to remove
bias that may arise from concentrated (non-diffuse) bad
channels (e.g., bad channels all being on the right hemisphere).
Interpolating before ICA is necessary because afterward, it is
not possible to recover the EEG.icasphere for the rejected bad
channels. The EEG.icasphere is necessary to project ICs back
to the electrodes used for sLORETA analysis (see below).
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• Common average referencing of channels was conducted on
both datasets after interpolation of missing channels. The
primary reason for common average referencing is for the use
of ICLabel that takes this type of data as input to identify brain
and artifact components (Pion-Tonachini et al., 2019).
• ICA is a signal processing technique that separates linearly
mixed sources at the level of sensors (EEG electrodes in
our case) into independent components (Bell and Sejnowski,
1995). Infomax ICA (Bell and Sejnowski, 1995; Delorme and
Makeig, 2004) using PCA reduction was used on the common
average referenced and preprocessed 2–30 Hz dataset. The
number of rejected channels determined the rank reduction
by PCA with one added rank reduction for the use of common
average referencing (see Supplementary Figure S1 for the
number of PCA reduction used for each participant). The data
with the removed time windows that could not be repaired by
ASR was used for ICA to help improve decomposition. The
goal for using ICA was to extract artifact data from brain data
that may be mixed in several components. The goal was not
explicitly to find independent task-related brain components.
• The weights of the ICA from the dataset filtered from 2 to
30 Hz were then applied to the ASR results without the
time windows removed (Windowed Criteria setting turned
off) of the 1–100 Hz dataset, which was used for cortical
effective source identification. This procedure allows for all
trials to be analyzed, which is important when considering
neuroergonomic applications.
• To identify ICs representing effective cortical activity, while
rejecting muscle and other artifacts, the following steps
were taken: ICLabel (version 1.1) was used to identify ICs
that are brain-related vs. artifact related2. ICLabel is a tool
that allows for automated expert classification of ICs into
seven different categories: Brain, Muscle, Eye, Heart, Line
Noise, Channel Noise, and Other (Pion-Tonachini et al.,
2019). ICLabel uses an artificial neural network to learn this
classification from training on over 6,000 EEG recordings
subjected to ICA for which experts have labeled components.
This number of different EEG recordings (from different
individuals and different EEG systems) used for training the
classifier, is far greater than other automated IC classification
tools (Pion-Tonachini et al., 2019). ICLabel performs better
or as good as other current automated IC classification
tools with greater efficiency in processing time (10 times
faster; Pion-Tonachini et al., 2019). ICLabel uses IC topo
maps and power spectral density (PSD) to categorize each
IC (Pion-Tonachini et al., 2019). The criteria of selecting
‘‘Brian’’ ICs in our study was based on the percentage of
‘‘Brain’’ categorization over 60% and the sum of the artifact
categories (Muscle, Eye, Heart, Line Noise, Channel Noise)
was under 20%. We opted to use a very strict criterion for
selection of brain-related ICs at the expense of potentially
selecting only a few ICs for some of the participants to
avoid contamination of the results by artifacts that are likely
to be numerous given the real-world nature of our task.
A primary advantage of using ICLabel instead of subjective

2https://sccn.ucsd.edu/wiki/ICLabel

evaluation (prone to experimenter bias) to select brain-related
ICs is that it is automated and replicable. Brain-related ICs
were retained and all other ICs were removed and data
re-projected to the EEG electrodes in preparation for source
localization (see below). See Supplementary Figure S1 for
the topo maps of the ICLabel selected brain-related ICs for
each participant.

Source Localization
Source localization of brain-related activity on the surface of
the cortex was determined using LORETA (Low-Resolution
brain Electromagnetic Tomography) Key software employing
sLORETA (Fuchs et al., 2002; Pascual-Marqui, 2002; Jurcak
et al., 2007). LORETA is a low-resolution source localization
technique that computes the generated electric neural activity
in voxels that segment the gray matter of the brain. Only
the ICs determined to be brain components by ICLabel were
used. All other components containing artifacts were removed
from the EEG data. The Electrode position on the head was
determined by reference to the 10-10 system within the LORETA
Key software. It should be noted that because generic head
models were used instead of individual-specific models based
on MRI anatomical images in which the position of the
electrodes in relation to the brain can be precisely determined
the absolute accuracy of the sLORETA source localization is
limited, although localization is accurate at a regional level
of resolution.

Source localization was computed for 21 improv and 21 scale
trials in total, in the following frequency bands (theta 6.5–8 Hz;
alpha1 8.5–10 Hz; alpha2 10.5–12 Hz; beta1 12.5–18 Hz; beta2
18.5–21 Hz; beta3 21.5–30 Hz; gamma 30.5–50 Hz; full alpha
8.5–12 Hz; full beta 12.5–30 Hz). The frequency bands were
selected in part because they were defaults given in the Loreta
Key software that are consistent with those given in Rangaswamy
et al. (2002), Kropotov (2016), and Newson and Thiagarajan
(2019). Another practical reason for using multiple sub-bands
within traditional frequency ranges was to increase the number
of features for machine learning analysis (see below). For each
participant the individual trials were submitted to a statistical
non-parametric (SnPM) analysis for the contrast of improv
vs. scale. The resultant sLORETA map for this contrast for
each participant was used in a random-effects group-level
analysis using SnPM analysis (5,000 randomizations) within the
LORETAKey software. Corrected critical thresholds for multiple
comparisons were used in accordance with SnPM (Nichols and
Holmes, 2001).

We believe that there are advantages in the analysis of
differences between improv and scale at the cortical source
localized level (using sLORETA) over that of conducting the
analysis over the separate brain-related ICs. In this research our
goal was to use ICA to remove artifacts from the EEG while
retaining brain-related activity. The brain-related components
were determined by ICLabel and then all other components
were removed from the EEG data. Although it is possible to
do spectral analysis of the IC activations contrasting improv vs.
scale conditions for a single participant it is often difficult to find
comparable components that are the same across all participants.
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One limitation of the cluster analyses used to group similar ICs
across participants is that they can give variable results depending
on the number of clusters the algorithms are set to find. An
advantage of utilizing all brain-related ICs for the EEG data is that
their mixturemay result in differences in cortical source localized
activity that may not be found when considering the individual
ICs separately.

Machine Learning
Machine learning was carried out over brain-related EEG data
using Common Spatial Patterns (CSP; Blankertz et al., 2008;
MNE, open-source Python software) for feature extraction and
logistic regression (Tomioka and Aihara, 2007; Tomioka et al.,
2007; Blankertz et al., 2008) for the classifier distinguishing
between Scale and Improv conditions. Logistic regression is a
statistical model used to predict a binary dependent variable
using weighted predictor variables (features) by means of the
log-odds (for formal details see Sperandei, 2014). These feature
extraction and classification methods were selected because the
algorithms are commonly used for two-group classification. An
additional reason for using logistic regression as a classifier is
that the model weights for each feature can be easily assessed,
enabling the evaluation of what features of brain activity are
most predictive. This is not true of many machine learning
classification methods such as support vector machines (Liu
et al., 2012; Selim et al., 2018). It is important to note that
the EEG data used for machine learning consisted of brain-
related activity in which artifact components have been largely
removed by filtering, ASR, ICA, and ICLabel. Each trial consisted
of channel data from 4 to 28 s. In total there were 21 trials
for each the Scale and Improv conditions. Leave-one-out cross-
validation and Shuffle Split cross-validation were used to train
and test the models. Therefore, different models are trained for
each cross-validation step for each procedure. For shuffle split
cross-validation, 100 iterations were used. The test size was 25%
for each of the iterations (default parameters of the Python
library scikit learn, open-source Python software). Separate
machine learning models were trained for each participant.
For leave-one-out cross-validation, statistical significance was
determined by the Wilcoxon signed-rank test. The performance
of the Shuffle Split cross-validation was used to demonstrate
consistency with the classification performance of the leave-one-
out cross-validation method.

The steps used for machine learning were as follows:

• For all machine-learning models, the channel level brain-
related EEG was used as initial input for supervised training
of CSP filters. Seven separate CSP filters were trained for
the 7 frequency bands: theta (6.5–8 Hz), alpha1 (8.5–10 Hz),
alpha2 (10.5–12 Hz), beta1 (12.5–18 Hz), beta2 (18.5–21 Hz),
beta3 (21.5–30 Hz), and gamma (30.5–50 Hz). The input for
training the leave-one-out cross-validation models consisted
of 41 trials and their labels. The test set consisted of the one
trial left out. In total 42 models were trained. One model for
each trial left out for testing. The input for training the shuffle
split cross-validation models consisted of a random selection
of 75% of the whole dataset (33 trials) and their labels. The

test set consisted of the remaining 25% of the dataset. In total
there were 100 iterations of the shuffle split procedure. The
CSP filters of the training set were applied to the respective
test set.
• The CSP analysis generates the same number of filters as
there are channels arranged in order from the maximal
representation of condition 1 (improv) on one side to maximal
representation of condition 2 (scale) on the other. We
selected the two CSP filters maximally representing the two
conditions. This serves to reduce the data from 64 channels
to four CSP channels/components. This was done for all seven
frequency bands.
• The PSD was calculated for each trial for training and test
datasets within the corresponding frequency band of the CSP
transformed data (four channels/components).
• The features used for training and testing the classification
models consisted of the mean PSD value in each of the
seven frequency bands for each of the four CSP filter
channels/components (28 features in total; see Supplementary
Figure S2 for the CSP weights for the frequency bands used for
machine learning).
• Logistic regression models were used for the classification of
improv and scale trials (Tomioka and Aihara, 2007; Tomioka
et al., 2007; Blankertz et al., 2008).

RESULTS

Source Localization of Brain Related
Activity
Source localization of brain-related activity on the surface of
the cortex (sLORETA) for the random effects group analysis
of improv vs. scale is given for each frequency band (theta,
alpha1, alpha2, beta1, beta2, beta3, gamma, full alpha, full beta)
in Figure 2 and Table 1. Statistical non-parametric mapping
analysis was used with 5,000 randomizations (LORETA Key
software). Corrected critical thresholds and p-values for multiple
comparisons were used in accordance with SnPM (Threshold
for corrected p < 0.05 = T > 3.467 two-tailed; Nichols and
Holmes, 2001). Statistically significant differences were only
found for the improv > scale contrasts. There was no statistically
significant differential activity for scale > improv in any of
the frequency bands. Because sLORETA is a low-resolution
technique the sources determined span large regions of the
brain often spreading across several anatomical brain areas. This
limitation should be kept in mind when making assertions about
a specific discretely localized brain region.

The sLORETA results in the different frequency bands for
improv vs. scale are as follows: the theta band frequency range
showed significantly greater activity in the left and right cuneus
in the occipital lobe (Figure 2A, Table 1). The alpha1 frequency
range showed significant greater activity primarily in the left and
right STG with greater activity on the left side also encompassing
the Supramarginal Gyrus (SMG) and IPL with an additional
cluster in the left Superior Parietal Lobule (SPL; Figure 2B,
Table 1). Greater activity was also found in MFC (extending
into anterior cingulate cortex, ACC), the right Precentral Gyrus
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FIGURE 2 | Cortical spectral power differences in various frequency bands for Improv > Scale. Source localization was conducted by sLORETA in the following
frequency bands: (A) Theta 6.5–8 Hz; (B) Alpha1 8.5–10 Hz; (C) Alpha2 10.5–12 Hz; (D) Beta1 12.5–18 Hz; (E). Beta2 18.5–21 Hz; (F) Beta3 21.5–30 Hz; (G)
Gamma 30.5–50 Hz; (H) Full Alpha 8.5–12 Hz; (I) Full Beta 12.5–30 Hz. Statistically significantly differential power (Threshold for p < 0.05 correcting for multiple
comparisons by SnPM = T > 3.467 two-tailed) for improv > scale is shown rendered on the surface of the cortex from yellow (high) to red (above threshold). No
significant differential activity was present for the contrast of scale > improv.
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TABLE 1 | Peak coordinates of sLORETA source localization for various frequency bands.

Frequency band Brain region Peak MNI coordinates T-value

Theta Occipital Lobe, Cuneus BA17, 18 −15, −85, 15 4.05
Theta Occipital Lobe, Cuneus BA17, 18 15, −85, 15 3.52
Alpha 1 MFC, ACC, BA 9, 32 5, 40, 25 3.92
Alpha 1 PreCG, PostCG, BA4, 3, 2 50, −15, 40 4.00
Alpha 1 STG, BA22, 41, 42 70, −25, 5 3.79
Alpha 1 STG, MTG, Insula BA22, 21, 41, 42, 39, 13 −45, −40, 20 4.03
Alpha 1 SMG, IPL, TPJ BA40 −55, −40, 30 3.96
Alpha 1 SPL, Precuneus, BA7 −25, −50, 50 3.75
Alpha 1 Superior Occipital Gyrus, BA17, 18 −20, −90, 20 3.76
Alpha 1 Middle Occipital Gyrus, BA18 30, −95, 15 3.76
Alpha 2 MFC, polar MPFC, SFG, ACC, BA10, 9, 32 10, 55, 15 4.44
Alpha 2 SMA, BA6 10, −10, 70 3.58
Alpha 2 PreCG, PostCG, PMC, BA4, 2, 3, 6 −55, −15, 35 3.94
Alpha 2 PreCG, PostCG, BA4, 2, 3 55, −15, 35 3.68
Alpha 2 ITG, MTG, STG, BA20, 21, 22 −65, −25, −20 3.69
Alpha 2 STG, BA22, 41, 42 60, −30, 15 3.72
Alpha 2 IPL, TPJ, BA40 −40, −35, 40 3.87
Alpha 2 IPL, TPJ, BA40 55, −50, 45 3.77
Alpha 2 Occipital Lobe, Cuneus, BA17, 18 −20, −90, 20 4.72
Alpha 2 Occipital Lobe, Cuneus, BA17, 18 5, −75, 10 4.33
Alpha 2 Precuneus, BA7 5, −65, 40 4.01
Beta 2 MFC, polar MPFC, ACC, BA10, 32 5, 40, 20 3.95
Beta 2 SPL, BA7 25, −70, 50 3.63
Beta 2 Precuneus, Cuneus, Post Cingulate, BA 31, 17, 18 0, −70, 15 4.03
Beta 3 SFG, MFC, BA10, 9 −15, 60, 25 3.63
Beta 3 DLPFC, MFG, BA10, 46, 45 −45, 45, 15 3.61
Beta 3 SMG, IPL, BA40 −55, −40, 40 3.75
Beta 3 Cuneus, BA17, 18 10, −85, 10 3.58
Alpha MFC, ACC, SFG, BA9, 10, 32 5, 45, 20 4.16
Alpha MFG, BA10 −35, 55, 10 3.77
Alpha SFG, BA10 30, 60, 5 3.95
Alpha PMC, BA6 −30, −10, 65 3.75
Alpha Cingulate, BA24 5, −5, 40 3.71
Alpha PreCG, PostCG BA4, 2, 3 −50, −15, 45 4.02
Alpha PreCG, PostCG BA4, 2, 3 55, −15, 45 3.80
Alpha STG, MTG BA22, 21, 41, 42 −65, −25, 0 3.97
Alpha SMG, AG, IPL, SPL, BA40, 39, 7 −35, −65, 35 4.02
Alpha STG, MTG, BA22, 21, 41, 42 60, −25, 10 3.81
Alpha Precuneus, BA7 −25, −50, 50 4.07
Alpha Occipital Lobe, Cuneus, BA17, 18 −20, −90, 20 4.58

BA, Brodmann Area; MFC, Medial Frontal Cortex; ACC, Anterior Cingulate Cortex; PreCG, Precentral Gyrus; PostCG, Postcentral Gyrus; STG, Superior Temporal Gyrus; MTG, Middle
Temporal Gyrus; SMG, Supramarginal Gyrus; TPJ, Temporal parietal junction; IPL, Inferior parietal lobule; SPL, Superior Parietal Lobule; MPFC, medial prefrontal cortex; SFG, Superior
Frontal Gyrus; SMA, Supplementary motor area; ITG, Inferior Temporal Gyrus; MFG, Middle Frontal Gyrus; PMC, Premotor cortex; AG, Angular Gyrus. Negative × MNI coordinates
are in left hemisphere and positive are in right hemisphere.

(PreCG; and PostCG), as well as the left and right occipital
gyrus (Figure 2B, Table 1). The alpha2 frequency range showed
significantly greater activity in the MFC extending to the polar
MPFC, Superior Frontal Gyrus (SFG), and ACC (Figure 2C,
Table 1). Significantly increased activity in the alpha2 frequency
range was also present in the supplementary motor area (SMA),
left and right PreCG (and PostCG), the left and right STG, the
left and right IPL, as well as the left and right cuneus (extending
into precuneus; Figure 2C, Table 1). No significant differential
activity correcting for multiple comparisons was found for the
beta1 frequency range (Figure 2D). The beta2 frequency range
showed significantly greater activity in the MFC extending to
the polar MPFC, and ACC (Figure 2E, Table 1). Differential
activity in the beta2 frequency range was also present in the
SPL as well as the precuneus (extending into the cuneus and
posterior cingulate (Figure 2E, Table 1). The beta3 frequency

range showed significantly greater activity in the left DLPFC,
the left SFG (extending into MFC), the left SMG, and the left
and right cuneus (Figure 2F, Table 1). No significant difference
in activity correcting for multiple comparisons was found for
the gamma frequency range (Figure 2G). The full alpha range
frequency band (8–12 Hz) had activity in the same regions
as combining alpha1 and alpha2 bands (see above, as well as
Figure 2H and Table 1). In contrast to the significant results
for sub-bands, no significant differential activity correcting for
multiple comparisons was found for full beta frequency range
(12.5–30 Hz; Figure 2I).

Machine Learning Analysis of Individual
Participants
Machine learning employing logistic regression for the classifier,
and CSP for the feature extraction over EEG recorded brain
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activity, was used to determine classification performance of
whether the participant was playing scale or improv. Brain
related features for each trial were extracted using CSP
analysis separately in each of the seven frequency bands
(theta, alpha1, alpha2, beta1, beta2, beta3, gamma). Four CSP
filters were trained to separate scale from improv trials (for
details, see ‘‘Materials and Methods’’ section). The classification
performance was determined using a leave-one-out cross-
validation procedure. Therefore, different models are trained
for each cross-validation step. In total there were 42 cross-
validation steps, one for each of the 21 scale and 21 improv
trials. Separate analyses were conducted for each participant. The
results of the machine learning performance (percent correct
classification, hit rate, false alarm rate, d-prime) for classifying
scale vs. improv are given in Table 2 for each participant. The
Wilcoxon signed-rank test revealed that 11 of the 14 participants
had classification performance that was significantly better than
chance level (Table 2). The mean classification performance of
all participants was 75.75% (SE = 3.49), which was significantly
greater than the chance level (Wilcoxon signed-rank p < 0.05).
A shuffle split cross-validation procedure (100 iterations) was
also employed to verify the robustness of the classification
performance. The overall mean classification performance for
the shuffle split cross-validation procedure (74.76%; SE = 3.10;
Wilcoxon signed-rank p < 0.05) was in close agreement to that
of the leave one out cross-validation procedure (75.75%).

The mean weights across the 42 trained models within
each participant were evaluated to determine the regularities
and individual differences across participants with regards
to the relative contribution of different frequency bands to
classification accuracy. The mean CSP filters (two for scale
and two for improv) for each frequency band (28 total CSPs)
for each participant are given in Supplementary Figure S1.
There were considerable individual differences in the CSPs
across all frequency ranges and their relative weighting by the
logistic regression model across participants (Supplementary
Figure S2). The six top weights of the within-participant mean

TABLE 2 | Machine learning results: logistic regression (Leave-One-Out Cross
Validation).

Participant Percent correct Hit rate False alarm rate d-prime

01 81.95∗ 0.810 0.190 1.752
02 76.19∗ 0.810 0.286 1.442
03 76.19∗ 0.750 0.227 1.422
04 83.33∗ 0.800 0.136 1.938
05 61.91 0.619 0.381 0.606
06 76.19∗ 0.810 0.286 1.442
07 80.95∗ 0.857 0.238 1.780
08 61.91 0.667 0.429 0.611
09 64.29∗ 0.667 0.381 0.734
10 90.48∗ 0.905 0.095 2.618
11 83.33∗ 0.850 0.182 1.945
12 92.86∗ 0.952 0.095 2.978
13 47.62 0.429 0.476 −0.120
14 83.33∗ 0.810 0.143 1.944
Mean 75.75∗ 0.767 0.253 1.507
SE 3.49 0.037 0.035 0.230

*Classification performance percent correct statistically greater than chance (50%)
p < 0.05 using Wilcoxon signed-rank test.

machine learning classification model are surrounded by a
black square (Supplementary Figure S2). Because the polarity
of the model weight is in relation to the CSP, which can
be arbitrarily flipped, the absolute magnitude of the weight
from zero was used to determine its contribution. For each
frequency band (consisting of four CSP filters) the percentage
of participants that had at least one of the top six weights
in that band is as follows (sorted in descending order of
prevalence): Theta = 79%; Gamma = 79%; Beta2 = 71%;
Alpha1 = 64%; Alpha2 = 64%; Beta3 = 64%; Beta1 = 36%;.
To further understand the importance of different frequency
bands in predicting improvisation, the contribution of the
largest absolute model weight within each frequency band across
participants was evaluated. The mean maximum absolute weight
in each frequency band across participants was as follows:
Theta = 0.67 (SE = 0.07); Alpha1 = 0.47 (SE = 0.05); Alpha2 = 0.56
(SE = 0.06); Beta1 = 0.34 (SE = 0.03); Beta2 = 0.50 (SE = 0.05);
Beta3 = 0.52 (SE = 0.06); Gamma = 0.70 (SE = 0.09). The
Theta band was significantly greater than the Alpha1, Beta1, and
Beta2 bands; The Alpha1 band was significantly greater than the
Beta1 band; The Alpha2 band was significantly greater than the
Beta1 band; The Beta1 band was not significantly higher than
any bands; The Beta2 band was significantly higher than the
Beta1 band; The Beta3 band was significantly higher than the
Beta1 band; The gamma band was significantly higher than the
Alpha1 and Beta1 bands (Wilcoxon signed-rank p < 0.05).

DISCUSSION

In this study, we investigated brain-related EEG activity in
professional and amateur guitar players who are skilled at
improvisation. The experimental contrast of improv vs. scale
was used to probe brain regions differentially involved with
guitar improvisation. The two tasks, improvisation, and scale,
differed considerably with respect to their creative demands. In
the improvisation task, participants were instructed to perform
in a manner that was as original and creative as possible. In
contrast, in the scale task, participants were asked to play the
major scale (a common standard scale that is a sequence of
completely predictable notes). The scale condition consisted of
a non-creative task that controlled for general aspects of motor
control and sensory aspects of guitar playing.

Our research helps to better validate EEG findings into
the investigation of brain activity underlying improvisation by
utilizing advanced techniques (ASR, ICA and ICLabel) to clean
and exclude artifacts from the data. Although body movement is
an inherent part of playing a musical instrument, previous EEG
research investigating improvisation has not used techniques
such as ICA to separate brain activity from physiological and
movement-based artifacts (Dolan et al., 2013, 2018; Müller et al.,
2013; Wan et al., 2014; Dikaya and Skirtach, 2015; Adhikari et al.,
2016; Sanyal et al., 2016; Lopata et al., 2017).

Brain Related Activity Differentiating
Improv and Scale
Consistent with our predictions based on previous EEG/MEG
and fMRI research significant differential power for
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improv > scale was found in brain regions involved with
internally mediated cognitive processing (MFC, polar MPFC),
externally directed cognitive control (DLPFC, IFG), and
perceptual-motor planning/control (STG, IPL, SPL, TPJ) in the
alpha (Figures 2B,C,H, Table 1) and beta (Figures 2E,F, Table 1)
frequency ranges.

It is thought that increased activity in the MFC may denote
internally directed attention involved with creativity tasks as
well as coordination of complex action underlying sequential
planning that is an integral part of improvisation of music (Dolan
et al., 2013; Beaty, 2015; Dikaya and Skirtach, 2015; Landau and
Limb, 2017; Stevens and Zabelina, 2019). Our finding of greater
power for improv over scale in the frontal area comprising
regions of the MFC, ACC, and SMA (Figure 2, Table 1) are
consistent with many fMRI studies investigating improvisation
(Bengtsson et al., 2007; de Manzano and Ullén, 2012a,b; Donnay
et al., 2014; Pinho et al., 2014;McPherson et al., 2016; Landau and
Limb, 2017; Lu et al., 2017; Dhakal et al., 2019). The low alpha
range has been implicated with general attentional demands and
the upper alpha band to task-specific demands often related to
creativity (Fink and Benedek, 2014). The beta frequency range
has also been divided into subbands based on different responses
to varying tasks (Kropotov, 2016). Differences within this various
alpha and beta subbands in our study suggest that they may
represent distinct underlying processes.

It should be pointed out that alpha frequency band power
is often thought to reflect cortical inhibition (cortical idling)
in various brain regions (e.g., DLPFC, occipital regions; Fink
and Benedek, 2014; Dikaya and Skirtach, 2015; Stevens and
Zabelina, 2019). This, however, is not always the case. The alpha
frequency range has been reported to be involved with cortical
excitation in the MFC in tasks involving creative processing
and improvisation consistent with the conclusions of our study
(Fink and Neubauer, 2008; Jauk et al., 2012; Benedek et al., 2014;
Schwab et al., 2014; Lopata et al., 2017; Camarda et al., 2018;
Lopata et al., 2017; Stevens and Zabelina, 2019). Furthermore,
studies using fMRI and EEG have shown increased alpha
synchronization in frontal and parietotemporal brain regions
associated with brain activation during creative processing (Fink
and Neubauer, 2008).

Also of particular interest is the finding of significantly greater
power for improv over scale in the polar MPFC in the alpha2 and
beta2 frequency range (Figures 2C,E, Table 1). The polar MPFC
is thought to be involved with the production of spontaneous
internally motivated cognition (self-expression) and has been
found to be active during music improvisation (Limb and Braun,
2008; Liu et al., 2012; Landau and Limb, 2017). Because the
MPFC is very close to the eyes it is possible that this activity may
reflect differences in eye movement and blink activity between
the improv and scale conditions. However, we do not believe this
is the case in our experiment because ICA was able to extract eye
related artifacts for all participants in this study.

Activations in the polar MPFC together with deactivation
in DLPFC (involved with executive control mediated by
conscious self-monitoring with directed attention) are thought
to reflect neural correlates of ‘‘flow’’ (Limb and Braun, 2008;
Landau and Limb, 2017). Flow is thought to be an effortless

conscious state characterized by internally motivated actions
with minimal top-down control (Limb and Braun, 2008;
Landau and Limb, 2017).

While we did find a significantly greater power in polarMPFC
we did not find a deactivation in DLPFC during improvisation.
Rather, in our study we found the opposite pattern of activity.
There was significantly greater power in the left DLPFC in the
Beta3 frequency range (Figure 2F, Table 1). Our finding of
greater power in the beta band for improv is not consistent with
the results of Boasen et al. (2018), which showed a decrease in
the beta band power in the rostral MFC including the DLPFC
for improvisation relative to a control condition in a MEG
experiment. Additionally, many fMRI studies also revealed that
improvisation tasks compared to respective control conditions
showed significant deactivations in DLPFC (Limb and Braun,
2008; Liu et al., 2012; Landau and Limb, 2017; Boasen et al.,
2018). Despite this, many other studies have also found increases
in the DLPFC region consistent with our finding of increased
beta power in this region (Figure 2F, Table 1; Bengtsson
et al., 2007; de Manzano and Ullén, 2012a,b; Beaty, 2015). One
potential reason for the discrepancy in results between studies
may be related to the skill level of the participants. It has
been put forward that a decrease in activity in this region is
associated with less executive control and top-down processing
related to the concept of ‘‘flow’’ for advanced improvisation
musicians (Limb and Braun, 2008; Landau and Limb, 2017). The
differences in DLPFC activity across studies may be explained
by the degree of automatic vs. controlled processes (Beaty,
2015; Sowden et al., 2015; Rosen et al., 2016) involved that are
dependent on expertise. Musicians that have not reached a high
skill level may require more directed coordination of motor
activity that is mediated by executive control. Therefore, while
highly skilled improvisation musicians would be expected, based
on past results, to show a decrease in activity in executive control
areas such as the DLPFC, more novice improvisation musicians,
such as those in this study, would be predicted to have greater
activity in DLPFC associated with explicit top-down control.
Support of this distinction comes from a study in which anodal
transcranial direct current stimulation tDCS to the right DLPFC
enhanced improvisation performance in novice musicians but
degraded improvisation performance in expert musicians (Rosen
et al., 2016).

It has further been suggested the improvisation, as well
as other creative processes, involves interplay between brain
networks involved in externally directed attention (such as the
DLPFC) and those involving internally directed attention (polar
MPFC, MFC; Beaty, 2015). Many of the differences in activation
of brain regions involved with externally directed attention
(e.g., DLPFC) across studies investigating improvisation have
been attributed to differences in the degree of constraints
for the experimental task (Berkowitz and Ansari, 2010; de
Manzano andUllén, 2012a). Studies (e.g., Limb and Braun, 2008)
that were relatively unconstrained showed deactivation of
brain regions involved with externally directed attention
(e.g., DLPFC), whereas studies with greater external constraints
on improvisation, including playing to a metronome and playing
in collaboration with a second performer, showed greater activity
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in brain regions involved with externally directed attention
(Bengtsson et al., 2007; Berkowitz and Ansari, 2008; de Manzano
and Ullén, 2012a; Donnay et al., 2014). Our study shows activity
in brain regions involved with internally directed attention (polar
MPFC, MFC) as well as those involved with externally directed
attention (DLPFC).

There was considerably greater power for improv over scale
in visual areas across many of the frequency bands investigated
in this study (theta, alpha1, alpha2, beta2, beta3, and alpha;
Figures 2A–C,E,F,H; Table 1). This activity was located in the
cuneus and precuneus regions as well as other visual processing
regions in the occipital gyrus. One possible explanation for
greater activity in these regions is the greater need for visual
observation of the fingers and hands in relation to the guitar
for improvisation overplaying scales. This is consistent with
demands for externally directed attention.

Another interesting finding in our study is the presence
of significantly greater power for improv over scale in the
alpha frequency range in brain regions including the PMC,
STG, IPL, and the TPJ (Figures 2B,C,H, Table 1) involved
with perceptual-motor planning and control as well as feedback
regulation based on external and internal states and goals. In
music processing, these regions have been found to be involved
in manipulations of musical structures (Zatorre et al., 2010),
and motor-auditory interactions mediated through the parietal
cortex has been suggested to be required for musical rhythm
perception and production (Iversen and Balasubramaniam,
2016). These functions are thought to be indicative of processes
involved with music improvisation. Activation of the PMC
is consistent with the study of Berkowitz and Ansari (2008)
suggesting the role of this area in movement coordination
and sequence generation in relation to music improvisation.
The STG/sulcus STG/S is an auditory processing region that
is likely differentially engaged during improvisation to monitor
the ongoing acoustic environment. The IPL is involved with
sensory predictive feedback (Pecenka et al., 2013). The TPJ is
thought to mediate transformation of auditory signals into a
form that constrains motor processing (Griffiths and Warren,
2002; Warren et al., 2005; Callan et al., 2006) and is known to
be involved with reward-based modulation by music (Li et al.,
2015). It should be noted that right TPJ was found to show
decreased activity in expert musicians during improvisation in
the study by Berkowitz and Ansari (2010), contrary to the
left TPJ increase found in our study. It is hypothesized by
Berkowitz and Ansari (2010) that a decrease in activity in TPJ
for expert musicians results from inhibition of stimulus-driven
attention. In the non-elite musicians used in our experiment
the results suggest that improvisation utilizes a network of
brain regions involved with coordinating planned sequences of
movement that are modulated in response to both ongoing
environmental context through monitoring and feedback of
sensory states in relation to internal plans and goals. It is
interesting to point out that a network between brain regions
involved with cognitive control (IFG) and those with low-level
imaginative processes (default mode network; which includes
the MFC and IPL regions found to be active in our study) is
implicated in the generation of creativity (Beaty et al., 2014).

However, this form of creativity may be different from that
used by expert improvisers that experience a state of flow that
is characterized by less cognitive control and self-monitoring
(Landau and Limb, 2017).

We believe it is unlikely that our results are merely due to
basic aspects of acoustics that may differ between improv and
scale. With respect to the acoustics, no amplifier was used, the
volume of the notes played on the guitar, although audible, were
considerably less than the sound from the metronome and the
context chord sound presented. Therefore it is unlikely that mere
overall acoustic intensity is responsible for activity in auditory
regions found in our study. Rather, our results of activity in the
left STG are consistent with attentional modulation to focus on
music generated as well as background context in the service of
producing future notes in accordance with improvisation.

It is also unlikely that our results are merely due to basic
aspects of motor activity, such as performance rate, that may
differ between improv and scale. Several studies have reported
brain activity in primary sensorimotor cortices (PreCG and
PostCG), SMA, PMC, IPL, basal ganglia, and anterior cerebellum
as a result of the rate of finger tapping movement (Witt et al.,
2008). While many of these regions (Figure 2, Table 1) were
found to show greater power in improv in our study we suggest
that this is not a result of guitar playing rate differences between
improv and scale conditions. This is because although variable
pace was an option in the improv condition, all participants
but two, played at the same eighth-note rate as was required
for the scale condition. The two subjects that played improv
in some trials with a different beat performed at a lower rate
(quarter note). Therefore it is unlikely that the differences we
found in these brain regions were merely a result of different
rates or different rhythms in the two conditions but are more
likely related to complex coordinated perceptual-motor control
in relation to internal goals involved with improvisation.

Future research will include a precise measure of the
acoustics and finger movements synchronized to the recording
of brain activity. In this way, we can conduct time-frequency
analyses over the source localized brain activity and use
these variables to address potential confounds such as finger
movement and acoustic variables while at the same time trying
to determine temporal and spectral correlates of neural processes
underlying improvisation.

Machine Learning
An additional goal of our research was to determine if individual-
specific brain-related activity could be used to classify whether
the musician is playing improv or scale using machine-
learning techniques. We used bandpass filtering and CSP to
extract features and a conventional machine learning method
(logistic regression) to confirm that we can classify these
two different tasks from brain-related activity. It is important
to note that this data consists of brain-related activity in
which artifact components have been largely removed by ASR,
ICA, and ICLabel. The use of machine learning to classify
improv vs. scale is an important step towards developing
a brain-computer interface that can possibly be used for
neurofeedback training.

Frontiers in Human Neuroscience | www.frontiersin.org 11 December 2019 | Volume 13 | Article 435

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Sasaki et al. Music Improvisation Brain Related EEG

Using a leave-one-out cross-validation testing procedure
the performance could be evaluated using a separate model
for each trial. The mean classification performance across
participants was 75.75% and was significantly greater than
chance (Table 2). The robustness of these results was evaluated
using a shuffle split cross-validation procedure which achieved
a similar mean classification performance of 74.76%. Individual
participant classification performance ranged from 47.62% to
92.86% (Table 2). Better than chance classification performance
was present for 11 of the 14 participants (Table 2). These
results show that for at least for some participants very good
models can be trained to classify improv from scale trials using
seven frequency bands and four CSP spatial filters for a total of
28 features.

The relationship between the weighting of the features
by the trained logistic regression models was explored. One
advantage of using logistic regression over other machine
learning classification methods is that the weights of the various
features used for classification can be assessed. An attempt
was made to determine if there were any cross-individual
regularities in the weighting of certain frequency bands (out
of the seven used: Theta, Alpha1, Alpha2, Beta1, Beta2, Beta3,
Gamma). The weights with the top six absolute values of the
features were determined (see squares around CSP filters in
Supplementary Figure S2). The frequency bands that had the
largest number of participants with high weights were theta
and gamma with 11, followed by Beta2 with 10, then Alpha1,
Alpha2, and Beta3 with nine and the lowest were Beta1 with
five. To better evaluate these regularities in frequency band
weights across participants, statistics were carried out across
the maximum absolute weight within each frequency band.
The results confirmed that Theta and Gamma frequency bands
were in general weighted more highly than many of the
other frequency bands (see ‘‘Results’’ section). Gamma band
activity is thought in part to be involved with bottom-up and
top-down information matching, which may be important for
improvisation (Stevens and Zabelina, 2019). These results are
interesting in that they are different than what one would expect
given the results of the sLORETA analysis (Figure 1, Table 2),
which showed no significant differential activity in the Gamma
range (However a significant differential activity was shown in
the theta range). One likely explanation for this discrepancy is the
degree of individual differences in the location of gamma activity
in the brain across participants (Supplementary Figure S2 shows
considerable differences in the CSP filters for the participants in
all frequency ranges).

Limitations
While our study did control for general aspects of finger and
hand movement as well as general acoustic variables it did not
control for the musical complexity of the improvisation. It is
possible that brain differences between the improv and scale
condition are a result of perceptual processing related to the
complexity of the music rather than to processes solely related to
the creative processes underlying improvisation. Previous studies
have shown that creativity including improvisation involves
many brain networks encompassing frontal, parietal, and limbic

brain regions known to be involved with multiple functions
such as executive processing, attention, memory, and emotion
(Fink et al., 2009; Beaty, 2015; Landau and Limb, 2017; Beaty
et al., 2018). It is unlikely that there is a specialized area of
the brain that is solely dedicated to improvisation and creative
processing alone. While our study can determine whether
there is significant differential activity in various brain regions
between improvisation and the control task of playing scales
it cannot discern whether these localized brain processes are
specific to improvisation. This is partly because of the necessity
to exclude the rest condition from the analysis because of
excessive artifacts. The rest condition could have been used
as a baseline condition for comparison with the experimental
conditions so that one could tell the degree of activity for each
condition separately.

It should be pointed out that common to many creative skills
there is natural variation in ability across individuals that is often
difficult to quantify. Because of this, the performance level across
participants is not constant. This is a common limitation to group
analysis that is present in all performance-related research. This
is true especially in the case in which performance quality is
subjective. In the future we intend to extend this research to
investigate differences in neural processes between skilled and
novice improvisation as a way to study skill learning and resolve
some of the discrepancies in the literature, which we speculated
above may be due to skill level.

Another limitation of our study was the need to remove many
bad channels and then interpolate for some of the participants
(good and bad electrodes are shown in Supplementary
Figure S1). Because this study was a within-subjects design
it is unlikely that the differences found between the improv
and scale conditions are a result of bad channels and
interpolation as they were identical for each condition. There
is, however, a likely bias in the identified sources based on
the electrode density with respect to interpolation. It is known
that shallow sources are more prone to interpolation errors
than deep sources (Fletcher et al., 1996). With respect to
topographic maps (as used by ICLabel for identifying brain-
related components), it is known that interpolation error will
occur when there is a high potential gradient far from any
electrode (Fletcher et al., 1996). Inaccuracies in the topo maps
may limit the accuracy upon which ICLabel selects brain and
artifact related ICs. Based on an analysis of the location of
bad channels showing they are mostly in posterior regions
(central parietal and parietal occipital channels; see ‘‘Materials
and Methods’’ section and Supplementary Figure S1) it is
likely that interpolation and source localization error is greater
in these regions for our study. Whereas anterior and frontal
central regions are likely to have lower interpolation and source
localization error due to the presence of fewer bad channels in
our study.

For three of the participants, there were a considerable
number of bad channels (see Supplementary Figure S1;
Participants P02, P03, and P07). To help ensure that the
results of the sLORETA analysis are not biased by potential
interpolation error these three participants were removed
from the random effects analysis of improv relative to the
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scale. The result of this analysis is given in Supplementary
Figure S3. Although the T threshold is lower in the analysis
with the three participants excluded it does show good
consistency with the original results shown in Figure 2 using all
14 participants. Correction for multiple comparisons separately
in alpha (threshold p < 0.05 = T > 3.37) and beta (threshold
p < 0.05 = T > 3.23) frequency bands for the 11 participant
analysis does reveal considerable significant activity that is
also present for the full 14 participant analysis (compare
Supplementary Figure S3 and Figure 2). The consistency of
these results and the similarity of the location of brain activity
with several fMRI studies using a similar experimental paradigm
lend support to the validity of our findings and suggest that they
are not likely entirely due to interpolation error.

We relied on ICLabel to identify brain ICs, rather than our
subjective interpretation of the data component topographies,
leading to the inclusion of some components with the appearance
of single-channel topographies. ICLabel is a tool trained to
identify component type based on spectrotemporal features of
thousands of example components scored by expert scientists
and has been demonstrated to have expert-level performance
on test data (Pion-Tonachini et al., 2019). As a check on the
ICLabel results, we conducted a dipole analysis using DIPFIT
(EEGLAB). Dipole analysis localized nearly all of the brain-
related components identified by ICLabel within the volume of
the brain, thus corroborating to a large degree the ICLabel results.
Exceptions were five components (out of a total of 67 across all
14 participants) for three participants that were located on the
skull instead of within the volume of the brain (P01 component
1; P04 components 2, 4, 6; P09 component 1). The reason
we chose the more holistic ICLabel approach is that single
equivalent dipole analysis may be limited when dealing with
multiple and/or distributed sources. This is one of the reasons
for using sLORETA analysis in order to describe distributed
source localization.

There are several studies that have demonstrated that a few
and even a single IC can be used for sLORETA analysis (Grau
et al., 2007; Slobounov et al., 2009; Ventouras et al., 2010). In
this respect the low number of brain-related ICs retained in a
few of the participants is not problematic. It is possibly biased by
the conservative criteria we set for ICLabel but this is a tradeoff
with corruption of the data by potential artifacts. Furthermore,
the comparison of improv vs. scale is made independently for
each participant based on using the same number of components
for the sLORETA analysis. One potential bias that may arise
from a low number of ICs being used for some participants
and not others is that they might be missing activity in various
brain regions that could be task-related. Critically, this bias
is conservative, working against our hypothesis and is likely
to result in the absence of finding a significant difference
between conditions (false-negative, Type II error), rather than
a false positive, Type I error. Therefore, the results found to be
significant in our study are not likely biased by the low number
of brain ICs found for some participants. Note, we do not claim
that our ICs represent all of the brain activity of a participant, but
only that which can confidently be attributed to neural, and not
artifactual, processes.

It should be recognized that ICLabel along with the other
automated preprocessing steps utilized to minimize the degree
of artifacts in the data are open to improvement but have the
advantage of total replicability due to the removal of subjective
choices in the processing stream.

CONCLUSION

This study investigated neural processes related to playing
improvisation relative to scale music. It was our goal to
extend EEG research related to brain processes underlying
music improvisation by using high-density EEG recording
(64 channel), cortical source localization, advanced artifact
extraction, and machine learning techniques. The results of this
research revealed that improvisation over scale is characterized
by increased power in theta, alpha, and beta frequency range
in brain regions involved with internally directed attention and
control (MFC, polar MPFC), those involved with externally
directed attention (DLPFC), as well as those involved with
feedback regulation of perceptual-motor planning and control
based on external and internal states and goals (PMC, STG,
IPL, TPG, PreCG, PostCG), thought to be important for
execution of improvisation. Converging findings from both
fMRI and EEG studies using various musical instruments and
tasks suggest that these results are generalizable to different
modalities and give support for the conclusion that they underlie
creative processes used for improvisation. A long-term goal
is to be able to use neurofeedback and neuromodulation
methods to develop neuroergonomic based technology to
improve improvisation training and performance. One could
envision a brain-computer-interface that could give rewards as
feedback when certain optimal improvisation-based brain states
are present. Alternatively, a neuroadaptive interface could be
utilized to signal the performer when to start improvisation based
on ongoing brain activity.
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FIGURE S1 | Channel and IC information for each participant. The good
channels, Black (included in the analysis), and bad channels, Red (removed from
analysis), are shown in a topographic plot. The PCA reduction is the number of
ICs to retain for ICA. The number is one less than the number of good channels to
account for the loss of rank from the average referencing procedure. Topo maps
of brain-related independent components ICs. The topographic mapping (topo
map) of the scalp data field in a 2-D circular view (nose is at the top) for the brain

related ICs determined by ICLabel are given for each of the 14 participants
P01 to P14.

FIGURE S2 | Topo maps of the weights of the common spatial pattern (CSP)
filters used as features for machine learning. The features for each of the
14 participants are shown consisting of four CSP filters (two for Scale and two for
Improv) for each frequency bands (Theta 6.5–8 Hz; Alpha1 8.5–10 Hz; Alpha2
10.5–12 Hz; Beta1 12.5–18 Hz; Beta2 18.5–21 Hz; Beta3 21.5–30 Hz; Gamma
30.5–50 Hz). The weights of the logistic regression machine learning classifier with
the top six absolute values of the features are depicted by a black square around
the topo map of the CSP filter.

FIGURE S3 | Cortical spectral power differences in alpha and beta frequency
bands for Improv > Scale with three participants with many interpolated channels
removed. Source localization was conducted by sLORETA in the following
frequency bands: (A) Alpha1 8.5–10 Hz; (B) Alpha2 10.5–12 Hz; (C) Beta2
18.5–21 Hz; (D) Beta3 21.5–30 Hz. Statistically significantly differential power
(Threshold for p < 0.05 correcting for multiple comparisons separately in alpha
(SnPM = T > 3.372 two-tailed) and beta (SnPM = T > 3.229 two-tailed) for
improv > scale is shown rendered on the surface of the cortex from yellow (high)
to red (above threshold). The results are similar to those reported in
Figures 2B,C,E,F suggesting to some degree that the sLORETA results are not
due to interpolation error.
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